Altered Monocyte Populations and Activation Marker Expression in Children with Autism and Co-Occurring Gastrointestinal Symptoms
<p>Monocyte subpopulation frequencies based on diagnosis and GI status. The percentage of live cells from each monocyte subpopulation—(<b>A</b>) classical (CD14<sup>+</sup>CD16<sup>−</sup>), (<b>B</b>) transitional (CD14<sup>+</sup>CD16<sup>+</sup>), and (<b>C</b>) nonclassical (CD14<sup>lo</sup>CD16<sup>+</sup>)—was identified using flow cytometry based on CD14 and CD16 expression in TD, ASD<sup>+</sup>GI<sup>−</sup>, and ASD<sup>+</sup>GI<sup>+</sup> groups. ROUT outlier removal (Q = 1%) was applied, and statistical significance between groups (<span class="html-italic">p</span> < 0.05) was determined using ordinary one-way ANOVA and Tukey’s multiple comparisons test. Error bars represent SEM.</p> "> Figure 2
<p>CCR2 expression on monocyte subpopulations based on diagnosis and GI status. The percentage of CCR2-expressing cells from (<b>A</b>) classical (CD14<sup>+</sup>CD16<sup>−</sup>) and (<b>B</b>) transitional (CD14<sup>+</sup>CD16<sup>+</sup>) monocyte subpopulations was identified using flow cytometry in TD, ASD<sup>+</sup>GI<sup>−</sup>, and ASD<sup>+</sup>GI<sup>+</sup> groups. ROUT outlier removal (Q = 1%) was applied, and statistical significance between groups (<span class="html-italic">p</span> < 0.05) was determined using ordinary one-way ANOVA and Tukey’s multiple comparisons test. Nonclassical (CD14<sup>lo</sup>CD16<sup>+</sup>) monocytes were excluded from the figure due to an insufficient number of captured events in the ASD<sup>+</sup>GI<sup>+</sup> group required for statistical analysis. Error bars represent SEM.</p> "> Figure 3
<p>HLA-DR expression on nonclassical monocyte populations based on ASD diagnosis and GI status. The percentage of HLA-DR non-expressing nonclassical (CD14<sup>lo</sup>CD16<sup>+</sup>) monocytes was identified using flow cytometry in the TD, ASD<sup>+</sup>GI<sup>−</sup>, and ASD<sup>+</sup>GI<sup>+</sup> groups. HLA-DR<sup>+</sup> classical (CD14<sup>+</sup>CD16<sup>−</sup>), transitional (CD14<sup>+</sup>CD16<sup>+</sup>), and nonclassical cells, as well as HLA-DR<sup>−</sup> classical and transitional cells, did not significantly differ across the three groups. ROUT outlier removal (Q = 1%) was applied, and statistical significance between groups (<span class="html-italic">p</span> < 0.05) was determined using ordinary one-way ANOVA and Tukey’s multiple comparisons test. Error bars represent SEM.</p> "> Figure 4
<p>PD-1, PD-L1, and PD-1 PD-L1 co-expression on classical monocyte populations based on ASD diagnosis and GI status. The percentage of (<b>A</b>) PD-1, (<b>B</b>) PD-L1, and (<b>C</b>) PD-1 PD-L1 co-expressing cells from classical (CD14<sup>+</sup>CD16<sup>−</sup>) monocyte populations were identified using flow cytometry in TD, ASD<sup>+</sup>GI<sup>−</sup>, and ASD<sup>+</sup>GI<sup>+</sup> groups. ROUT outlier removal (Q = 1%) was applied, and statistical significance between groups (<span class="html-italic">p</span> < 0.05) was determined using ordinary one-way ANOVA and Tukey’s multiple comparisons test. PD-1, PD-L1, and PD-1 PD-L1 co-expressing transitional (CD14<sup>+</sup>CD16<sup>+</sup>) monocytes did not significantly differ across the three groups. Nonclassical (CD14<sup>lo</sup>CD16<sup>+</sup>) monocytes were excluded from the figure due to an insufficient number of captured events in the ASD<sup>+</sup>GI<sup>+</sup> group required for statistical analysis. Error bars represent SEM.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Participants
2.2. GI Symptom Evaluation
2.3. Blood Collection and Flow Cytometry
2.4. Statistics
3. Results
3.1. Children with ASD with GI Comorbidities Have Altered Frequencies of Monocyte Subpopulations
3.2. The Frequency of Monocytes with the Inflammatory Marker CCR2 Was Elevated in Children with ASD and Altered Based on GI Status
3.3. Frequencies of Monocytes with Activation Markers of HLA-DR, PD-1, and PD-L1 Differed Between Children with ASD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maenner, M.J.; Shaw, K.A.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Esler, A.; Furnier, S.M.; Hallas, L.; Hall-Lande, J.; Hudson, A.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill. Summ. 2021, 70, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Steiner, A.M.; Goldsmith, T.R.; Snow, A.V.; Chawarska, K. Practitioner’s guide to assessment of autism spectrum disorders in infants and toddlers. J. Autism Dev. Disord. 2012, 42, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Autism Spectrum Disorder—National Institute of Mental Health (NIMH). Available online: https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd (accessed on 16 September 2024).
