Antihypertensive Indigenous Lebanese Plants: Ethnopharmacology and a Clinical Trial
<p>Means ± SD of SBP, measured over 16-week intake of 300 mL/day of <span class="html-italic">M. longifolia</span> (M.L.), <span class="html-italic">V.odorata</span> (V.O.) and <span class="html-italic">U. dioica</span> (U.D.) in mild hypertensive subjects. ** <span class="html-italic">p</span> < 0.01 (M.L. and U.D. compared to Placebo at week 8 and M.L., V.O., and U.D. compared to Placebo at weeks 12 and 16).</p> "> Figure 2
<p>Means ± SD of DBP, measured over 16-week intake of 300 mL/day of <span class="html-italic">M. longifolia</span> (M.L.), <span class="html-italic">V.odorata</span> (V.O.) and <span class="html-italic">U. dioica</span> (U.D.) in mild hypertensive subjects.* <span class="html-italic">p</span> < 0.05 (U.D. compared to Placebo), ** <span class="html-italic">p</span> < 0.01 (M.L., V.O., and U.D. compared to Placebo).</p> "> Figure 3
<p>Means ± SD of MAP, measured over 16-week intake of 300 mL/day of <span class="html-italic">M. longifolia</span> (M.L.), <span class="html-italic">V.odorata</span> (V.O.) and <span class="html-italic">U. dioica</span> (U.D.) in mild hypertensive subjects. ** <span class="html-italic">p</span> < 0.01 (M.L. and U.D. compared to Placebo at week 8 and M.L., V.O., and U.D. compared to Placebo at weeks 12 and 16).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethnopharmacological Survery and Selection of Medicinal Plants
2.2. Plant Material and Extraction Procedure
2.3. Clinical Trial
2.4. Statistical Analysis
3. Results
3.1. Ethnopharmacological Data
3.2. Clinical Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Hassen Abate, K.; Akinyemiju, T.F.; et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990–2015. JAMA 2017, 317, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.M.; Kjeldsen, S.E.; Grassi, G.; Esler, M.; Mancia, G. The global burden of hypertension exceeds 1.4 billion people: Should a systolic blood pressure target below 130 become the universal standard? J. Hypertens. 2019. [Google Scholar] [CrossRef] [PubMed]
- Huffman, M.D.; Lloyd-Jones, D.M. Global Burden of Raised Blood Pressure: Coming Into Focus. JAMA 2017, 317, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.; Hasan, D.M.; Eameash, A.; Abd El-Mageed, H.; Hasan, S.; Ali, R. Worldwide Prevalence of Hypertension: A Pooled Meta-Analysis of 1670 Studies in 71 Countries with 29.5 Million Participants. J. Am. Coll. Cardiol. 2018, 71, 1819. [Google Scholar] [CrossRef]
- Matar, D.; Frangieh, A.H.; Abouassi, S.; Bteich, F.; Saleh, A.; Salame, E.; Kassab, R.; Azar, R.R. Prevalence, awareness, treatment, and control of hypertension in Lebanon. J. Clin. Hypertens. 2015, 17, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Mouhtadi, B.B.; Kanaan, R.M.N.; Iskandarani, M.; Rahal, M.K.; Halat, D.H. Prevalence, awareness, treatment, control and risk factors associated with hypertension in Lebanese adults: A cross sectional study. Glob. Cardiol. Sci. Pract. 2018, 2018, 6. [Google Scholar] [CrossRef]
- Cherfan, M.; Blacher, J.; Asmar, R.; Chahine, M.N.; Zeidan, R.K.; Farah, R.; Salameh, P. Prevalence and risk factors of hypertension: A nationwide cross-sectional study in Lebanon. J. Clin. Hypertens. 2018, 20, 867–879. [Google Scholar] [CrossRef] [Green Version]
- WHO. Noncommunicable Diseases (NCD) Country Profiles. Available online: https://www.who.int/countries/lbn/en/ (accessed on 20 March 2019).
