CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1
"> Figure 1
<p>The ubiquitin-binding domain of NEDD4 binding protein 1 (N4BP1) resembles a ubiquitin conjugation to ER degradation (CUE) domain. (<b>A</b>) Domain organization of human N4BP1 (UniProt code O75113). The sequence of the carboxyl-terminal end of N4BP1 identified by phage display and spanning residues 813–896 is shown. (<b>B</b>) Comparative sequence analysis of the ubiquitin binding domains (UBD) of N4BP1 human with CUE domain containing proteins, performed with SMART search using as query sequence the amino acid region shown in (<b>A</b>). Colored backgrounds highlight the phenylalanine-proline (FP) pair with the invariant Proline (yellow) and the C-terminal hydrophobic motif (green).</p> "> Figure 2
<p>A Pro-Phe motif in N4BP1 is involved in the interaction with ubiquitin and ubiquitinated proteins. (<b>A</b>) The amino acid fragment spanning residues 813–896 of N4BP1 and the Pro866Ala mutant (PA) were expressed as GFP fusions in HEK293 cells. Twenty hours post-transfection, cells were harvested, and lysates were incubated with glutathione S-transferase (GST)-ubiquitin, GST-NEDD8, or GST alone. Samples were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with anti-GFP antibody. (<b>B</b>) Cell extracts from HEK293 cells were incubated with the GST fusions of N4BP1 (813–896aa), N4BP1-PA, or with the GST alone. Samples were analyzed by SDS-PAGE with ubiquitin antibody. Ponceau staining confirmed that equal amounts of purified proteins were loaded.</p> "> Figure 3
<p>Structural model of the ubiquitin binding domains (UBD) domain of N4BP1. (<b>A</b>) <sup>1</sup>H-<sup>15</sup>N HSQC NMR spectrum of N4BP1 obtained as reported in Materials and Methods. The sequence of the structured region is shown with the relative numbering herein adopted. The numbering of residues referred to the full-length protein is shown in italics at the bottom. (<b>B</b>) Amide proton region of the <sup>1</sup>H-<sup>1</sup>H NOESY spectrum of N4BP1. (<b>C</b>) Finger print region of the <sup>1</sup>H-<sup>1</sup>H NOESY spectrum of N4BP1. (<b>D</b>) (Left) Cluster of the top 10 structures (out of 200) obtained by simulated annealing from NMR data of N4BP1. (Right) Cartoon representation showing the secondary structure of N4BP1.</p> "> Figure 4
<p>Conformational studies of N4BP1 in complex with either ubiquitin or NEDD8, performed by circular dichroism (CD). (<b>A</b>) CD spectra of N4BP1 and ubiquitin alone expressed as rotatory power are shown in black and red traces, respectively. The orange trace reports the CD spectrum of the 1:1 molar mix of N4BP1 and ubiquitin at the concentration of 30 µM. The green trace (N4BP1<sub>complex</sub>) reports the CD spectrum of N4BP1 in the complex obtained after subtracting point-by-point from the CD of the complex (orange) and the CD spectrum of ubiquitin alone (red). Similarly, the blue trace reports the CD spectrum of ubiquitin in the complex obtained after subtraction of the CD spectrum of N4BP1 alone (black). (<b>B</b>) The differences shown in (<b>A</b>) are amplified and here reported as mean residue ellipticity. The black trace (a) represents the amplification of the point-by-point difference in the CD spectra between ubiquitin in complex with N4BP1 and ubiquitin alone. The red trace (b) represents the amplification of the point-by-point