The Emerging Role of Colchicine to Inhibit NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome and Interleukin-1β Expression in In Vitro Models
<p>This figure illustrates immunofluorescence staining on 3T3 cells following various exposures, i.e., (<b>A</b>) normal condition treated with vehicle; (<b>B</b>) normal condition treated with colchicine; (<b>C</b>) ischemic condition treated with vehicle; and (<b>D</b>) ischemic condition treated with colchicine. ASC (labeled in red) and NLRP3 (labeled in green) protein co-localization configured yellow specks signifying ASC-dependent inflammasome activation. The bottom images are identical to the top images, with representative yellow arrows indicating ASC specks. All experiments were performed five times; figures are from one representative replicate. Images were taken at 40× magnification; scale bars are 50 µm. Created using BioRender.com (Science Suite Inc., Toronto, ON, Canada).</p> "> Figure 2
<p>This figure illustrates colocalization speck intensity as a ratio of ASC fluorescence intensity, revealing ASC-NLRP3 complex formation. There is no significant difference in ASC-NLRP3 colocalization in colchicine vs. placebo within the same condition related to ischemic condition (cobalt chloride exposure). Red colors defined the normal condition, whereas blue colors defined the hypoxic/ischaemic condition. * The statistical significance was identified in the control group under ischemic conditions compared to normal conditions treated with either placebo-treated or colchicine-treated hypoxic cells (<span class="html-italic">n</span> = 5; <span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>This figure illustrates the effect of colchicine treatment in normoxic and hypoxic 3T3 cells. (<b>A</b>) Absolute number of IL-1β-positive expressions among cell cultures from immunofluorescence staining; (<b>B</b>) relative number of IL-1β-positive expressions among cell cultures. The IL-1β expression was significantly reduced in colchicine-treated hypoxic cells compared to placebo-treated hypoxic cells (62.58 ± 1.41% vs. 45.33 ± 10.22%, <span class="html-italic">n</span> = 5; <span class="html-italic">p</span> < 0.001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Design
2.3. Cell Culture and Treatment
2.4. Co-Localization
2.5. Statistical Analysis
3. Results
3.1. NLRP3 Inflammasome
3.2. IL-1β Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMI | acute myocardial infarction |
ANOVA | analysis of variance |
ASC | apoptosis-associated speck-like protein containing a CARD |
CoCl2 | cobalt(II) chloride |
CVDs | cardiovascular diseases |
IL-1β | Interleukin-1β |
COLCOT | Colchicine Cardiovascular Outcomes Trial |
ECACC | European Collection of Authenticated Cell Cultures |
HIF-1α | hypoxia-inducible factor 1α |
MI | myocardial infarction |
NLRP3 | NOD-like receptor protein 3 |
NOD | nucleotide-binding oligomerization domain |
ROS | reactive oxygen species |
STR | short tandem repeat |
TGF-β | Transforming Growth Factor-β |
References
- Zhao, D. Epidemiological Features of Cardiovascular Disease in Asia. JACC Asia 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Heusch, G. Coronary blood flow in heart failure: Cause, consequence and bystander. Basic. Res. Cardiol. 2022, 117, 1–24. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Galli, A.; Lombardi, F. Postinfarct Left Ventricular Remodelling: A Prevailing Cause of Heart Failure. Cardiol. Res. Pract. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Choe, J.C.; Cha, K.S.; Yun, E.Y.; Ahn, J.; Park, J.S.; Lee, H.W.; Oh, J.-H.; Kim, J.S.; Choi, J.H.; Park, Y.H.; et al. Reverse Left Ventricular Remodelling in ST-Elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention: Incidence, Predictors, and Impact on Outcome. Heart Lung Circ. 2018, 27, 154–164. [Google Scholar] [CrossRef]
- Bartekova, M.; Radosinska, J.; Jelemensky, M.; Dhalla, N.S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail. Rev. 2018, 23, 733–758. [Google Scholar] [CrossRef]