- Samaha, A.; Zouein, F.; Gebbawi, M.; Fawaz, M.; Houjayri, R.; Samaha, R.; Baydoun, S.; Eid, A.H. Associations of lifestyle and dietary habits with hyperlipidemia in Lebanon. Vessel Plus 2017, 1, 98–106. [Google Scholar] [CrossRef]
- Eid, A.H.; Itani, Z.; Al-Tannir, M.; Sayegh, S.; Samaha, A. Primary congenital anomalies of the coronary arteries and relation to atherosclerosis: An angiographic study in Lebanon. J. Cardiothorac. Surg. 2009, 4, 58. [Google Scholar] [CrossRef]
- Fahs, I.; Khalife, Z.; Malaeb, D.; Iskandarani, M.; Salameh, P. The Prevalence and Awareness of Cardiovascular Diseases Risk Factors among the Lebanese Population: A Prospective Study Comparing Urban to Rural Populations. Cardiol. Res. Pract. 2017, 2017, 3530902. [Google Scholar] [CrossRef] [PubMed]
- DiBona, G.F. Sympathetic nervous system and hypertension. Hypertension 2013, 61, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Oparil, S.; Zaman, M.A.; Calhoun, D.A. Pathogenesis of hypertension. Ann. Intern. Med. 2003, 139, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.A.; Samaha, A.A.; Baydoun, S.; Iratni, R.; Eid, A.H. Rhus coriaria L. (Sumac) Evokes Endothelium-Dependent Vasorelaxation of Rat Aorta: Involvement of the cAMP and cGMP Pathways. Front. Pharmacol. 2018, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.H. cAMP induces adhesion of microvascular smooth muscle cells to fibronectin via an EPAC-mediated but PKA-independent mechanism. Cell. Physiol. Biochem. 2012, 30, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Chotani, M.A.; Mitra, S.; Eid, A.H.; Han, S.A.; Flavahan, N.A. Distinct cAMP signaling pathways differentially regulate α2C-adrenoceptor expression: Role in serum induction in human arteriolar smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H69–H76. [Google Scholar] [CrossRef] [PubMed]
- Motawea, H.K.; Jeyaraj, S.C.; Eid, A.H.; Mitra, S.; Unger, N.T.; Ahmed, A.A.; Flavahan, N.A.; Chotani, M.A. Cyclic AMP-Rap1A signaling mediates cell surface translocation of microvascular smooth muscle α2C-adrenoceptors through the actin-binding protein filamin-2. Am. J. Physiol. Cell Physiol. 2013, 305, C829–C845. [Google Scholar] [CrossRef]
- Jeyaraj, S.C.; Unger, N.T.; Eid, A.H.; Mitra, S.; Paul El-Dahdah, N.; Quilliam, L.A.; Flavahan, N.A.; Chotani, M.A. Cyclic AMP-Rap1A signaling activates RhoA to induce α(2c)-adrenoceptor translocation to the cell surface of microvascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 2012, 303, C499–C511. [Google Scholar] [CrossRef] [PubMed]
- Fardoun, M.M.; Nassif, J.; Issa, K.; Baydoun, E.; Eid, A.H. Raynaud’s Phenomenon: A Brief Review of the Underlying Mechanisms. Front. Pharmacol. 2016, 7, 438. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, R.; Gonzalez, J.; Paoletto, F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens. Res. 2011, 34, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Durango, N.; Fuentes, C.A.; Castillo, A.E.; Gonzalez-Gomez, L.M.; Vecchiola, A.; Fardella, C.E.; Kalergis, A.M. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. Int. J. Mol. Sci. 2016, 17, 797. [Google Scholar] [CrossRef] [PubMed]