difference in the CD spectra between N4BP1 in complex with ubiquitin and N4BP1 alone. (<b>C</b>) CD spectra of N4BP1 and NEDD8 alone are shown in black and red traces, respectively. The yellow trace reports the CD spectrum of the 1:1 molar mix of N4BP1 and NEDD8 at the concentration of 30 µM. The blue and the brown traces report the CD spectra, respectively, of N4BP1 after subtracting the spectrum of NEDD8 from the spectrum of the mixture and of NEDD8 after subtracting the spectrum of N4BP1 from the spectrum of the mixture. These differences are reported in green (N4BP1<sub>diff</sub>) and dashed red (NEDD8<sub>diff</sub>) traces, respectively.</p> "> Figure 5
<p>(<b>A</b>,<b>B</b>) Chemical shift perturbation spectra of <sup>15</sup>N labeled N4BP1 in the presence of ubiquitin respectively at 1:0.5 and 1:1 molar ratios. (<b>C</b>,<b>D</b>) Chemical shift perturbation spectra of <sup>15</sup>N labeled ubiquitin in the presence of N4BP1 at 1:0.5 and 1:1 molar ratios, respectively.</p> "> Figure 6
<p>Conformational model of the N4BP1/ubiquitin complex obtained by combining the structural model of N4BP1, the structure of ubiquitin (BMRB 6457 and PDB 1D3Z), and the reported chemical shift perturbation (CSP) values (upper panels). Colors indicate the nature of the residues influenced by the interaction. Black: hydrophobic residues, red: polar residues; yellow: neutral residues. Sticks represent side chains of the amino acids whose <sup>15</sup>N resonances are perturbed upon interaction with ubiquitin (lower panels). The distal residues K27, I28, and Q30 in helix-2 show significantly perturbed <sup>15</sup>N resonances upon interaction of N4BP1 with ubiquitin. Structural model showing residues in helix-2 (K27, I28, and Q30) that are perturbed in the N4BP1/ubiquitin complex. The side chains of the FP pair in the loop1 and the K27, I28, and Q30 residues in helix-2 are shown in sticks (see details in the text).</p> "> Figure 7
<p>Isothermal titration calorimetry (ITC) experiments with N4BP1 and ubiquitin. (<b>A</b>). Titration of 3.3 mM ubiquitin to 246 µM N4BP1 (<b>B</b>) Titration of 2.78 mM N4BP1 to 200 µM ubiquitin. The data for the two titrations show similar dissociation constants (K<sub>D</sub>).</p> "> Figure 8
<p>(<b>A</b>) Multiple sequence alignment between KHNYN, N4BP1, and members of the CUE domain protein family. Amino acid ranges: hAMFR (aa 457–498), hAUP1 (aa 362–404), hKHNYN (aa 634–678), hN4BP1 (aa 853–896), hTOLLIP (aa 229–271), and ScVps9p (aa 408–451). The FP/FW and the di-leucine motifs are highlighted in grey boxes. Consensus symbols in the alignment: ‘.’ indicates conservation between groups of weakly similar properties; ‘:’ indicates conservation between groups of strongly similar properties; ‘*’ indicates positions which have a single, fully conserved residue. Coloured boxes show the FP pair (yellow) and the φxx(I/L/V)L motif (brown). (<b>B</b>–<b>D</b>) Cartoon representations of the CUE domain of AMFR (B, PdB 2EJS), the UBD of N4BP1 (<b>C</b>) and the CUBAN domain of KHNYN (<b>D</b>, PdB 2N7K). The FP/FW and the C-terminal hydrophobic motifs of N4BP1, AMFR, and KHNYN are shown in sticks colored as in (<b>A</b>).</p> "> Figure 9