- Trifonova, E.A.; Klimenko, A.I.; Mustafin, Z.S.; Lashin, S.A.; Kochetov, A.V. Do Autism Spectrum and Autoimmune Disorders Share Predisposition Gene Signature Due to mTOR Signaling Pathway Controlling Expression. Int. J. Mol. Sci. 2021, 22, 5248. [Google Scholar] [CrossRef]
- Li, X.; Chauhan, A.; Sheikh, A.M.; Patil, S.; Chauhan, V.; Li, X.-M.; Ji, L.; Brown, T.; Malik, M. Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 2009, 207, 111–116. [Google Scholar] [CrossRef]
- Suzuki, K.; Matsuzaki, H.; Iwata, K.; Kameno, Y.; Shimmura, C.; Kawai, S.; Yoshihara, Y.; Wakuda, T.; Takebayashi, K.; Takagai, S.; et al. Plasma Cytokine Profiles in Subjects with High-Functioning Autism Spectrum Disorders. PLoS ONE 2011, 6, e20470. [Google Scholar] [CrossRef]
- Onore, C.; Yang, H.; Van de Water, J.; Ashwood, P. Dynamic Akt/mTOR Signaling in Children with Autism Spectrum Disorder. Front. Pediatr. 2017, 5, 43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winden, K.D.; Ebrahimi-Fakhari, D.; Sahin, M. Abnormal mTOR Activation in Autism. Annu. Rev. Neurosci. 2018, 41, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.R.; Yang, H.; Careaga, M.; Angkustsiri, K.; Van de Water, J.; Ashwood, P. T cell populations in children with autism spectrum disorder and co-morbid gastrointestinal symptoms. Brain Behav. Immun. Health 2020, 2, 100042. [Google Scholar] [CrossRef]
- Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.; Van de Water, J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 2011, 25, 40–45. [Google Scholar] [CrossRef]
- Hughes, H.K.; Onore, C.E.; Careaga, M.; Rogers, S.J.; Ashwood, P. Increased Monocyte Production of IL-6 after Toll-like Receptor Activation in Children with Autism Spectrum Disorder (ASD) Is Associated with Repetitive and Restricted Behaviors. Brain Sci. 2022, 12, 220. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Ataeinia, B.; Keynejad, K.; Abdolalizadeh, A.; Hirbod-Mobarakeh, A.; Rezaei, N. Anti-inflammatory cytokines in autism spectrum disorders: A systematic review and meta-analysis. Cytokine 2019, 123, 154740. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.R.; Yang, H.; Serena, G.; Sturgeon, C.; Ma, B.; Careaga, M.; Hughes, H.K.; Angkustsiri, K.; Rose, M.; Hertz-Picciotto, I.; et al. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav. Immun. 2018, 70, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Jácome, M.C.I.; Chacòn, L.M.M.; Cuesta, H.V.; Rizo, C.M.; Santiesteban, M.W.; Hernandez, L.R.; García, E.N.; Fraguela, M.E.G.; Verdecia, C.I.F.; Hurtado, Y.V.; et al. Peripheral Inflammatory Markers Contributing to Comorbidities in Autism. Behav. Sci. 2016, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Ashwood, P.; Anthony, A.; Torrente, F.; Wakefield, A.J. Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: Mucosal immune activation and reduced counter regulatory interleukin-10. J. Clin. Immunol. 2004, 24, 664–673. [Google Scholar] [CrossRef]
