The Role of the Gastrointestinal Microbiota in Parkinson’s Disease
Abstract
:1. Introduction
2. Methods
3. Brain–Gut Axis
4. From the Brain–Gut Axis to the Microbiota–Brain–Gut Axis
5. The Role of Dysbiosis in PD
5.1. Gut Microbiota Dysbiosis in PD
5.2. Modulating Gut Microbiota Dysbiosis in PD
5.2.1. Fecal Microbiota Transplantation
5.2.2. Prebiotics, Probiotics, and Synbiotics
Study, Design | Sample, Patients’ Characteristics | Treatment Characteristics | Clinical Effects of Treatment | Data on Gut Microbiota or Other Relevant Findings |
---|---|---|---|---|
Becker et al., 2020 Germany [69] Three-arms open-label clinical trial | 87 subjects (57 PD patients, 30 controls) Group 1: PD patients treated with prebiotics (M 18), 64.5 (42–84) y Group 2: controls treated with prebiotics (12), 61.5 (40–76) y Group 3: PD patients, no treatment (M 13), 66 (47–80) y | Group 1 and group 2: resistant starch (5 g bid) Group 3: dietary instructions alone Duration: 8 weeks | Significant improvement in non-motor and depressive symptoms at 8 weeks was noted only in group 1; effect on motor symptoms was not reported No significant change in bowel habits was noted | No significant change in gut microbiota after treatment with prebiotics was noted Significant increase in fecal butyrate concentrations and significant reduction in fecal calprotectin after treatment with prebiotics were noted in PD patients |
Hall et al., 2023 USA [70] Open-label clinical trial | 20 PD patients 10 PD patients medically naive (M 5), 62.9 ± 6.9 y 10 PD patients already under treatment (M 6), 65.7 ± 9.3 y | Bars containing resistant starch, rice brain, resistant maltodextrin, and inulin for 10 days (one bar = 10 g fiber) One bar in the first 3 days, then 2 bars for an additional 7 days. Duration: 10 days | Significant improvement in total GI symptom severity score was noted after prebiotic treatment Effect on MDS-UPDRS scores was not assessed | Significant reduction in levels of pro-inflammatory bacteria (e.g., Proteobacteria) and increase in number of SCFA-producing bacteria (e.g., Fusicatenibacter saccharivorans, Parabacteroides merdae) were noted Significant increase in SCFA levels and significant reductions in fecal calprotectin (intestinal inflammation), zonulin (putative marker of intestinal barrier dysfunction/inflammation), and NfL (marker of neurodegeneration) were noted |
5.3. Helicobacter Pylori
5.4. Small-Intestinal Bacterial Overgrowth
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ADL | activity of daily living |
ANA | antinuclear antibodies |
BID | bis in die,’ two times a day’ |
BMs | number of bowel movements. |
BSFS | Bristol stool form scale |
BSS | Bristol stool scale |
CagA | cytotoxin-associated gene A |
CFU | colony-forming unit |
CI | confidence interval |
CNS | central nervous system |
ENS | enteric nervous system |
FMT | fecal microbiota transplantation |
FOS | fructooligosaccharides |
GABA | gamma-aminobutyric acid |
GBT | glucose breath test |
GI | gastrointestinal |
GTT | gut transit time |
HAMA | Hamilton anxiety scale |
HAMD-17 | Hamilton depression rating scale (HDRS) |
HP | Helicobacter pylori |
HS-CRP | high-sensitivity C-reactive protein |
H-Y | Hoehn–Yahr |
IBS | irritable bowel syndrome |
IL | interleukin |
LBT | lactulose breath tests |
MALT | mucosa-associated lymphoid tissue |
MDA | malondialdehyde |
MDS-UPDRS | Movement Disorder Society Unified Parkinson’s Disease Rating Scale |