- Amin, M.N.; Siddiqui, S.A.; Ibrahim, M.; Hakim, M.L.; Ahammed, M.S.; Kabir, A.; Sultana, F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 2020, 8, 205031212096575. [Google Scholar] [CrossRef]
- Gourdin, M.J.; Bree, B.; De Kock, M. The impact of ischaemia–reperfusion on the blood vessel. Eur. J. Anaesthesiol. 2009, 26, 537–547. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 2014, 11, 255–265. [Google Scholar] [CrossRef]
- Fang, L.; Moore, X.; Dart, A.M.; Wang, L. Systemic inflammatory response following acute myocardial infarction. J. Geriatr. Cardiol. 2015, 12, 305–312. [Google Scholar]
- Napodano, C.; Carnazzo, V.; Basile, V.; Pocino, K.; Stefanile, A.; Gallucci, S.; Natali, P.; Basile, U.; Marino, M. NLRP3 Inflammasome Involvement in Heart, Liver, and Lung Diseases—A Lesson from Cytokine Storm Syndrome. Int. J. Mol. Sci. 2023, 24, 16556. [Google Scholar] [CrossRef]
- Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015, 4, 296–307. [Google Scholar] [CrossRef]
- Gao, R.; Shi, H.; Chang, S.; Gao, Y.; Li, X.; Lv, C.; Yang, H.; Xiang, H.; Yang, J.; Xu, L.; et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction. Int. Immunopharmacol. 2019, 74, 105575. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef]
- Ong, S.-B.; Hernández-Reséndiz, S.; Crespo-Avilan, G.E.; Mukhametshina, R.T.; Kwek, X.-Y.; Cabrera-Fuentes, H.A.; Hausenloy, D.J. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther. 2018, 186, 73–87. [Google Scholar] [CrossRef]
- Kurup, R.; Galougahi, K.K.; Figtree, G.; Misra, A.; Patel, S. The Role of Colchicine in Atherosclerotic Cardiovascular Disease. Heart Lung Circ. 2021, 30, 795–806. [Google Scholar] [CrossRef]
- Zhang, F.-S.; He, Q.-Z.; Qin, C.H.; Little, P.J.; Weng, J.-P.; Xu, S.-W. Therapeutic potential of colchicine in cardiovascular medicine: A pharmacological review. Acta Pharmacol. Sin. 2022, 43, 2173–2190. [Google Scholar] [CrossRef]
- Martínez, G.J.; Robertson, S.; Barraclough, J.; Xia, Q.; Mallat, Z.; Bursill, C.; Celermajer, D.S.; Patel, S. Colchicine Acutely Suppresses Local Cardiac Production of Inflammatory Cytokines in Patients with an Acute Coronary Syndrome. J. Am. Heart Assoc. 2015, 4, e002128. [Google Scholar] [CrossRef]
- Bouabdallaoui, N.; Tardif, J.-C.; Waters, D.D.; Pinto, F.J.; Maggioni, A.P.; Diaz, R.; Berry, C.; Koenig, W.; Lopez-Sendon, J.; Gamra, H.; et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 2020, 41, 4092–4099. [Google Scholar] [CrossRef]
- Nagar, A.; Rahman, T.; Harton, J.A. The ASC Speck and NLRP3 Inflammasome Function Are Spatially and Temporally Distinct. Front. Immunol. 2021, 12, 752482. [Google Scholar] [CrossRef]
- Astiawati, T.; Rohman, M.S.; Wihastuti, T.A.; Sujuti, H.; Endharti, A.A.; Sargowo, D.; Oceandy, D. Antifibrotic effects of colchicine on 3T3 cell line ischemia to mitigate detrimental remodeling. J. Pharm. Pharmacogn. Res. 2024, 12, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Dhurandhar, E.J.; Dubuisson, O.; Mashtalir, N.; Krishnapuram, R.; Hegde, V.; Dhurandhar, N.V. E4orf1: A Novel Ligand That Improves Glucose Disposal in Cell Culture. PLoS ONE 2011, 6, e23394. [Google Scholar] [CrossRef] [PubMed]
- Handari, S.D.; Rohman, M.S.; Sargowo, D.; Aulanni’am Nugraha, R.A.; Lestari, B.; Oceandy, D. Novel Impact of Colchicine on Interleukin-10 Expression in Acute Myocardial Infarction: An Integrative Approach. J. Clin. Med. 2024, 13, 4619. [Google Scholar] [CrossRef] [PubMed]
- Habanjar, O.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int. J. Mol. Sci. 2021, 22, 12200. [Google Scholar] [CrossRef]
- Liang, M.; Si, L.; Yu, Z.; Ding, H.; Wang, L.; Chen, X.; Chen, B.; Zhang, J.; Cao, J. Intermittent hypoxia induces myofibroblast differentiation and extracellular matrix production of MRC5s via HIF-1α-TGF-β/Smad pathway. Sleep Breath. 2023, 28, 291–300. [Google Scholar] [CrossRef]