- Omboni, S.; Volpe, M. Management of arterial hypertension with angiotensin receptor blockers: Current evidence and the role of olmesartan. Cardiovasc. Ther. 2018, 36, e12471. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, A.A. Addressing Hypertension in the Patient with Type 2 Diabetes Mellitus: Pathogenesis, Goals, and Therapeutic Approach. Eur. Med. J. Diabetes 2017, 5, 84–92. [Google Scholar] [PubMed]
- Guerrero-Garcia, C.; Rubio-Guerra, A.F. Combination therapy in the treatment of hypertension. Drugs Context 2018, 7, 212531. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.H.; Lavie, C.J.; Ventura, H.O. Emerging Therapy in Hypertension. Curr. Hypertens. Rep. 2019, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Nyaga, U.F.; Sime, P.S.; Francis, I.; Bigna, J.J. Global prevalence of resistant hypertension: A meta-analysis of data from 3.2 million patients. Heart 2019, 105, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.A.; Al Disi, S.S.; Eid, A.H. Anti-Hypertensive Herbs and Their Mechanisms of Action: Part II. Front. Pharmacol. 2016, 7, 50. [Google Scholar] [CrossRef]
- Al Disi, S.S.; Anwar, M.A.; Eid, A.H. Anti-hypertensive Herbs and their Mechanisms of Action: Part I. Front. Pharmacol. 2015, 6, 323. [Google Scholar] [CrossRef]
- Alali, F.Q.; El-Elimat, T.; Khalid, L.; Hudaib, R.; Al-Shehabi, T.S.; Eid, A.H. Garlic for Cardiovascular Disease: Prevention or Treatment? Curr. Pharm. Des. 2017, 23, 1028–1041. [Google Scholar] [CrossRef]
- Shouk, R.; Abdou, A.; Shetty, K.; Sarkar, D.; Eid, A.H. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr. Res. 2014, 34, 106–115. [Google Scholar] [CrossRef]
- Saleh Al-Shehabi, T.; Iratni, R.; Eid, A.H. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells. Phytomedicine 2016, 23, 1068–1081. [Google Scholar] [CrossRef] [PubMed]
- Fardoun, M.; Al-Shehabi, T.; El-Yazbi, A.; Issa, K.; Zouein, F.; Maaliki, D.; Iratni, R.; Eid, A.H. Ziziphus nummularia Inhibits Inflammation-Induced Atherogenic Phenotype of Human Aortic Smooth Muscle Cells. Oxid. Med. Cell. Longev. 2017, 2017, 4134093. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.A.; Samaha, A.A.; Ballan, S.; Saleh, A.I.; Iratni, R.; Eid, A.H. Salvia fruticosa Induces Vasorelaxation In Rat Isolated Thoracic Aorta: Role of the PI3K/Akt/eNOS/NO/cGMP Signaling Pathway. Sci. Rep. 2017, 7, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamon, S.D.; Perez, M.I. Blood pressure-lowering efficacy of reserpine for primary hypertension. Cochrane Database Syst. Rev. 2016, 12, CD007655. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol. 2019, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Otvos, R.A.; Still, K.B.M.; Somsen, G.W.; Smit, A.B.; Kool, J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS Discov. 2019, 24, 362–385. [Google Scholar] [CrossRef] [Green Version]
- Leonti, M.; Casu, L. Traditional medicines and globalization: Current and future perspectives in ethnopharmacology. Front. Pharmacol. 2013, 4, 92. [Google Scholar] [CrossRef]
- Baydoun, S.; Lamis, C.; Helena, D.; Nelly, A. Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. J. Ethnopharmacol. 2015, 173, 139–156. [Google Scholar] [CrossRef]
- Tardio, J.; Pardo-De-Santayana, M. Cultural importance indices: A comparative analysis based on the useful wild plants of southern Cantabria (northern Spain). Econ. Bot. 2008, 62, 24–39. [Google Scholar] [CrossRef]