- Ashwood, P.; Anthony, A.; Pellicer, A.A.; Torrente, F.; Walker-Smith, J.A.; Wakefield, A.J. Intestinal lymphocyte populations in children with regressive autism: Evidence for extensive mucosal immunopathology. J. Clin. Immunol. 2003, 23, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Jyonouchi, H.; Geng, L.; Ruby, A.; Zimmerman-Bier, B. Dysregulated innate immune responses in young children with autism spectrum disorders: Their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology 2005, 51, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Breece, E.; Moreno, R.J.; Azzam, Y.; Rogers, S.J.; Ashwood, P. Profiling of activated monocyte populations in autism and associations with increased severity and comorbid behaviors. Brain Behav. Immun. 2024, 125, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Teh, Y.C.; Ding, J.L.; Ng, L.G.; Chong, S.Z. Capturing the Fantastic Voyage of Monocytes Through Time and Space. Front. Immunol. 2019, 10, 834. [Google Scholar] [CrossRef]
- Ożańska, A.; Szymczak, D.; Rybka, J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol. 2020, 92, e12883. [Google Scholar] [CrossRef]
- Enstrom, A.M.; Onore, C.E.; Van de Water, J.A.; Ashwood, P. Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav. Immun. 2010, 24, 64–71. [Google Scholar] [CrossRef]
- Hughes, H.K.; Rowland, M.E.; Onore, C.E.; Rogers, S.; Ciernia, A.V.; Ashwood, P. Dysregulated gene expression associated with inflammatory and translation pathways in activated monocytes from children with autism spectrum disorder. Transl. Psychiatry 2022, 12, 39. [Google Scholar] [CrossRef]
- Nadeem, A.; Ahmad, S.F.; Attia, S.M.; Bakheet, S.A.; Al-Harbi, N.O.; Al-Ayadhi, L.Y. Activation of IL-17 receptor leads to increased oxidative inflammation in peripheral monocytes of autistic children. Brain Behav. Immun. 2018, 67, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.D.; Hamers, A.A.; Nakao, C.; Marcovecchio, P.; Taylor, A.M.; McSkimming, C.; Nguyen, A.T.; McNamara, C.A.; Hedrick, C.C. Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry. Arter. Thromb. Vasc. Biol. 2017, 37, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Tacke, R.; Hedrick, C.C.; Hanna, R.N. Nonclassical patrolling monocyte function in the vasculature. Arter. Thromb. Vasc. Biol. 2015, 35, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.X.; Arumugam, T.V.; Gelderblom, M.; Magnus, T.; Drummond, G.R.; Sobey, C.G. Role of CCR2 in inflammatory conditions of the central nervous system. J. Cereb. Blood Flow Metab. 2014, 34, 1425–1429. [Google Scholar] [CrossRef]
- Abeles, R.D.; McPhail, M.J.; Sowter, D.; Antoniades, C.G.; Vergis, N.; Vijay, G.K.M.; Xystrakis, E.; Khamri, W.; Shawcross, D.L.; Ma, Y.; et al. CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14hi/CD16neg monocytes: Expansion of CD14hi/CD16pos and contraction of CD14(lo)/CD16(pos) monocytes in acute liver failure. Cytom. Part A 2012, 81, 823–834. [Google Scholar] [CrossRef]
- Huang, X.; Venet, F.; Wang, Y.L.; Lepape, A.; Yuan, Z.; Chen, Y.; Swan, R.; Kherouf, H.; Monneret, G.; Chung, C.S.; et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl. Acad. Sci. USA 2009, 106, 6303–6308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manenti, S.; Orrico, M.; Masciocchi, S.; Mandelli, A.; Finardi, A.; Furlan, R. PD-1/PD-L Axis in Neuroinflammation: New Insights. Front. Neurol. 2022, 13, 877936. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wykes, M.N.; Lewin, S.R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 2018, 18, 91–104. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, R.P.; Yazigi, E.; Atta, L.; Feghali, J.; Pant, A.; Jain, A.; Levitan, I.; Kim, E.; Patel, K.; et al. Soluble PD-L1 reprograms blood monocytes to prevent cerebral edema and facilitate recovery after ischemic stroke. Brain Behav. Immun. 2024, 116, 160–174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tural Hesapcioglu, S.; Kasak, M.; Cıtak Kurt, A.N.; Ceylan, M.F. High monocyte level and low lymphocyte to monocyte ratio in autism spectrum disorders. Int. J. Dev. Disabil. 2017, 65, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.E.; Widjaja, F.; Careaga, M.; Bent, S.; Ashwood, P.; Hendren, R.L. Change in plasma cytokine levels during risperidone treatment in children with autism. J. Child Adolesc. Psychopharmacol. 2014, 24, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Kapellos, T.S.; Bonaguro, L.; Gemünd, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mildner, A.; Schönheit, J.; Giladi, A.; David, E.; Lara-Astiaso, D.; Lorenzo-Vivas, E.; Paul, F.; Chappell-Maor, L.; Priller, J.; Leutz, A.; et al. Genomic Characterization of Murine Monocytes Reveals C/EBPβ Transcription Factor Dependence of Ly6C− Cells. Immunity 2017, 46, 849–862.e7. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.C.; Satija, R.; Reynolds, G.; Sarkizova, S.; Shekhar, K.; Fletcher, J.; Griesbeck, M.; Butler, A.; Zheng, S.; Lazo, S.; et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017, 356, eaah4573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heidbreder, K.; Sommer, K.; Wiendl, M.; Müller, T.M.; Atreya, I.; Hildner, K.; Neurath, M.F.; Zundler, S. Nr4a1-dependent non-classical monocytes are important for macrophage-mediated wound healing in the large intestine. Front. Immunol. 2022, 13, 1040775. [Google Scholar] [CrossRef]
- Chimen, M.; Yates, C.M.; McGettrick, H.M.; Ward, L.S.; Harrison, M.J.; Apta, B.; Dib, L.H.; Imhof, B.A.; Harrison, P.; Nash, G.B.; et al. Monocyte Subsets Coregulate Inflammatory Responses by Integrated Signaling through TNF and IL-6 at the Endothelial Cell Interface. J. Immunol. 2017, 198, 2834–2843. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anbazhagan, K.; Duroux-Richard, I.; Jorgensen, C.; Apparailly, F. Transcriptomic network support distinct roles of classical and non-classical monocytes in human. Int. Rev. Immunol. 2014, 33, 470–489. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Jung, S. Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014, 14, 392–404. [Google Scholar] [CrossRef]
- Tsou, C.-L.; Peters, W.; Si, Y.; Slaymaker, S.; Aslanian, A.M.; Weisberg, S.P.; Mack, M.; Charo, I.F. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Investig. 2007, 117, 902–909. [Google Scholar] [CrossRef]
- Lekkou, A.; Karakantza, M.; Mouzaki, A.; Kalfarentzos, F.; Gogos, C.A. Cytokine Production and Monocyte HLA-DR Expression as Predictors of Outcome for Patients with Community-Acquired Severe Infections. Clin. Diagn. Lab. Immunol. 