<p>(<b>A</b>) The GST fusions of KHNYN (aa 598–678) and N4BP1 (847–896), respectively including the wild-type carboxyl-terminal ends and the corresponding mutants in the FW (W647A) and the FP (P866A) motifs were analyzed by pull-down from a cell extract from T-REx-Flag-NEDD8 cells expressing flag-tagged NEDD8 after incubation with 100 nM doxycycline for 18 h. After washing, the beads were analyzed by SDS-PAGE with anti-Flag, anti-CUL1, anti-CUL2, and anti-ubiquitin. (<b>B</b>) The C-terminal regions of KHNYN and N4BP1 mediate the intra-molecular ubiquitination of the domains. The C-terminal end of KHNYN (aa 598–678) and N4BP1 (aa 813–896) were expressed as GFP fusions in HeLa cells and immunoprecipitated with anti-GFP antibody. Beads were washed and analyzed by SDS-PAGE with anti-GFP antibody. Two different acquisition times are shown. (<b>C</b>) The mutation W647A in KHNYN does not affect the ubiquitination of the C-terminal end. The KHNYN C-terminal end, both wild type and mutated in the FW motif (W647A), was transfected in HeLa cells and analyzed as described in (<b>B</b>). Red bands represent western blotting signals that reached the saturation point. The immunoprecipitates were analyzed by SDS-PAGE with anti-GFP and anti-ubiquitin antibodies. (<b>D</b>) The mutation P866A abrogates the polyubiquitination of N4BP1. The N4BP1 C-terminal end, both wild type and mutated in the FP motif (P866A), was transfected in HeLa cells and analyzed as described in (<b>C</b>).</p> "> Figure 10
<p>(<b>A</b>) Amino acid sequence alignment of ubiquitin and NEDD8 orthologs performed with Clustal Omega (<a href="https://www.ebi.ac.uk/Tools/msa/clustalo" target="_blank">https://www.ebi.ac.uk/Tools/msa/clustalo</a>). Consensus symbols used in the alignment: ‘.’ indicates conservation between groups of weakly similar properties; ‘:’ indicates conservation between groups of strongly similar properties; ‘*’ indicates fully conserved residue. Conserved/divergent positions are highlighted in colored boxes (brown for ubiquitin, violet for NEDD8). (<b>B</b>) Complex between the UBD of N4BP1 and ubiquitin. The conserved/divergent patch in ubiquitin (brown) is represented by F4, T12, T14, and E64 (shown in bold in the sequence alignment). (<b>C</b>) The corresponding pattern in NEDD8 (violet) includes residues K4, E12, E14, and G64. The magnification of both patterns is shown. Protein models were obtained with PyMol using the HADDOCK model coordinates.</p> ">
Abstract
:1. Introduction
2. Results
2.1. A Novel Ubiquitin-Binding Domain at the C-Terminal End of Human N4BP1
2.2. Nuclear Magnetic Resonance Spectroscopic Study of N4BP1 Ubiquitin Binding Domain
2.3. Conformational Studies of the CoCUN Domain in Complex with Either Ubiquitin or NEDD8 Performed by Circular Dichroism
2.4. 15N The HSQC NMR Investigation of the CoCUN/Ubiquitin Complex by Chemical Shift Perturbation
2.5. The CoCUN Domain Binds Monoubiquitin, Albeit with Low Affinity
2.6. Differences and Similarities among CoCUN, CUE, and CUBAN
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swatek, K.N.; Komander, D. Ubiquitin modifications. Cell Res. 2016, 26, 399–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, J.H.; Lee, S.; Prag, G. Ubiquitin-binding domains. Biochem. J. 2006, 399, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Husnjak, K.; Dikic, I. Ubiquitin-Binding Proteins: Decoders of Ubiquitin-Mediated Cellular Functions. Annu. Rev. Biochem. 2012, 81, 291–322. [Google Scholar] [CrossRef] [PubMed]