NMSS | Non-Motor Symptoms Scale |
NMSS | Non-Motor Symptoms Scale for PD |
NfL | neurofilament light-chain protein |
OR | odds ratio |
PAC-QOL | patient assessment of constipation |
PAC-SYM | patient assessment of constipation symptoms |
PD | Parkinson’s disease |
PDQ-39 | Parkinson’s disease questionnaire |
PPIs | proton pump inhibitors |
QID | quater in die, ‘four times a day’ |
RCT | randomized controlled trial |
SBM | spontaneous bowel movements |
SCFA | short-chain fatty acid |
SIBO | small-intestinal bacterial overgrowth |
SMD | standard mean difference |
TGF | transforming growth factor |
TID | ter in die, ‘three times a day’ |
TLR | toll-like receptor |
TNF | tumor necrosis factor |
UBT | urea breath test |
VacA | vacuolating cytotoxin A |
References
- Ben-Shlomo, Y.; Darweesh, S.; Llibre-Guerra, J.; Marras, C.; San Luciano, M.; Tanner, C. The Epidemiology of Parkinson’s Disease. Lancet 2024, 403, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s Disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Visanji, N.P.; Liu, L.W.C.; Lang, A.E.; Pfeiffer, R.F. Gastrointestinal Dysfunction in Parkinson’s Disease. Lancet Neurol. 2015, 14, 625–639. [Google Scholar] [CrossRef]
- Ho, M.S. Microglia in Parkinson’s Disease. In Neuroglia in Neurodegenerative Diseases; Verkhratsky, A., Ho, M.S., Zorec, R., Parpura, V., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2019; Volume 1175, pp. 335–353. [Google Scholar] [CrossRef]
- Forloni, G. Alpha Synuclein: Neurodegeneration and Inflammation. Int. J. Mol. Sci. 2023, 24, 5914. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Tredici, K.D.; Rüb, U.; De Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.H.; Del Tredici, K.; Braak, H. A Timeline for Parkinson’s Disease. Park. Relat. Disord. 2010, 16, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Holmqvist, S.; Chutna, O.; Bousset, L.; Aldrin-Kirk, P.; Li, W.; Björklund, T.; Wang, Z.-Y.; Roybon, L.; Melki, R.; Li, J.-Y. Direct Evidence of Parkinson Pathology Spread from the Gastrointestinal Tract to the Brain in Rats. Acta Neuropathol. 2014, 128, 805–820. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Li, X.; Yu, J.-T.; Wang, Y.-J. Therapeutics for Neurodegenerative Diseases by Targeting the Gut Microbiome: From Bench to Bedside. Transl. Neurodegener. 2024, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Fleming, M.A.; Ehsan, L.; Moore, S.R.; Levin, D.E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, 2020, 8024171. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fang, F.; Pedersen, N.L.; Tillander, A.; Ludvigsson, J.F.; Ekbom, A.; Svenningsson, P.; Chen, H.; Wirdefeldt, K. Vagotomy and Parkinson Disease: A Swedish Register–Based Matched-Cohort Study. Neurology 2017, 88, 1996–2002. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, S.-H.; Kam, T.-I.; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, J.H.; Kim, W.R.; Kook, M.; Foss, C.A.; et al. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron 2019, 103, 627–641.e7. [Google Scholar] [CrossRef]
- Rinninella, E.; Tohumcu, E.; Raoul, P.; Fiorani, M.; Cintoni, M.; Mele, M.C.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The Role of Diet in Shaping Human Gut Microbiota. Best. Pract. Res. Clin. Gastroenterol. 2023, 62–63, 101828. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, J.; Liang, H.; Ye, L.; Lan, L.; Lu, F.; Wang, Q.; Lei, T.; Yang, X.; Cui, P.; et al. Differences in Alpha Diversity of Gut Microbiota in Neurological Diseases. Front. Neurosci. 2022, 16, 879318. [Google Scholar] [CrossRef]
