Effects of Calcium Ions on the Antimicrobial Activity of Gramicidin A
<p>The growth curve of <span class="html-italic">S. aureus</span> in the presence of gramicidin A 0, 1, 5, and 10 μM, and 1% TFE without gramicidin A, at the different growth phases, (<b>A</b>) lag phase, (<b>B</b>) elongation phase, and (<b>C</b>) stationary phase, respectively. (<span class="html-italic">n</span> = 3, * <span class="html-italic">p</span> ≤ 0.05, ** <span class="html-italic">p</span> ≤ 0.001, related to 0 μM gA).</p> "> Figure 1 Cont.
<p>The growth curve of <span class="html-italic">S. aureus</span> in the presence of gramicidin A 0, 1, 5, and 10 μM, and 1% TFE without gramicidin A, at the different growth phases, (<b>A</b>) lag phase, (<b>B</b>) elongation phase, and (<b>C</b>) stationary phase, respectively. (<span class="html-italic">n</span> = 3, * <span class="html-italic">p</span> ≤ 0.05, ** <span class="html-italic">p</span> ≤ 0.001, related to 0 μM gA).</p> "> Figure 2
<p>(<b>A</b>) Hydroxyl free radical level for <span class="html-italic">S. aureus</span> under the treatment of 0, 0.1, 1, and 5 μM of gramicidin A, and (<b>B</b>) the NAD<sup>+</sup>/NADH ratio measured for <span class="html-italic">S. aureus</span> under the treatment of 0, 1, and 5 μM of gramicidin A and 0, 30, 60, 90, and 120 min at the elongation state. (<span class="html-italic">n</span> = 9, ** <span class="html-italic">p</span> < 0.001).</p> "> Figure 2 Cont.
<p>(<b>A</b>) Hydroxyl free radical level for <span class="html-italic">S. aureus</span> under the treatment of 0, 0.1, 1, and 5 μM of gramicidin A, and (<b>B</b>) the NAD<sup>+</sup>/NADH ratio measured for <span class="html-italic">S. aureus</span> under the treatment of 0, 1, and 5 μM of gramicidin A and 0, 30, 60, 90, and 120 min at the elongation state. (<span class="html-italic">n</span> = 9, ** <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>Effects of calcium ions on the growth rate of <span class="html-italic">S. aureus</span> in the presence of (<b>A</b>) 0–500 mM Ca<sup>2+</sup> concentrations only, (<b>B</b>) 0–500 mM of Ca<sup>2+</sup> ions and 1 μM gA treatment, and (<b>C</b>) 0–500 mM Ca<sup>2+</sup> and 5 μM gA treatment, respectively. (<span class="html-italic">n</span> = 3, ** <span class="html-italic">p</span> ≤ 0.001, related to 1 μM gA in (<b>B</b>)).</p> "> Figure 3 Cont.
<p>Effects of calcium ions on the growth rate of <span class="html-italic">S. aureus</span> in the presence of (<b>A</b>) 0–500 mM Ca<sup>2+</sup> concentrations only, (<b>B</b>) 0–500 mM of Ca<sup>2+</sup> ions and 1 μM gA treatment, and (<b>C</b>) 0–500 mM Ca<sup>2+</sup> and 5 μM gA treatment, respectively. (<span class="html-italic">n</span> = 3, ** <span class="html-italic">p</span> ≤ 0.001, related to 1 μM gA in (<b>B</b>)).</p> "> Figure 4
<p>Hydroxyl radical level in the presence of gA and 10 μM–500 mM of gramicidin A, (<b>A</b>) 1 μM gA/0–10 mM of Ca<sup>2+</sup> ions, (<b>B</b>) 1 μM gA/100–500 mM of Ca<sup>2+</sup> ions, (<b>C</b>) 5 μM gA/0–10 mM of Ca<sup>2+</sup> ions, and (<b>D</b>) 5 μM gA/100–500 mM of Ca<sup>2+</sup> ions, respectively. (<span class="html-italic">n</span> = 9, ** <span class="html-italic">p</span> < 0.001, * <span class="html-italic">p</span> < 0.05).</p> "> Figure 4 Cont.