- Schlittler, M.; Pramstaller, P.P.; Rossini, A.; De Bortoli, M. Myocardial Fibrosis in Hypertrophic Cardiomyopathy: A Perspective from Fibroblasts. Int. J. Mol. Sci. 2023, 24, 14845. [Google Scholar] [CrossRef]
- Tuncay, S.; Senol, H.; Guler, E.M.; Ocal, N.; Secen, H.; Kocyigit, A.; Topcu, G. Synthesis of Oleanolic Acid Analogues and Their Cytotoxic Effects on 3T3 Cell Line. Med. Chem. 2018, 14, 617–625. [Google Scholar] [CrossRef]
- Tripathi, V.K.; Subramaniyan, S.A.; Hwang, I. Molecular and Cellular Response of Co-cultured Cells toward Cobalt Chloride (CoCl2)-Induced Hypoxia. ACS Omega 2019, 4, 20882–20893. [Google Scholar] [CrossRef]
- Tsuzuki, T.; Okada, H.; Cho, H.; Tsuji, S.; Nishigaki, A.; Yasuda, K.; Kanzaki, H. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1 and inhibits stromal cell-derived factor-1 in human endometrial stromal cells. Hum. Reprod. 2012, 27, 523–530. [Google Scholar] [CrossRef]
- Zou, D.; Zhang, Z.; He, J.; Zhang, K.; Ye, D.; Han, W.; Zhou, J.; Wang, Y.; Li, Q.; Liu, X.; et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials 2012, 33, 2097–2108. [Google Scholar] [CrossRef]
- Cheng, B.-C.; Chen, J.-T.; Yang, S.-T.; Chio, C.-C.; Liu, S.-H.; Chen, R.-M. Cobalt chloride treatment induces autophagic apoptosis in human glioma cells via a p53-dependent pathway. Int. J. Oncol. 2017, 50, 964–974. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Li, J. Inflammation and Inflammatory Cells in Myocardial Infarction and Reperfusion Injury: A Double-Edged Sword. Clin. Med. Insights Cardiol. 2016, 10, CMC.S33164. [Google Scholar] [CrossRef] [PubMed]
- He, X.-F.; Zeng, Y.-X.; Li, G.; Feng, Y.-K.; Wu, C.; Liang, F.-Y.; Zhang, Y.; Lan, Y.; Xu, G.-Q.; Pei, Z. Extracellular ASC exacerbated the recurrent ischemic stroke in an NLRP3-dependent manner. J. Cereb. Blood Flow. Metab. 2020, 40, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 Inflammasome and Inflammatory Diseases. Oxid. Med. Cell Longev. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Siracusa, R.; Genovese, T.; Cuzzocrea, S.; Di Paola, R. Focus on the Role of NLRP3 Inflammasome in Diseases. Int. J. Mol. Sci. 2020, 21, 4223. [Google Scholar] [CrossRef]
- Protti, M.P.; De Monte, L. Dual Role of Inflammasome Adaptor ASC in Cancer. Front. Cell Dev. Biol. 2020, 8, 40. [Google Scholar] [CrossRef]
- Rahman, T.; Nagar, A.; Duffy, E.B.; Okuda, K.; Silverman, N.; Harton, J.A. NLRP3 Sensing of Diverse Inflammatory Stimuli Requires Distinct Structural Features. Front. Immunol. 2020, 11, 1828. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020, 6, 36. [Google Scholar] [CrossRef]
- Karaba, A.H.; Figueroa, A.; Massaccesi, G.; Botto, S.; DeFilippis, V.R.; Cox, A.L. Herpes simplex virus type 1 inflammasome activation in proinflammatory human macrophages is dependent on NLRP3, ASC, and caspase-1. PLoS ONE 2020, 15, e0229570. [Google Scholar] [CrossRef]
- Zhang, H.; Dhalla, N.S. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 1082. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Liao, N.; Mi, L.; Peng, Y.; Liu, B.; Zhang, S.; Wen, F. Enhanced Expression of NLRP3 Inflammasome-Related Inflammation in Diabetic Retinopathy. Investig. Opthalmology Vis. Sci. 2018, 59, 978. [Google Scholar] [CrossRef] [PubMed]
- Nagar, A.; Bharadwaj, R.; Shaikh, M.O.F.; Roy, A. What are NLRP3-ASC specks? an experimental progress of 22 years of inflammasome research. Front. Immunol. 2023, 26, 14–1188864. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Martelli, A.; Antonioli, L.; Fornai, M.; Blandizzi, C.; Calderone, V. NLRP3 inflammasome in cardiovascular diseases: Pathophysiological and pharmacological implications. Med. Res. Rev. 2021, 41, 1890–1926. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, L.; Dong, N.; Li, F. NLRP3 inflammasome: The rising star in cardiovascular diseases. Front. Cardiovasc. Med. 2022, 9, 927061. [Google Scholar] [CrossRef]
- Hu, J.; Xu, J.; Zhao, J.; Liu, Y.; Huang, R.; Yao, D.; Xie, J.; Lei, Y. Colchicine ameliorates short-term abdominal aortic aneurysms by inhibiting the expression of NLRP3 inflammasome components in mice. Eur. J. Pharmacol. 2024, 964, 176297. [Google Scholar] [CrossRef]