- Schächtle, M.A.; Rosshart, S.P. The Microbiota-Gut-Brain Axis in Health and Disease and Its Implications for Translational Research. Front. Cell. Neurosci. 2021, 15, 698172. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; He, M.; Yang, M.; Ai, X. Gut Microbiota as a Key Regulator of Intestinal Mucosal Immunity. Life Sci. 2024, 345, 122612. [Google Scholar] [CrossRef] [PubMed]
- Hays, K.E.; Pfaffinger, J.M.; Ryznar, R. The Interplay between Gut Microbiota, Short-Chain Fatty Acids, and Implications for Host Health and Disease. Gut Microbes 2024, 16, 2393270. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Camargo, M.C.; El-Omar, E.; Liou, J.-M.; Peek, R.; Schulz, C.; Smith, S.I.; Suerbaum, S. Helicobacter Pylori Infection. Nat. Rev. Dis. Primer 2023, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Jimenez, B.; Schneider, A. Small Intestinal Bacterial Overgrowth: Current Update. Curr. Opin. Gastroenterol. 2023, 39, 522–528. [Google Scholar] [CrossRef]
- Gabrielli, M.; D’Angelo, G.; Rienzo, T.D.; Scarpellini, E.; Ojetti, V. Diagnosis of Small Intestinal Bacterial Overgrowth in the Clinical Practice. Eur. Rev. Med. Pharmacol. Sci. 2013, 17 (Suppl. S2), 30–35. [Google Scholar] [PubMed]
- Bai, F.; You, L.; Lei, H.; Li, X. Association between Increased and Decreased Gut Microbiota Abundance and Parkinson’s Disease: A Systematic Review and Subgroup Meta-Analysis. Exp. Gerontol. 2024, 191, 112444. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Nishiwaki, H.; Ueyama, J.; Ito, M.; Hamaguchi, T.; Takimoto, K.; Maeda, T.; Kashihara, K.; Tsuboi, Y.; Mori, H.; Kurokawa, K.; et al. Meta-Analysis of Shotgun Sequencing of Gut Microbiota in Parkinson’s Disease. Npj Park. Dis. 2024, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Azim, F.; Saju, H.; Zargaran, A.; Shirzad, M.; Kamal, M.; Fatema, K.; Rehman, S.; Azad, M.A.M.; Ebrahimi-Barough, S. Pesticides and Parkinson’s Disease: Current and Future Perspective. J. Chem. Neuroanat. 2021, 115, 101966. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.P.; Carvey, P.M.; Keshavarzian, A.; Shannon, K.M.; Shaikh, M.; Bakay, R.A.E.; Kordower, J.H. Progression of Intestinal Permeability Changes and Alpha-synuclein Expression in a Mouse Model of Parkinson’s Disease. Mov. Disord. 2014, 29, 999–1009. [Google Scholar] [CrossRef]
- Galea, I. The Blood–Brain Barrier in Systemic Infection and Inflammation. Cell. Mol. Immunol. 2021, 18, 2489–2501. [Google Scholar] [CrossRef] [PubMed]
- Andrews, Z.B.; Erion, D.; Beiler, R.; Liu, Z.-W.; Abizaid, A.; Zigman, J.; Elsworth, J.D.; Savitt, J.M.; DiMarchi, R.; Tschöp, M.; et al. Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism. J. Neurosci. 2009, 29, 14057–14065. [Google Scholar] [CrossRef]
- Cirstea, M.S.; Creus-Cuadros, A.; Lo, C.; Yu, A.C.; Serapio-Palacios, A.; Neilson, S.; Appel-Cresswell, S.; Finlay, B.B. A Novel Pathway of L-dopa Metabolism by Commensal Bifidobacteria. Sci. Rep. 2023, 13, 19155. [Google Scholar] [CrossRef] [PubMed]