- Hidayati, S.; Franco, F.M.; Bussmann, R.W. Ready for phase 5—Current status of ethnobiology in Southeast Asia. J. Ethnobiol. Ethnomed. 2015, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Tahraoui, A.; El-Hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol. 2007, 110, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, L.; Semotiuk, A.; Zafar, M.; Ahmad, M.; Sultana, S.; Liu, Q.R.; Zada, M.P.; Abidin, S.Z.U.; Yaseen, G. Ethnopharmacological documentation of medicinal plants used for hypertension among the local communities of DIR Lower, Pakistan. J. Ethnopharmacol. 2015, 175, 138–146. [Google Scholar] [CrossRef] [PubMed]
- De Wet, H.; Ramulondi, M.; Ngcobo, Z.N. The use of indigenous medicine for the treatment of hypertension by a rural community in northern Maputaland, South Africa. S. Afr. J. Bot. 2016, 103, 78–88. [Google Scholar] [CrossRef]
- Malik, K.; Ahmad, M.; Bussmann, R.W.; Tariq, A.; Ullah, R.; Alqahtani, A.S.; Shahat, A.A.; Rashid, N.; Zafar, M.; Sultana, S.; et al. Ethnobotany of Anti-hypertensive Plants Used in Northern Pakistan. Front. Pharmacol. 2018, 9, 789. [Google Scholar] [CrossRef] [PubMed]
- Balogun, F.O.; Ashafa, A.O.T. A Review of Plants Used in South African Traditional Medicine for the Management and Treatment of Hypertension. Planta Med. 2019, 85, 312–334. [Google Scholar] [CrossRef]
- Lorigooini, Z.; Ayatollahi, S.A.; Amidi, S.; Kobarfard, F. Evaluation of Anti-Platelet Aggregation Effect of Some Allium Species. Iran. J. Pharm. Res. 2015, 14, 1225–1231. [Google Scholar]
- Moghadam, M.H.; Imenshahidi, M.; Mohajeri, S.A. Antihypertensive effect of celery seed on rat blood pressure in chronic administration. J. Med. Food 2013, 16, 558–563. [Google Scholar] [CrossRef]
- Haydari, M.R.; Panjeshahin, M.R.; Mashghoolozekr, E.; Nekooeian, A.A. Antihypertensive Effects of Hydroalcoholic Extract of Crataegus Azarolus Subspecies Aronia Fruit in Rats with Renovascular Hypertension: An Experimental Mechanistic Study. Iran. J. Med. Sci. 2017, 42, 266–274. [Google Scholar]
- Vajic, U.J.; Grujic-Milanovic, J.; Miloradovic, Z.; Jovovic, D.; Ivanov, M.; Karanovic, D.; Savikin, K.; Bugarski, B.; Mihailovic-Stanojevic, N. Urtica dioica L. leaf extract modulates blood pressure and oxidative stress in spontaneously hypertensive rats. Phytomedicine 2018, 46, 39–45. [Google Scholar] [CrossRef]
- Siddiqi, H.S.; Mehmood, M.H.; Rehman, N.U.; Gilani, A.H. Studies on the antihypertensive and antidyslipidemic activities of Viola odorata leaves extract. Lipids Health Dis. 2012, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Abu-Gharbieh, E.; Shehab, N.G. Therapeutic potentials of Crataegus azarolus var. eu- azarolus Maire leaves and its isolated compounds. BMC Complement. Altern. Med. 2017, 17, 218. [Google Scholar] [CrossRef] [PubMed]
- Alamgeer; Akhtar, M.S.; Jabeen, Q.; Bashir, S.; Malik, M.N.H.; Khan, H.U.; Rahman, M.S.U.; Salma, U.; Mazhar, U.; Khan, A.Q.; et al. Antihypertensive and Toxicity Studies of Aqueous Methanolic Extract of Mentha Longifolia L. J. Anim. Plant Sci. 2013, 23, 1622–1627. [Google Scholar]