- Pagliaro, P.; Penna, C. Inhibitors of NLRP3 Inflammasome in Ischemic Heart Disease: Focus on Functional and Redox Aspects. Antioxidants 2023, 12, 1396. [Google Scholar] [CrossRef]
- Naaz, F.; Haider, M.R.; Shafi, S.; Yar, M.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem. 2019, 171, 310–331. [Google Scholar] [CrossRef]
- Banco, D.; Mustehsan, M.; Shah, B. Update on the Role of Colchicine in Cardiovascular Disease. Curr. Cardiol. Rep. 2024, 26, 191–198. [Google Scholar] [CrossRef]
- Sitia, R.; Rubartelli, A. The unconventional secretion of IL-1β: Handling a dangerous weapon to optimize inflammatory responses. Semin. Cell Dev. Biol. 2018, 83, 12–21. [Google Scholar] [CrossRef]
- Meyer-Lindemann, U.; Mauersberger, C.; Schmidt, A.-C.; Moggio, A.; Hinterdobler, J.; Li, X.; Khangholi, D.; Hettwer, J.; Gräßer, C.; Dutsch, A.; et al. Colchicine Impacts Leukocyte Trafficking in Atherosclerosis and Reduces Vascular Inflammation. Front. Immunol. 2022, 13, 898690. [Google Scholar] [CrossRef]
- Olcum, M.; Tastan, B.; Ercan, I.; Eltutan, I.B.; Genc, S. Inhibitory effects of phytochemicals on NLRP3 inflammasome activation: A review. Phytomedicine 2020, 75, 153238. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K. The Mechanism of the NLRP3 Inflammasome Activation and Pathogenic Implication in the Pathogenesis of Gout. J. Rheum. Dis. 2022, 29, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Schuster, R.; Younesi, F.; Ezzo, M.; Hinz, B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb. Perspect. Biol. 2023, 15, a041231. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Abbate, A. Colchicine for cardiovascular prevention: The dawn of a new era has finally come. Eur. Heart J. 2023, 44, 3303–3304. [Google Scholar] [CrossRef]
- Muñoz-Sánchez, J.; Chánez-Cárdenas, M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 2019, 39, 556–570. [Google Scholar] [CrossRef]
- Yuan, X.; Bhat, O.M.; Zou, Y.; Li, X.; Zhang, Y.; Li, P.-L. Endothelial Acid Sphingomyelinase Promotes NLRP3 Inflammasome and Neointima Formation During Hypercholesterolemia. J. Lipid Res. 2022, 63, 100298. [Google Scholar] [CrossRef]
- Cullen, S.P.; Kearney, C.J.; Clancy, D.M.; Martin, S.J. Diverse Activators of the NLRP3 Inflammasome Promote IL-1β Secretion by Triggering Necrosis. Cell Rep. 2015, 11, 1535–1548. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astiawati, T.; Rohman, M.S.; Wihastuti, T.; Sujuti, H.; Endharti, A.; Sargowo, D.; Oceandy, D.; Lestari, B.; Triastuti, E.; Nugraha, R.A. The Emerging Role of Colchicine to Inhibit NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome and Interleukin-1β Expression in In Vitro Models. Biomolecules 2025, 15, 367. https://doi.org/10.3390/biom15030367
Astiawati T, Rohman MS, Wihastuti T, Sujuti H, Endharti A, Sargowo D, Oceandy D, Lestari B, Triastuti E, Nugraha RA. The Emerging Role of Colchicine to Inhibit NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome and Interleukin-1β Expression in In Vitro Models. Biomolecules. 2025; 15(3):367. https://doi.org/10.3390/biom15030367
Chicago/Turabian StyleAstiawati, Tri, Mohammad Saifur Rohman, Titin Wihastuti, Hidayat Sujuti, Agustina Endharti, Djanggan Sargowo, Delvac Oceandy, Bayu Lestari, Efta Triastuti, and Ricardo Adrian Nugraha. 2025. "The Emerging Role of Colchicine to Inhibit NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome and Interleukin-1β Expression in In Vitro Models" Biomolecules 15, no. 3: 367. https://doi.org/10.3390/biom15030367
APA StyleAstiawati, T., Rohman, M. S., Wihastuti, T., Sujuti, H., Endharti, A., Sargowo, D., Oceandy, D., Lestari, B., Triastuti, E., & Nugraha, R. A. (2025). The Emerging Role of Colchicine to Inhibit NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome and Interleukin-1β Expression in In Vitro Models. Biomolecules, 15(3), 367. https://doi.org/10.3390/biom15030367