- Panzetta, M.E.; Valdivia, R.H. Akkermansia in the Gastrointestinal Tract as a Modifier of Human Health. Gut Microbes 2024, 16, 2406379. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Savva, G.M.; Bedarf, J.R.; Charles, I.G.; Hildebrand, F.; Narbad, A. Meta-Analysis of the Parkinson’s Disease Gut Microbiome Suggests Alterations Linked to Intestinal Inflammation. Npj Park. Dis. 2021, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Gobert, A.P.; Sagrestani, G.; Delmas, E.; Wilson, K.T.; Verriere, T.G.; Dapoigny, M.; Del’homme, C.; Bernalier-Donadille, A. The Human Intestinal Microbiota of Constipated-Predominant Irritable Bowel Syndrome Patients Exhibits Anti-Inflammatory Properties. Sci. Rep. 2016, 6, 39399. [Google Scholar] [CrossRef]
- Amorim Neto, D.P.; Bosque, B.P.; Pereira De Godoy, J.V.; Rodrigues, P.V.; Meneses, D.D.; Tostes, K.; Costa Tonoli, C.C.; Faustino De Carvalho, H.; González-Billault, C.; De Castro Fonseca, M. Akkermansia Muciniphila Induces Mitochondrial Calcium Overload and α -Synuclein Aggregation in an Enteroendocrine Cell Line. iScience 2022, 25, 103908. [Google Scholar] [CrossRef]
- Metcalfe-Roach, A.; Cirstea, M.S.; Yu, A.C.; Ramay, H.R.; Coker, O.; Boroomand, S.; Kharazyan, F.; Martino, D.; Sycuro, L.K.; Appel-Cresswell, S.; et al. Metagenomic Analysis Reveals Large-Scale Disruptions of the Gut Microbiome in Parkinson’s Disease. Mov. Disord. 2024, 39, 1740–1751. [Google Scholar] [CrossRef] [PubMed]
- Waclawiková, B.; Codutti, A.; Alim, K.; El Aidy, S. Gut Microbiota-Motility Interregulation: Insights from in Vivo, Ex Vivo and in Silico Studies. Gut Microbes 2022, 14, 1997296. [Google Scholar] [CrossRef] [PubMed]
- Hertel, J.; Harms, A.C.; Heinken, A.; Baldini, F.; Thinnes, C.C.; Glaab, E.; Vasco, D.A.; Pietzner, M.; Stewart, I.D.; Wareham, N.J.; et al. Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson’s Disease. Cell Rep. 2019, 29, 1767–1777.e8. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, Y.; Tian, J.; Sang, M.; Zhang, G.; Zhou, Y.; Wang, P. Cross-Sectional Study on the Gut Microbiome of Parkinson’s Disease Patients in Central China. Front. Microbiol. 2021, 12, 728479. [Google Scholar] [CrossRef] [PubMed]
- Wallen, Z.D.; Demirkan, A.; Twa, G.; Cohen, G.; Dean, M.N.; Standaert, D.G.; Sampson, T.R.; Payami, H. Metagenomics of Parkinson’s Disease Implicates the Gut Microbiome in Multiple Disease Mechanisms. Nat. Commun. 2022, 13, 6958. [Google Scholar] [CrossRef]
- De Miranda, B.R.; Goldman, S.M.; Miller, G.W.; Greenamyre, J.T.; Dorsey, E.R. Preventing Parkinson’s Disease: An Environmental Agenda. J. Park. Dis. 2022, 12, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Baj, A.; Moro, E.; Bistoletti, M.; Orlandi, V.; Crema, F.; Giaroni, C. Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int. J. Mol. Sci. 2019, 20, 1482. [Google Scholar] [CrossRef]
- Bourke, C.A. Astrocyte Dysfunction Following Molybdenum-Associated Purine Loading Could Initiate Parkinson’s Disease with Dementia. Npj Park. Dis. 2018, 4, 7. [Google Scholar] [CrossRef]
- Scholefield, M.; Church, S.J.; Taylor, G.; Knight, D.; Unwin, R.D.; Cooper, G.J.S. Multi-Regional Alterations in Glucose and Purine Metabolic Pathways in the Parkinson’s Disease Dementia Brain. Npj Park. Dis. 2023, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Marashly, E.T.; Bohlega, S.A. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine. Front. Neurol. 2017, 8, 333. [Google Scholar] [CrossRef]
- Coimbra, C.G.; Junqueira, V.B.C. High Doses of Riboflavin and the Elimination of Dietary Red Meat Promote the Recovery of Some Motor Functions in Parkinson’s Disease Patients. Braz. J. Med. Biol. Res. 2003, 36, 1409–1417. [Google Scholar] [CrossRef]