- Tassell, M.C.; Kingston, R.; Gilroy, D.; Lehane, M.; Furey, A. Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacogn. Rev. 2010, 4, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, N.; Mokdad-Bzeouich, I.; Sassi, A.; Abed, B.; Ghedira, K.; Hennebelle, T.; Chekir-Ghedira, L. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities. Tumour Biol. 2016, 37, 7967–7980. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, N.; Souri, E.; Ziai, S.A.; Amin, G.; Amanlou, M. Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay. Daru 2013, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, P. Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins. J. Sci. Food Agric. 2012, 92, 1578–1590. [Google Scholar] [CrossRef]
- Larson, A.J.; Symons, J.D.; Jalili, T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms. Adv. Nutr. 2012, 3, 39–46. [Google Scholar] [CrossRef]
- Krizova, L.; Dadakova, K.; Kasparovska, J.; Kasparovsky, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Dehaini, H.; Fardoun, M.; Abou-Saleh, H.; El-Yazbi, A.; Eid, A.A.; Eid, A.H. Estrogen in vascular smooth muscle cells: A friend or a foe? Vasc. Pharmacol. 2018, 111, 15–21. [Google Scholar] [CrossRef]
- Godos, J.; Bergante, S.; Satriano, A.; Pluchinotta, F.R.; Marranzano, M. Dietary Phytoestrogen Intake is Inversely Associated with Hypertension in a Cohort of Adults Living in the Mediterranean Area. Molecules 2018, 23, 368. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Sanches Silva, A.; Sanchez-Machado, D.I.; Lopez-Cervantes, J.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Hypotensive effects of genistein: From chemistry to medicine. Chem.-Biol. Interact. 2017, 268, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Si, H.; Liu, D. Genistein, a soy phytoestrogen, upregulates the expression of human endothelial nitric oxide synthase and lowers blood pressure in spontaneously hypertensive rats. J. Nutr. 2008, 138, 297–304. [Google Scholar] [CrossRef]
- Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol. 2019, 45, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Moloudizargari, M.; Mikaili, P.; Aghajanshakeri, S.; Asghari, M.H.; Shayegh, J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn. Rev. 2013, 7, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Mina, C.N.; Farzaei, M.H.; Gholamreza, A. Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: A review. J. Tradit. Chin. Med. 2015, 35, 104–109. [Google Scholar] [PubMed]
- Berrougui, H.; Martin-Cordero, C.; Khalil, A.; Hmamouchi, M.; Ettaib, A.; Marhuenda, E.; Herrera, M.D. Vasorelaxant effects of harmine and harmaline extracted from Peganum harmala L. seeds in isolated rat aorta. Pharmacol. Res. 2006, 54, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.H.; Chotani, M.A.; Mitra, S.; Miller, T.J.; Flavahan, N.A. Cyclic AMP acts through Rap1 and JNK signaling to increase expression of cutaneous smooth muscle α2C-adrenoceptors. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H266–H272. [Google Scholar] [CrossRef]
- Abderrahman, S.M.; Shbailat, S.J. Genotoxic and cytotoxic effects of Artemisia herba-alba on mammalian cells. Caryologia 2014, 67, 265–272. [Google Scholar] [CrossRef]
- Lamchouri, F.; Settaf, A.; Cherrah, Y.; Hassar, M.; Zemzami, M.; Atif, N.; Nadori, E.B.; Zaid, A.; Lyoussi, B. In vitro cell-toxicity of Peganum harmala alkaloids on cancerous cell-lines. Fitoterapia 2000, 71, 50–54. [Google Scholar] [CrossRef]