2004, 11, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Boeddha, N.P.; Kerklaan, D.; Dunbar, A.M.; van Puffelen, E.; Nagtzaam, N.M.A.B.; Vanhorebeek, I.; Berghe, G.V.D.; Hazelzet, J.A.; Joosten, K.F.; Verbruggen, S.C.; et al. HLA-DR Expression on Monocyte Subsets in Critically Ill Children. Pediatr. Infect. Dis. J. 2018, 37, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Patterson, P.H. Maternal Infection and Immune Involvement in Autism. Trends Mol. Med. 2011, 17, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Cherfane, C.; Click, B.; Ramos-Rivers, C.; Koutroubakis, I.E.; Hashash, J.G.; Babichenko, D.; Tang, G.; Dunn, M.; Barrie, A.; et al. Monocytosis Is a Biomarker of Severity in Inflammatory Bowel Disease: Analysis of a 6-Year Prospective Natural History Registry. Inflamm. Bowel Dis. 2022, 28, 70–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, H.; Suo, Z.; Lin, J.; Cong, Y.; Liu, Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark. Res. 2024, 12, 76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Demographic Info. | TD | ASD+GI− | ASD+GI+ |
---|---|---|---|
# of subjects | 9 | 17 | 8 |
Age range (years) | 5.25–9.25 | 5.25–9.92 | 4.17–9.83 |
Sex (male/female) | 7/2 | 11/5 (1 unknown) | 7/1 |
ABC total score (median) | 6 | 34 | 29 |
GIH total score (median) | 0 | 2 | 5 |
Antibody | Fluorochrome | Catalog # | Lot # |
---|---|---|---|
CD14 | BV421 | 325628 | B286545 |
CD16 | APC | 302012 | B300870 |
CCR2 | Alexa Fluor 488 | 357226 | B279222 |
HLA-DR | APC/Fire 750 | 307658 | B283532 |
PD-1 | PE | 329906 | B252643 |
PD-L1 | PerCP-Cy5.5 | 329738 | B286901 |
Marker | Monocyte Subpopulation | Group | Mean ± SEM (%) |
---|---|---|---|
TD | 43.30 ± 14.81 | ||
HLA-DR+ | Classical (CD14+CD16−) | ASD+GI− | 48.84 ± 11.22 |
ASD+GI+ | 37.23 ± 13.82 | ||
TD | 32.48 ± 11.89 | ||
HLA-DR+ | Transitional (CD14+CD16+) | ASD+GI− | 24.43 ± 8.26 |
ASD+GI+ | 40.16 ± 11.25 | ||
TD | 34.20 ± 13.00 | ||
HLA-DR+ | Nonclassical (CD14loCD16+) | ASD+GI− | 52.60 ± 8.92 |
ASD+GI+ | 24.36 ± 10.70 | ||
TD | 50.99 ± 13.88 | ||
HLA-DR− | Classical (CD14+CD16−) | ASD+GI− | 62.59 ± 8.24 |
ASD+GI+ | 85.60 ± 4.19 | ||
TD | 10.71 ± 5.29 | ||
HLA-DR− | Transitional (CD14+CD16+) | ASD+GI− | 3.68 ± 1.26 |
ASD+GI+ | 11.00 ± 5.28 | ||
TD | 26.16 ± 9.62 | ||
PD-1+ | Transitional (CD14+CD16+) | ASD+GI− | 18.76 ± 6.82 |
ASD+GI+ | 0.19 ± 0.13 | ||
TD | 39.45 ± 14.58 | ||
PD-L1+ | Transitional (CD14+CD16+) | ASD+GI− | 26.21 ± 8.01 |
ASD+GI+ | 17.09 ± 5.67 | ||
TD | 46.40 ± 13.81 | ||
PD-1+PD-L1+ | Transitional (CD14+CD16+) | ASD+GI− | 33.88 ± 10.90 |
ASD+GI+ | 40.54 ± 13.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, R.J.; Azzam, Y.W.; Eng, S.; Rose, D.; Ashwood, P. Altered Monocyte Populations and Activation Marker Expression in Children with Autism and Co-Occurring Gastrointestinal Symptoms. Biomolecules 2025, 15, 207. https://doi.org/10.3390/biom15020207
Moreno RJ, Azzam YW, Eng S, Rose D, Ashwood P. Altered Monocyte Populations and Activation Marker Expression in Children with Autism and Co-Occurring Gastrointestinal Symptoms. Biomolecules. 2025; 15(2):207. https://doi.org/10.3390/biom15020207
Chicago/Turabian StyleMoreno, Rachel J., Yasmin W. Azzam, Serena Eng, Destanie Rose, and Paul Ashwood. 2025. "Altered Monocyte Populations and Activation Marker Expression in Children with Autism and Co-Occurring Gastrointestinal Symptoms" Biomolecules 15, no. 2: 207. https://doi.org/10.3390/biom15020207
APA StyleMoreno, R. J., Azzam, Y. W., Eng, S., Rose, D., & Ashwood, P. (2025). Altered Monocyte Populations and Activation Marker Expression in Children with Autism and Co-Occurring Gastrointestinal Symptoms. Biomolecules, 15(2), 207. https://doi.org/10.3390/biom15020207