- Kuroishi, T. Regulation of Immunological and Inflammatory Functions by Biotin. Can. J. Physiol. Pharmacol. 2015, 93, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.N.; Xiao, L.; Wang, J.-Y. Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology 2020, 35, 328–337. [Google Scholar] [CrossRef]
- Latour, Y.L.; Gobert, A.P.; Wilson, K.T. The Role of Polyamines in the Regulation of Macrophage Polarization and Function. Amino Acids 2020, 52, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Panaitescu, P.-Ș.; Răzniceanu, V.; Mocrei-Rebrean, Ș.-M.; Neculicioiu, V.S.; Dragoș, H.-M.; Costache, C.; Filip, G.A. The Effect of Gut Microbiota-Targeted Interventions on Neuroinflammation and Motor Function in Parkinson’s Disease Animal Models—A Systematic Review. Curr. Issues Mol. Biol. 2024, 46, 3946–3974. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Shirsalimi, N.; Hashempour, Z.; Salehi Omran, H.; Sedighi, E.; Beigi, F.; Mortezazadeh, M. Safety and Efficacy of Fecal Microbiota Transplantation (FMT) as a Modern Adjuvant Therapy in Various Diseases and Disorders: A Comprehensive Literature Review. Front. Immunol. 2024, 15, 1439176. [Google Scholar] [CrossRef]
- DuPont, H.L.; Suescun, J.; Jiang, Z.-D.; Brown, E.L.; Essigmann, H.T.; Alexander, A.S.; DuPont, A.W.; Iqbal, T.; Utay, N.S.; Newmark, M.; et al. Fecal Microbiota Transplantation in Parkinson’s Disease—A Randomized Repeat-Dose, Placebo-Controlled Clinical Pilot Study. Front. Neurol. 2023, 14, 1104759. [Google Scholar] [CrossRef] [PubMed]
- Bruggeman, A.; Vandendriessche, C.; Hamerlinck, H.; De Looze, D.; Tate, D.J.; Vuylsteke, M.; De Commer, L.; Devolder, L.; Raes, J.; Verhasselt, B.; et al. Safety and Efficacy of Faecal Microbiota Transplantation in Patients with Mild to Moderate Parkinson’s Disease (GUT-PARFECT): A Double-Blind, Placebo-Controlled, Randomised, Phase 2 Trial. eClinicalMedicine 2024, 71, 102563. [Google Scholar] [CrossRef]
- Scheperjans, F.; Levo, R.; Bosch, B.; Lääperi, M.; Pereira, P.A.B.; Smolander, O.-P.; Aho, V.T.E.; Vetkas, N.; Toivio, L.; Kainulainen, V.; et al. Fecal Microbiota Transplantation for Treatment of Parkinson Disease: A Randomized Clinical Trial. JAMA Neurol. 2024, 81, 925. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-T.; Mills, D.A. Exploring the Gut Microbiome: Probiotics, Prebiotics, Synbiotics, and Postbiotics as Key Players in Human Health and Disease Improvement. Food Sci. Biotechnol. 2024, 33, 2065–2080. [Google Scholar] [CrossRef]
- Cassani, E.; Privitera, G.; Pezzoli, G.; Pusani, C.; Madio, C.; Iorio, L.; Barichella, M. Use of Probiotics for the Treatment of Constipation in Parkinson’s Disease Patients. Minerva Gastroenterol. Dietol. 2011, 57, 117–121. [Google Scholar] [PubMed]
- Georgescu, D.; Ancusa, O.; Georgescu, L.; Ionita, I.; Reisz, D. Nonmotor Gastrointestinal Disorders in Older Patients with Parkinson’s Disease: Is There Hope? Clin. Interv. Aging 2016, 11, 1601–1608. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Taghizadeh, M.; Daneshvar Kakhaki, R.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and Metabolic Response to Probiotic Administration in People with Parkinson’s Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2019, 38, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Borzabadi, S.; Oryan, S.; Eidi, A.; Aghadavod, E.; Daneshvar Kakhaki, R.; Tamtaji, O.R.; Taghizadeh, M.; Asemi, Z. The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin and Lipid in Patients with Parkinson’s Disease: A Randomized, Double-Blind, Placebo Controlled Trial. Arch. Iran. Med. 2018, 21, 289–295. [Google Scholar]