- Sokratous, K.; Hadjisavvas, A.; Diamandis, E.P.; Kyriacou, K. The role of ubiquitin-binding domains in human pathophysiology. Crit. Rev. Clin. Lab. Sci. 2014, 51, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Whitby, F.G. Crystal Structure of the Human Ubiquitin-like Protein NEDD8 and Interactions with Ubiquitin Pathway Enzymes. J. Boil. Chem. 1998, 273, 34983–34991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murillas, R.; Simms, K.S.; Hatakeyama, S.; Weissman, A.M.; Kuehn, M.R. Identification of developmentally expressed proteins that functionally interact with Nedd4 ubiquitin ligase. J. Biol. Chem. 2002, 277, 2897–2907. [Google Scholar] [CrossRef]
- Oberst, A.; Malatesta, M.; Aqeilan, R.I.; Rossi, M.; Salomoni, P.; Murillas, R.; Sharma, P.; Kuehn, M.R.; Oren, M.; Croce, C.M.; et al. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc. Natl. Acad. Sci. 2007, 104, 11280–11285. [Google Scholar] [CrossRef] [Green Version]
- Spel, L.; Nieuwenhuis, J.; Haarsma, R.; Stickel, E.; Bleijerveld, O.B.; Altelaar, M.; Boelens, J.J.; Brummelkamp, T.R.; Nierkens, S.; Boes, M. Nedd4 Binding Protein 1 (N4BP1) and TNFAIP3 Interacting Protein 1 (TNIP1) control MHC-1 display in neuroblastoma. Cancer Res. 2018, 78, 6621–6631. [Google Scholar] [CrossRef]
- Fenner, B.J.; Scannell, M.; Prehn, J.H. Identification of polyubiquitin binding proteins involved in NF-κB signaling using protein arrays. BBA-Proteins Proteom. 2009, 1794, 1010–1016. [Google Scholar] [CrossRef]
- Castagnoli, L.; Mandaliti, W.; Nepravishta, R.; Valentini, E.; Mattioni, A.; Procopio, R.; Iannuccelli, M.; Polo, S.; Paci, M.; Cesareni, G.; et al. Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. FEBS J. 2019, 286, 653–677. [Google Scholar]
- Santonico, E.; Nepravishta, R.; Mandaliti, W.; Castagnoli, L.; Cesareni, G.; Paci, M. CUBAN, a Case Study of Selective Binding: Structural Details of the Discrimination between Ubiquitin and NEDD8. Int. J. Mol. Sci. 2019, 20, 1185. [Google Scholar] [CrossRef] [PubMed]
- Hicke, L.; Schubert, H.L.; Hill, C.P. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Boil. 2005, 6, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Shih, S.C.; Prag, G.; Francis, S.A.; Sutanto, M.A.; Hurley, J.H.; Hicke, L. A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO J. 2003, 22, 1273–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prag, G.; Misra, S.; Jones, E.A.; Ghirlando, R.; Davies, B.A.; Horazdovsky, B.F.; Hurley, J.H. Mechanism of Ubiquitin Recognition by the CUE Domain of Vps9p. Cell 2003, 113, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Kang, R.S.; Daniels, C.M.; Francis, S.A.; Shih, S.C.; Salerno, W.J.; Hicke, L.; Radhakrishnan, I. Solution Structure of a CUE-Ubiquitin Complex Reveals a Conserved Mode of Ubiquitin Binding. Cell 2003, 113, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Sykes, B.D. The 13C chemical-shift index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 1994, 4, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Brünger, A.T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. 1993, D49, 24–36. [Google Scholar] [CrossRef]
- Omichinski, J.G.; Pedone, P.V. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat. Struct. Biol. 1997, 4, 122–132. [Google Scholar] [CrossRef]
- Louis-Jeune, C.; Andrade-Navarro, M.A.; Perez-Iratxeta, C.; Louis-Jeune, C.; Andrade-Navarro, M.A.; Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins Struct. Funct. Bioinform. 2012, 80, 2818. [Google Scholar] [CrossRef]