- Nenaah, G. Toxicity and growth inhibitory activities of methanol extract and the β-carboline alkaloids of Peganum harmala L. against two coleopteran stored-grain pests. J. Stored Prod. Res. 2011, 47, 255–261. [Google Scholar] [CrossRef]
- Cohen, P.A.; Ernst, E. Safety of herbal supplements: A guide for cardiologists. Cardiovasc. Ther. 2010, 28, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Ali-Shtayeh, M.S.; Jamous, R.M.; Jamous, R.M.; Salameh, N.M.Y. Complementary and alternative medicine (CAM) use among hypertensive patients in Palestine. Complement. Ther. Clin. 2013, 19, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.A.; Di Carlo, G.; Borrelli, F.; Ernst, E. Cardiovascular pharmacotherapy and herbal medicines: The risk of drug interaction. Int. J. Cardiol. 2005, 98, 1–14. [Google Scholar] [CrossRef] [PubMed]
- McInnes, G.T. Lowering blood pressure for cardiovascular risk reduction. J. Hypertens. Suppl. 2005, 23, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Julius, S.; Nesbitt, S.D.; Egan, B.M.; Weber, M.A.; Michelson, E.L.; Kaciroti, N.; Black, H.R.; Grimm, R.H., Jr.; Messerli, F.H.; Oparil, S.; et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N. Engl. J. Med. 2006, 354, 1685–1697. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.J.; Bukhari, I.A.; Gilani, A.H. Mentha longifolia lowers blood pressure in anesthetized rats through multiple pathways. Bangl. J. Pharmacol. 2016, 11, 784–792. [Google Scholar] [CrossRef]
- Patonay, K.; Korozs, M.; Muranyi, Z.; Konya, E.P. Polyphenols in northern Hungarian Mentha longifolia (L.) L. treated with ultrasonic extraction for potential oenological uses. Turk. J. Agric. For. 2017, 41, 208–217. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Zengin, G.; Bahadori, S.; Dinparast, L.; Movahhedin, N. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). Int. J. Food Prop. 2018, 21, 198–208. [Google Scholar] [CrossRef]
- Thakur, R.K.; Goutam, N.; Sharma, S.; Thakur, S.; Sharma, D.; Thakur, P. Antihypertensive effect of ethanolic extract of Urtica dioica L. leaves (Urticaceae) in renal artery occluded hypertensive rats. J. Pharm. Res. 2012, 5, 3585–3587. [Google Scholar]
- Qayyum, R.; Qamar, H.M.; Khan, S.; Salma, U.; Khan, T.; Shah, A.J. Mechanisms underlying the antihypertensive properties of Urtica dioica. J. Transl. Med. 2016, 14, 254. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.M.; Bajracharya, A.; Shrestha, A.K. Comparison of nutritional properties of Stinging nettle (Urtica dioica) flour with wheat and barley flours. Food Sci. Nutr. 2016, 4, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vazquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, I.; Zavala-Sanchez, M.A. Vasodilator Compounds Derived from Plants and Their Mechanisms of Action. Molecules 2013, 18, 5814–5857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheoat, A.M.; Gray, A.I.; Igoli, J.O.; Ferro, V.A.; Drummond, R.M. Hibiscus acid from Hibiscus sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. Fitoterapia 2019, 134, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.U.; Mustafa, M.R.; Khan, A.U.; Murugan, D.D. Hypotensive effect of Gentiana floribunda is mediated through Ca2+ antagonism pathway. BMC Complement. Altern. Med. 2012, 12, 121. [Google Scholar] [CrossRef]