- Tan, A.H.; Lim, S.-Y.; Chong, K.K.; A Manap, M.A.A.; Hor, J.W.; Lim, J.L.; Low, S.C.; Chong, C.W.; Mahadeva, S.; Lang, A.E. Probiotics for Constipation in Parkinson Disease: A Randomized Placebo-Controlled Study. Neurology 2021, 96, e772–e782. [Google Scholar] [CrossRef]
- Lu, C.-S.; Chang, H.-C.; Weng, Y.-H.; Chen, C.-C.; Kuo, Y.-S.; Tsai, Y.-C. The Add-On Effect of Lactobacillus Plantarum PS128 in Patients With Parkinson’s Disease: A Pilot Study. Front. Nutr. 2021, 8, 650053. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, Y.; Xu, X.; Li, R.; Zhang, M.; Cui, Y.; Zhang, L.; Wei, Z.; Wang, S.; Tuo, H. Probiotics for Constipation and Gut Microbiota in Parkinson’s Disease. Park. Relat. Disord. 2022, 103, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhao, F.; Liu, Y.; Ma, T.; Jin, H.; Quan, K.; Leng, B.; Zhao, J.; Yuan, X.; Li, Z.; et al. Probiotics Synergized with Conventional Regimen in Managing Parkinson’s Disease. Npj Park. Dis. 2022, 8, 62. [Google Scholar] [CrossRef]
- Ghalandari, N.; Assarzadegan, F.; Habibi, S.A.H.; Esmaily, H.; Malekpour, H. Efficacy of Probiotics in Improving Motor Function and Alleviating Constipation in Parkinson’s Disease: A Randomized Controlled Trial. Iran. J. Pharm. Res. 2023, 22, e137840. [Google Scholar] [CrossRef]
- Yang, X.; He, X.; Xu, S.; Zhang, Y.; Mo, C.; Lai, Y.; Song, Y.; Yan, Z.; Ai, P.; Qian, Y.; et al. Effect of Lacticaseibacillus Paracasei Strain Shirota Supplementation on Clinical Responses and Gut Microbiome in Parkinson’s Disease. Food Funct. 2023, 14, 6828–6839. [Google Scholar] [CrossRef] [PubMed]
- Zali, A.; Hajyani, S.; Salari, M.; Tajabadi-Ebrahimi, M.; Mortazavian, A.M.; Pakpour, B. Co-Administration of Probiotics and Vitamin D Reduced Disease Severity and Complications in Patients with Parkinson’s Disease: A Randomized Controlled Clinical Trial. Psychopharmacology 2024, 241, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Barichella, M.; Pacchetti, C.; Bolliri, C.; Cassani, E.; Iorio, L.; Pusani, C.; Pinelli, G.; Privitera, G.; Cesari, I.; Faierman, S.A.; et al. Probiotics and Prebiotic Fiber for Constipation Associated with Parkinson Disease: An RCT. Neurology 2016, 87, 1274–1280. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ali, R.A.R.; Manaf, M.R.A.; Ahmad, N.; Tajurruddin, F.W.; Qin, W.Z.; Desa, S.H.M.; Ibrahim, N.M. Multi-Strain Probiotics (Hexbio) Containing MCP BCMC Strains Improved Constipation and Gut Motility in Parkinson’s Disease: A Randomised Controlled Trial. PLoS ONE 2020, 15, e0244680. [Google Scholar] [CrossRef]
- Andreozzi, V.; Cuoco, S.; Balestrieri, M.; Fierro, F.; Ferrara, N.; Erro, R.; Di Filippo, M.; Barbella, G.; Memoli, M.C.; Silvestri, A.; et al. Synbiotic Supplementation May Globally Improve Non-Motor Symptoms in Patients with Stable Parkinson’s Disease: Results from an Open Label Single-Arm Study. Sci. Rep. 2024, 14, 23095. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Lee, S.C.; Ham, C.; Kim, Y.W. Effect of Probiotic Supplementation on Gastrointestinal Motility, Inflammation, Motor, Non-Motor Symptoms and Mental Health in Parkinson’s Disease: A Meta-Analysis of Randomized Controlled Trials. Gut Pathog. 2023, 15, 9. [Google Scholar] [CrossRef]