- Lobley, A.; Whitmore, L.; Wallace, B.A. DICHROWEB: An interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 2002, 18, 211–212. [Google Scholar] [CrossRef]
- Sreerama, N.; Woody, R.W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Anal. Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, V.; Serrano, L. Local versus nonlocal interactions in protein folding and stability–An experimentalist’s point of view. Fold. Des. 1996, 1, R71–R77. [Google Scholar] [CrossRef]
- Greenfield, N.J. Circular dichroism analysis for protein-protein interactions. Methods Mol. Biol. 2004, 261, 55–78. [Google Scholar] [CrossRef] [PubMed]
- Dodero, V.I.; Quirolo, Z.B.; Sequeira, M.A. Biomolecular studies by circular dichroism. Front Biosci (Landmark Ed). 2011, 16, 61–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamburro, A.M.; Lorusso, M.; Ibris, N.; Pepe, A.; Bochicchio, B. Investigating by circular dichroism some amyloidogenic elastin-derived polypeptides. Chirality 2010, 22, E56–E66. [Google Scholar] [CrossRef] [PubMed]
- De Vries, S.J.; Van Dijk, M.; Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 2010, 5, 883–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polo, S.; Sigismund, S.; Faretta, M.; Guidi, M.; Capua, M.R.; Bossi, G.; Chen, H.; De Camilli, P.; Di Fiore, P.P. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 2002, 416, 451–455. [Google Scholar] [CrossRef]
- Haglund, K.; Stenmark, H. Working out coupled monoubiquitination. Nature 2006, 8, 1218–1219. [Google Scholar] [CrossRef]
- Shin, Y.C.; Chen, J.H.; Chang, S.C. The molecular determinants for distinguishing between ubiquitin and NEDD8 by USP. Sci. Rep. 2017, 7, 2304. [Google Scholar] [CrossRef]
- Sharma, P.; Murillas, R.; Zhang, H.; Kuehn, M.R. N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J. Cell Sci. 2010, 123, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Anantharaman, V.; Aravind, L. The NYN Domains: Novel Predicted RNAses with a PIN Domain-Like Fold. RNA Boil. 2006, 3, 18–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santonico, E.; Panni, S.; Falconi, M.; Castagnoli, L.; Cesareni, G. Binding to DPF-motif by the POB1 EH domain is responsible for POB1-Eps15 interaction. BMC Biochem. 2007, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.J.; Gittis, A.G.; Mullen, G.P.; Abeygunawardana, C.; Lattman, E.E.; Mildvan, A.S. NMR docking of a substrate into the X-ray structure of staphylococcal nuclease. Proteins Struct. Funct. Bioinform. 1992, 13, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Bax, A.; Davis, D.G. MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. (1969) 1985, 65, 355–360. [Google Scholar] [CrossRef]
- Marion, D.; Wüthrich, K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 1983, 113, 967–974. [Google Scholar] [CrossRef]
- Braunschweiler, L.; Ernst, R.R. Coherence transfer by isotopic mixing: Application to proton correlation spectroscopy. J. Magn. Reson. 1983, 53, 521–528. [Google Scholar]
- Wüthrich, K. NMR of Proteins and Nucleic Acids; A Wiley-Intersci. Publication: Hoboken, NJ, USA, 1986; ISBN 978-0-471-82893-8. [Google Scholar]
- Bodenhausen, G.; Ruben, D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 1980, 69, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.D.; Meng, X.; Donovan, K.J.; Shaka, A. SOGGY: Solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. J. Magn. Reson. 2007, 184, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.A.; Blevins, R.A. NMR View: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 1994, 4, 603–614. [Google Scholar] [CrossRef]