- Eid, A.H.; El-Yazbi, A.F.; Zouein, F.; Arredouani, A.; Ouhtit, A.; Rahman, M.M.; Zayed, H.; Pintus, G.; Abou-Saleh, H. Inositol 1,4,5-Trisphosphate Receptors in Hypertension. Front. Physiol. 2018, 9, 1018. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.F.; Bahramian, F.; Bekhradnia, A.R. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak. J. Pharm. Sci. 2010, 23, 29–34. [Google Scholar]
- Stojković, D.; Glamočlija, J.; Ćirić, A.; Šiljegović, J.; Nikolić, M.; Soković, M. Free Radical Scavenging Activity of Viola odorata Water Extracts. J. Herbs Spices Med. Plants 2011, 17, 285–290. [Google Scholar] [CrossRef]
- Janbaz, K.H.; Khan, W.U.; Saqib, F.; Khalid, M. Pharmacological basis for the medicinal use of Viola odorata in diarrhea, bronchial asthma and hypertension. Bangladesh J. Pharmacol. 2015, 10, 836–843. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kashani, L.M.T. A Narrative study about the role of Viola odorata as traditional medicinal plant in management of respiratory problems. Adv. Integr. Med. 2018, 5, 112–118. [Google Scholar] [CrossRef]
Plant Species (Family) | English Name | Arabic Name | Preparation and Administration | RFCs |
---|---|---|---|---|
Allium ampeloprasum L. (Amaryllidaceae) | Leek | Kerrat | Decoction of bulbs and leaves, 1 cup/day. Medicinal food | 0.94 |
Apium graveolens L. (Apiaceae) | Wild Celery | Krafs | Fresh juice of shoots and leaves, 1 cup twice/week | 0.92 |
Artemisia herba alba Asso (Asteraceae) | White Worm-wood | Shieh | Infusion of aerial parts, 1 cup/day | 0.64 |
Asparagus acutifolius L. (Asparagaceae) | Wild Asparagus | Halyoun | Decoction of stem tops, 1 cup/day | 0.90 |
Calicotome villosa (Poir.) Link (Fabaceae) | Spiny broom | Kandoul | Decoction of seeds, 1 cup/day | 0.35 |
Centaurium erythraea Rafn (Gentianaceae) | Spiked centaury | Kantarioun | Infusion of flowering aerial parts, 3 cups/day for 2 weeks | 0.55 |
Crataegus azarolus L. (Rosaceae) | Hawthorn | Zaarour | Decoction of leaves, flowers or fruits 1 cup/day | 0.90 |
Cupressus sempervirens L. (Cupressaceae) | Cypress | Sarou | Decoction of leaves, 1 cup/day | 0.45 |
Equisetum telmateia Ehrh. (Equisetaceae) | Branched horsetail | Zanab El-khayl | Aerial parts Infusion/3cups/day for 8–12 weeks | 0.75 |
Eryngium creticum Lam. (Apiaceae) | Eryngo | Kers Aanni | Juice of young shoots and leaves, ½ cup/day | 0.80 |
Foeniculum vulgare Mill | Fennel | Choumar | Decoction of seeds, 2 cups/day | 0.65 |
Fibigia clypeata (L.) Medik. (Brassicaceae) | Roman Shields | Hachichet El Oumeh | Infusion of leaves, 1cup/day | 0.90 |
Hordeum vulgare L. (Poaceae) | Barley | Sha’ir | Decoction of seeds, 1 cup/day | 0.94 |
Laurus nobilis L. (Lauraceae) | Sweet bay | Ghar | Decoction of leaves, 1/2 cup/day | 0.89 |
Matricaria aurea (Loefl.) Sch.Bip. (Compositae) | Chamomile | Bebounej | Infusion flowers, 3 cup/day as herbal tea | 0.85 |
Matricaria chamomilla L. (Asteraceae) | Chamomile | Bebounej | Infusion of flowers, 3cup/day | 0.85 |
Mentha longifolia L. (Lamiaceae) | Horse Mint | Na’na’a | Infusion of leaves, 2cup/day | 0.95 |
Melissa officinalis L. (Lamiaceae) | Lemon Balm | Mallieseh | Infusion of leaves, 2cup/day | 0.45 |
Myrtus communis L. (Myrtaceae) | Myrtle | Hemblas | Maceration of fresh fruits in oil, essential oil | 0.86 |
Paronychia argentea Lam. (Caryophyllaceae) | Silvery Paronychia | Hachichet El Ramel | Decoction of aerial parts, 1 cup/day | 0.40 |