- Hall, D.A.; Voigt, R.M.; Cantu-Jungles, T.M.; Hamaker, B.; Engen, P.A.; Shaikh, M.; Raeisi, S.; Green, S.J.; Naqib, A.; Forsyth, C.B.; et al. An Open Label, Non-Randomized Study Assessing a Prebiotic Fiber Intervention in a Small Cohort of Parkinson’s Disease Participants. Nat. Commun. 2023, 14, 926. [Google Scholar] [CrossRef]
- Becker, A.; Schmartz, G.P.; Gröger, L.; Grammes, N.; Galata, V.; Philippeit, H.; Weiland, J.; Ludwig, N.; Meese, E.; Tierling, S.; et al. Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson’s Disease—The RESISTA-PD Trial. Genom. Proteom. Bioinform. 2022, 20, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Vital, J.S.; Tanoeiro, L.; Lopes-Oliveira, R.; Vale, F.F. Biomarker Characterization and Prediction of Virulence and Antibiotic Resistance from Helicobacter Pylori Next Generation Sequencing Data. Biomolecules 2022, 12, 691. [Google Scholar] [CrossRef]
- Parsonnet, J.; Friedman, G.D.; Vandersteen, D.P.; Chang, Y.; Vogelman, J.H.; Orentreich, N.; Sibley, R.K. Helicobacter Pylori Infection and the Risk of Gastric Carcinoma. N. Engl. J. Med. 1991, 325, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Farinha, P.; Gascoyne, R.D. Helicobacter Pylori and MALT Lymphoma. Gastroenterology 2005, 128, 1579–1605. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Li, Y.; Huang, L.Y.; Guan, Q.K.; Xu, D.W.; Zhou, W.K.; Zhang, X.Z. Helicobacter Pylori Infection Contributes to High Risk of Ischemic Stroke: Evidence from a Meta-Analysis. J. Neurol. 2012, 259, 2527–2537. [Google Scholar] [CrossRef] [PubMed]
- Bawand, R.; Ghiasian, M.; Samadyan, M.; Qaderi, S. Association of Helicobacter Pylori with Migraine Headaches and the Effects of This Infection and Its Eradication on the Migraine Characteristics in Adults: A Comprehensive Systematic Review and META-ANALYSIS. Helicobacter 2023, 28, e13010. [Google Scholar] [CrossRef] [PubMed]
- Strang, R.R. THE ASSOCIATION OF GASTRO-DUODENAL ULCERATION AND PARKINSON’S DISEASE. Med. J. Aust. 1965, 1, 842–843. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.H.; Qiu, J.; Friis, S.; Wermuth, L.; Ritz, B. Treatment for Helicobacter Pylori Infection and Risk of Parkinson’s Disease in Denmark. Eur. J. Neurol. 2012, 19, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Yang, H.; Wu, Y.; Zhang, D.; Jiang, H. Meta-analysis: Association of Helicobacter Pylori Infection with Parkinson’s Diseases. Helicobacter 2017, 22, e12398. [Google Scholar] [CrossRef] [PubMed]
- Dardiotis, E.; Tsouris, Z.; Mentis, A.-F.A.; Siokas, V.; Michalopoulou, A.; Sokratous, M.; Dastamani, M.; Bogdanos, D.P.; Deretzi, G.; Kountouras, J.H. Pylori and Parkinson’s Disease: Meta-Analyses Including Clinical Severity. Clin. Neurol. Neurosurg. 2018, 175, 16–24. [Google Scholar] [CrossRef]
- Pierantozzi, M.; Pietroiusti, A.; Brusa, L.; Galati, S.; Stefani, A.; Lunardi, G.; Fedele, E.; Sancesario, G.; Bernardi, G.; Bergamaschi, A.; et al. Helicobacter Pylori Eradication and l-Dopa Absorption in Patients with PD and Motor Fluctuations. Neurology 2006, 66, 1824–1829. [Google Scholar] [CrossRef]
- Lee, W.Y.; Yoon, W.T.; Shin, H.Y.; Jeon, S.H.; Rhee, P. Helicobacter Pylori Infection and Motor Fluctuations in Patients with Parkinson’s Disease. Mov. Disord. 2008, 23, 1696–1700. [Google Scholar] [CrossRef]