<p>Hydroxyl radical level in the presence of gA and 10 μM–500 mM of gramicidin A, (<b>A</b>) 1 μM gA/0–10 mM of Ca<sup>2+</sup> ions, (<b>B</b>) 1 μM gA/100–500 mM of Ca<sup>2+</sup> ions, (<b>C</b>) 5 μM gA/0–10 mM of Ca<sup>2+</sup> ions, and (<b>D</b>) 5 μM gA/100–500 mM of Ca<sup>2+</sup> ions, respectively. (<span class="html-italic">n</span> = 9, ** <span class="html-italic">p</span> < 0.001, * <span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>The NAD<sup>+</sup>/NADH ratios for <span class="html-italic">S. aureus</span> treated with (<b>A</b>) 1 and (<b>B</b>) 5 μM gramicidin A and 10, 100, 200, and 500 mM Ca<sup>2+</sup> ions at 0, 30, 60, 90, and 120 min, respectively. (<span class="html-italic">n</span> = 9, ** <span class="html-italic">p</span> < 0.001, * <span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Atomic force microscopic morphologies of <span class="html-italic">S. aureus</span> under treatment with gramicidin A and CA<sup>2+</sup> ions, (<b>A</b>) <span class="html-italic">S. aureus</span> only without gA, (<b>B</b>) with 100 mM Ca<sup>2+</sup> ions, (<b>C</b>) with 1 μM gA, (<b>D</b>) with 5 μM gA, (<b>E</b>) with 1 μM gA and 100 mM Ca<sup>2+</sup> ions and (<b>F</b>) with 5 μM gA and 100 mM Ca<sup>2+</sup> ions.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Bacterial Growth Conditions
2.3. Reactive Oxygen Species (ROS) Assay
2.4. NAD/NADH Assay
2.5. Atomic Force Microscopy (AFM)
2.6. Statistical Analysis
3. Results
3.1. Verification of the Antimicrobial Effect and Mechanism of Gramicidin A
3.2. Verification of the Hydroxyl Free Radical Formation and NAD/NADH Ratio by Gramicidin A
3.3. Effect of Calcium Ion on the Antimicrobial Activity of Gramicidin A
3.4. Effect of Ca2+ Ions on the Hydroxyl Radical Formation
3.5. Effect of Ca2+ Ions on the NAD+/NADH Ratio
3.6. AFM Images of S. aureus Treated with gA and Ca2+ Ions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hotchkiss, R.D.; Dubos, R.J. Fractionation of bactericidal agent from cultures of a soil bacillus. J. Biol. Chem. 1940, 132, 791–792. [Google Scholar] [CrossRef]
- Sarges, R.; Witkop, B.; Gramicidin, A.V. The structure of valine and isoleucine-gramicidin A. J. Am. Chem. Soc. 1965, 87, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.; Wallace, B.A.; Morrow, J.S.; Veatch, W.R. Conformation of the gramicidin a transmembrane channel: A 13C nuclear magnetic resonance study of 13C-enriched gramicidin in phosphatidylcholine vesicles. J. Mol. Biol. 1980, 143, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.A. Gramicidin channels and pores. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 127–157. [Google Scholar] [CrossRef] [PubMed]
- Sychev, S.V.; Barsukov, L.I.; Ivanov, V.T. The double pi-pi-5.6 helix of gramicidin A predominates in unsaturated lipid-membranes. Eur. Biophys. J. 1993, 22, 279–298. [Google Scholar] [CrossRef]
- Wallace, B.A. Gramicidin adopts distinctly different conformations in organic solvents and in membranes. Biopolymers 1983, 22, 397–402. [Google Scholar] [CrossRef]
- Pascal, S.M.; Cross, T.A. Structure of an isolated gramicidin a double helical species by high resolution nuclear magnetic resonance. J. Mol. Biol. 1992, 226, 1101–1109. [Google Scholar] [CrossRef]
- Chen, Y.; Wallace, B.A. Solvent effects on the conformation and far UV CD spectra of gramicidin. Biopolymers 1997, 42, 771–781. [Google Scholar] [CrossRef]
- Veatch, W.R.; Blout, E.R. The aggregation of gramicidin a in solution. Biochemistry 1974, 13, 5257–5264. [Google Scholar] [CrossRef]
- Bouchard, M.; Benjamin, D.R.; Tito, P.; Robinson, C.V.; Dobson, C.M. Solvent effects on the conformation of the transmembrane peptide gramicidin A: Insights from electrospray ionization mass spectrometry. Biophys. J. 2007, 78, 1010–1017. [Google Scholar] [CrossRef]