- Zuiderweg, E.R.P. Mapping Protein−Protein Interactions in Solution by NMR Spectroscopy. Biochemistry 2002, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Williamson, M.P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 73, 1–16. [Google Scholar] [CrossRef] [PubMed]
N | HN | Hα | Hβ1,2 | Hγ | Hδ | |
---|---|---|---|---|---|---|
A1 | 119.11 | 7.90 | ||||
Q2 | 115.05 | 7.34 | 4.35 | 1.96 | ||
R3 | 118.85 | 7.20 | 4.00 | 1.68 | ||
S4 | 119.71 | 7.76 | 4.70 | 3.85 | ||
S5 | 121.19 | 7.66 | 4.15 | 3.95 | ||
A6 | 119.78 | 7.29 | 4.06 | 1.48 | ||
E7 | 115.90 | 7.15 | 4.00 | _ | ||
T8 | 119.64 | 7.72 | 4.07 | 4.05 | 1.20 | |
N9 | 117.40 | 7.56 | 4.10 | 2.70 | ||
E10 | 119.06 | 8.43 | 3.97 | 1.88 | ||
L11 | 121.01 | 8.00 | 4.37 | 1.70 | ||
R12 | 123.40 | 8.91 | 4.60 | 1.61 | ||
E13 | 117.83 | 8.64 | 3.80 | 1.90 | ||
A14 | 121.51 | 8.96 | 4.60 | _ | ||
L15 | 128.80 | 8.82 | 4.60 | 2.04 | ||
L16 | 120.89 | 9.30 | 4.60 | _ | ||
K17 | 123.89 | 8.31 | 4.24 | 1.59 | ||
I18 | 120.30 | 8.60 | 4.13 | _ | 1.00 | |
F19 | 124.40 | 7.80 | 4.38 | 3.06 | ||
D21 | 119.80 | 8.43 | 4.38 | 2.74 | ||
S22 | 119.90 | 8.73 | _ | 3.79 | ||
E23 | 121.33 | 9.10 | 4.60 | 2.08 | ||
Q24 | 119.20 | 8.08 | 4.10 | 2.07 | ||
R25 | 119.90 | 8.59 | 4.13 | 1.85 | ||
L26 | 115.70 | 8.13 | 4.30 | _ | ||
K27 | 113.42 | 7.26 | 4.06 | 1.91 | ||
I28 | 118.24 | 7.17 | 3.79 | 1.45 | 0.83 | 0.04 |
D29 | 118.87 | 6.87 | 4.70 | 2.93 | ||
Q30 | 119.40 | 8.11 | 3.90 | 2.00 | ||
I31 | 119.30 | 7.83 | 4.10 | _ | 0.08 (Hγ2) | −0.08 |
L32 | 119.75 | 7.41 | 3.31 | _ | ||
V33 | 115.36 | 8.37 | 4.57 | 2.90 | ||
H35 | 115.36 | 8.37 | 3.14 | 3.14 | ||
Y37 | 119.73 | 8.01 | 5.10 | 3.01 | ||
M38 | 117.95 | 7.47 | 4.10 | 2.70 | ||
K39 | 118.38 | 8.04 | 4.08 | _ | ||
D40 | 124.90 | 7.46 | 4.36 | 2.66 | ||
L41 | 113.90 | 8.55 | 4.05 | _ | ||
N42 | 120.64 | 8.20 | 4.70 | 2.86 | ||
A43 | 121.92 | 7.37 | 4.67 | 1.40 | ||
L44 | 118.16 | 7.64 | 4.15 | _ | ||
S45 | 118.32 | 8.37 | 4.58 | 3.97 | 0.9 (Hδ1,2) | |
A46 | 119.77 | 7.29 | 4.05 | 1.40 | ||
M47 | 119.80 | 7.05 | 4.27 | 2.04 | 2.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nepravishta, R.; Ferrentino, F.; Mandaliti, W.; Mattioni, A.; Weber, J.; Polo, S.; Castagnoli, L.; Cesareni, G.; Paci, M.; Santonico, E. CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules 2019, 9, 284. https://doi.org/10.3390/biom9070284
Nepravishta R, Ferrentino F, Mandaliti W, Mattioni A, Weber J, Polo S, Castagnoli L, Cesareni G, Paci M, Santonico E. CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules. 2019; 9(7):284. https://doi.org/10.3390/biom9070284
Chicago/Turabian StyleNepravishta, Ridvan, Federica Ferrentino, Walter Mandaliti, Anna Mattioni, Janine Weber, Simona Polo, Luisa Castagnoli, Gianni Cesareni, Maurizio Paci, and Elena Santonico. 2019. "CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1" Biomolecules 9, no. 7: 284. https://doi.org/10.3390/biom9070284
APA StyleNepravishta, R., Ferrentino, F., Mandaliti, W., Mattioni, A., Weber, J., Polo, S., Castagnoli, L., Cesareni, G., Paci, M., & Santonico, E. (2019). CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules, 9(7), 284. https://doi.org/10.3390/biom9070284