Peganum harmala L. (Nitrariaceae) | Syrian rue, harmel | Harmala | Decoction of aerial parts, 1 cup/day | 0.72 |
Plantago major L. (Plantaginaceae) | Broadleaf plantain | Lissan el Hamal | Decoction, 1 cup/day | 0.89 |
Portulaca oleracea L. (Portulacaceae) | Purslane | Bakleh | Decoction of leaves, 3 cups/day | 0.88 |
Raphanus raphanistrum L. (Brassicaceae) | Wild radish | Fejel Barie | Juice of aerial parts, roots Fresh 1/2 cup/day | 0.94 |
Urtica dioica L. (Urticaceae) | Stinging nettle | Korrays | Decoction of young shoots and leaves, 3 cups/day | 0.95 |
Viola odorata L. (Violaceae) | Sweet violet | Banafsaj | Infusion of flowers., 3 cup/day | 0.95 |
Characteristics | Treated Group (n = 22) | Placebo (n = 7) |
---|---|---|
Age Groups (years) | ||
40–47 | 7 | 2 |
48–57 | 9 | 3 |
58–65 | 6 | 2 |
Gender | ||
Men | 15 | 4 |
Women | 7 | 3 |
Risk Factors | ||
Smoking | 22 | 7 |
Family history | 22 | 7 |
Body Mass Index (Mean) | ||
Overweight (20–25) | 16 | 2 |
Obese (>30) | 6 | 5 |
Group | SBP Mean ± SD | DBP Mean ± SD | MAP Mean ± SD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M.L. (n = 7) | V.O. (n = 7) | U.D. (n = 8) | Placebo (n = 7) | M.L. (n = 7) | V.O. (n = 7) | U.D. (n = 8) | Placebo (n = 7) | M.L. (n = 7) | V.O. (n = 7) | U.D. (n = 8) | Placebo (n = 7) | |
Baseline | 137.64 ± 0.38 | 137.40 ± 1.51 | 138.53 ± 1.31 | 137.41 ± 0.89 | 87.41± 1.15 | 87.06 ± 2.04 | 88.10 ± 0.91 | 86.91 ± 1.64 | 104.14 ± 0.70 | 103.84 ± 1.65 | 104.91 ± 0.85 | 103.73 ± 1.19 |
Week 4 | 135.50 a ± 0.00 | 137.24 ± 0.24 | 136.64 a ± 1.40 | 137.73 ± 0.08 | 87.47 ± 0.79 | 86.59 ± 0.76 | 86.65 ± 0.47 | 86.67 ± 0.98 | 103.49 a ± 0.52 | 103.47 ± 0.48 | 103.30 a ± 0.62 | 103.69 ± 0.63 |
Week 8 | 131.23 a ± 1.13 | 135.70 ± 0.38 | 133.78 a ±1.59 | 137.44 ± 1.22 | 85.84 a ± 0.89 | 86.10 ± 1.00 | 84.53 a ± 1.03 | 86.50 ± 2.00 | 100.99 a ± 0.72 | 102.64 ± 0.68 | 100.94 a ± 1.01 | 103.49 ± 1.41 |
Week 12 | 126.07 a ± 1.51 | 133.31 a ± 0.38 | 129.30 a ± 0.69 | 138.00 ± 1.00 | 83.99 a ± 0.71 | 83.16 a ± 0.38 | 83.71a ± 1.92 | 87.01± 1.25 | 98.01 a ± 0.58 | 99.86 a ± 0.31 | 98.90 a ± 1.35 | 104.01 ± 0.85 |
Week 16 | 128.64 a ± 0.38 | 130.21 a ± 0.79 | 126.64 a ± 2.70 | 136.77 ± 1.06 | 81.53 a ± 1.49 | 82.29 a ± 0.52 | 80.64 a ± 1.62 | 87.20 ± 0.77 | 97.24 a ± 0.95 | 98.26 a ± 0.44 | 95.96 a ± 1.13 | 103.73 ± 0.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samaha, A.A.; Fawaz, M.; Salami, A.; Baydoun, S.; Eid, A.H. Antihypertensive Indigenous Lebanese Plants: Ethnopharmacology and a Clinical Trial. Biomolecules 2019, 9, 292. https://doi.org/10.3390/biom9070292
Samaha AA, Fawaz M, Salami A, Baydoun S, Eid AH. Antihypertensive Indigenous Lebanese Plants: Ethnopharmacology and a Clinical Trial. Biomolecules. 2019; 9(7):292. https://doi.org/10.3390/biom9070292
Chicago/Turabian StyleSamaha, Ali A., Mirna Fawaz, Ali Salami, Safaa Baydoun, and Ali H. Eid. 2019. "Antihypertensive Indigenous Lebanese Plants: Ethnopharmacology and a Clinical Trial" Biomolecules 9, no. 7: 292. https://doi.org/10.3390/biom9070292
APA StyleSamaha, A. A., Fawaz, M., Salami, A., Baydoun, S., & Eid, A. H. (2019). Antihypertensive Indigenous Lebanese Plants: Ethnopharmacology and a Clinical Trial. Biomolecules, 9(7), 292. https://doi.org/10.3390/biom9070292