- Urry, D.W.; Mayers, D.F.; Haider, J. Spectroscopic studies on the conformation of gramicidin A. Evidence for a new helical conformation. Biochemistry 1972, 11, 487–493. [Google Scholar] [CrossRef]
- Wallace, B.A. Recent Advances in the High-Resolution Structures of Bacterial Channels: Gramicidin A. J. Struct. Biol. 1998, 121, 123–141. [Google Scholar] [CrossRef]
- Hinton, J.F.; Koeppe, R.E.; Shungu, D.; Whaley, W.L.; Paczkowski, J.A.; Millett, F.S. Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and Tl+−205 nuclear magnetic resonance spectroscopy. Biophys. J. 1986, 49, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Pullman, A. Contribution of theoretical chemistry to the study of ion transport through membranes. Chem. Rev. 1991, 91, 793–812. [Google Scholar] [CrossRef]
- Zerfas, B.L.; Joo, Y.; Gao, J. Gramicidin A Mutants with Antibiotic Activity against both Gram-Positive and Gram-Negative Bacteria. Chem. Med. Chem. 2016, 11, 629–636. [Google Scholar] [CrossRef]
- Gumila, C.; Ancelin, M.L.; Delort, A.M.; Jeminet, G.; Vial, H.J. Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrob. Agents Chemother. 1997, 41, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.W. Peptide-lipid interactions and mechanisms of antimicrobial peptides. In Novartis Foundation Symposium 225-Gramicidin and Related Ion Channel-Forming Peptides: Gramicidin and Related Ion Channel-Forming Peptides: Novartis Foundation Symposium 225; John Wiley & Sons, Ltd.: Chichester, UK, 2007; Volume 225, pp. 188–206. [Google Scholar]
- Liou, J.W.; Hung, Y.J.; Chen, Y.C. The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation. PLoS ONE 2015, 10, e0117065. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, K.B.; Stein, C.; Makarewicz, O.; Pradel, G.; Lichtenecker, R.J.; Sack, H.; Heinemann, S.H.; Arndt, H.D. Bioactivity of topologically confined gramicidin A dimers. Bioorg. Med. Chem. 2017, 25, 261–268. [Google Scholar] [CrossRef]
- Mao, J.; Kuranaga, T.; Hamamoto, H.; Sekimizu, K.; Inoue, M. Rational design, synthesis, and biological evaluation of lactam-bridged gramicidin A analogues: Discovery of a low-hemolytic antibacterial peptide. ChemMedChem 2015, 10, 540–545. [Google Scholar] [CrossRef]
- Carillo, K.D.; Lo, C.J.; Tzou, D.M.; Lin, Y.H.; Fang, S.T.; Huang, S.H.; Chen, Y.C. The Effect of Calcium and Halide Ions on the Gramicidin A Molecular State and Antimicrobial Activity. Int. J. Mol. Sci. 2020, 21, 6177. [Google Scholar] [CrossRef]
- Heitz, F.; Gavach, C. Ca2+-gramicidin A interactions and blocking effects on the ionic channel. Biophys. Chem. 1983, 18, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Gambale, F.; Menini, A.; Rauch, G. Effects of calcium on the gramicidin A single channel in phosphatidylserine membranes. Screening and blocking. Eur. Biophys. J. 1987, 14, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Zwietering, M.H.; Rombouts, F.M.; Riet, K.V.T. Comparison of definitions of the lag phase and the exponential phase in bacterial growth. J. Appl. Bacteriol. 1992, 72, 139–145. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.-T.; Huang, S.-H.; Yang, C.-H.; Liou, J.-W.; Mani, H.; Chen, Y.-C. Effects of Calcium Ions on the Antimicrobial Activity of Gramicidin A. Biomolecules 2022, 12, 1799. https://doi.org/10.3390/biom12121799
Fang S-T, Huang S-H, Yang C-H, Liou J-W, Mani H, Chen Y-C. Effects of Calcium Ions on the Antimicrobial Activity of Gramicidin A. Biomolecules. 2022; 12(12):1799. https://doi.org/10.3390/biom12121799
Chicago/Turabian StyleFang, Shang-Ting, Shu-Hsiang Huang, Chin-Hao Yang, Jen-Wen Liou, Hemalatha Mani, and Yi-Cheng Chen. 2022. "Effects of Calcium Ions on the Antimicrobial Activity of Gramicidin A" Biomolecules 12, no. 12: 1799. https://doi.org/10.3390/biom12121799
APA StyleFang, S.-T., Huang, S.-H., Yang, C.-H., Liou, J.-W., Mani, H., & Chen, Y.-C. (2022). Effects of Calcium Ions on the Antimicrobial Activity of Gramicidin A. Biomolecules, 12(12), 1799. https://doi.org/10.3390/biom12121799