- Dobbs, S.M.; Dobbs, R.J.; Weller, C.; Charlett, A.; Bjarnason, I.T.; Lawson, A.J.; Letley, D.; Harbin, L.; Price, A.B.; Ibrahim, M.A.A.; et al. Differential Effect of Helicobacter Pylori Eradication on Time-Trends in Brady/Hypokinesia and Rigidity in Idiopathic Parkinsonism: Report on Completion of a Randomized, Double-Blind, Placebo-Controlled Efficacy Study. Helicobacter 2010, 15, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Hashim, H.; Azmin, S.; Razlan, H.; Yahya, N.W.; Tan, H.J.; Manaf, M.R.A.; Ibrahim, N.M. Eradication of Helicobacter Pylori Infection Improves L-dopa Action, Clinical Symptoms and Quality of Life in Patients with Parkinson’s Disease. PLoS ONE 2014, 9, e112330. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Su, W.; Li, S.; Du, W.; Ma, X.; Jin, Y.; Li, K.; Chen, H. Eradication of Helicobacter Pylori Infection Might Improve Clinical Status of Patients with Parkinson’s Disease, Especially on Bradykinesia. Clin. Neurol. Neurosurg. 2017, 160, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.H.; Mahadeva, S.; Marras, C.; Thalha, A.M.; Kiew, C.K.; Yeat, C.M.; Ng, S.W.; Ang, S.P.; Chow, S.K.; Loke, M.F.; et al. Helicobacter Pylori Infection Is Associated with Worse Severity of Parkinson’s Disease. Park. Relat. Disord. 2015, 21, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Lolekha, P.; Sriphanom, T.; Vilaichone, R.-K. Helicobacter Pylori Eradication Improves Motor Fluctuations in Advanced Parkinson’s Disease Patients: A Prospective Cohort Study (HP-PD Trial). PLoS ONE 2021, 16, e0251042. [Google Scholar] [CrossRef]
- Leta, V.; Klingelhoefer, L.; Longardner, K.; Campagnolo, M.; Levent, H.Ç.; Aureli, F.; Metta, V.; Bhidayasiri, R.; Chung-Faye, G.; Falup-Pecurariu, C.; et al. Gastrointestinal Barriers to L-dopa Transport and Absorption in Parkinson’s Disease. Eur. J. Neurol. 2023, 30, 1465–1480. [Google Scholar] [CrossRef] [PubMed]
- Niehues, M.; Hensel, A. In-Vitro Interaction of L-Dopa with Bacterial Adhesins of Helicobacter pylori: An Explanation for Clinicial Differences in Bioavailability? J. Pharm. Pharmacol. 2009, 61, 1303–1307. [Google Scholar] [CrossRef]
- Lyte, M. Microbial Endocrinology as a Basis for Improved L-DOPA Bioavailability in Parkinson’s Patients Treated for Helicobacter Pylori. Med. Hypotheses 2010, 74, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Gasbarrini, A.; Franceschi, F.; Tartaglione, R.; Landolfi, R.; Pola, P.; Gasbarrini, G. Regression of Autoimmune Thrombocytopenia after Eradication of Helicobacter Pylori. Lancet 1998, 352, 878. [Google Scholar] [CrossRef]
- Suwarnalata, G.; Tan, A.H.; Isa, H.; Gudimella, R.; Anwar, A.; Loke, M.F.; Mahadeva, S.; Lim, S.-Y.; Vadivelu, J. Augmentation of Autoantibodies by Helicobacter Pylori in Parkinson’s Disease Patients May Be Linked to Greater Severity. PLoS ONE 2016, 11, e0153725. [Google Scholar] [CrossRef] [PubMed]
- Noto, J.M.; Peek, R.M. The Gastric Microbiome, Its Interaction with Helicobacter Pylori, and Its Potential Role in the Progression to Stomach Cancer. PLoS Pathog. 2017, 13, e1006573. [Google Scholar] [CrossRef] [PubMed]
- Iino, C.; Shimoyama, T. Impact of Helicobacter Pylori Infection on Gut Microbiota. World J. Gastroenterol. 2021, 27, 6224–6230. [Google Scholar] [CrossRef]
- Fiorani, M.; Tohumcu, E.; Del Vecchio, L.E.; Porcari, S.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The Influence of Helicobacter Pylori on Human Gastric and Gut Microbiota. Antibiotics 2023, 12, 765. [Google Scholar] [CrossRef]
- Gao, J.-J.; Zhang, Y.; Gerhard, M.; Mejias-Luque, R.; Zhang, L.; Vieth, M.; Ma, J.-L.; Bajbouj, M.; Suchanek, S.; Liu, W.-D.; et al. Association Between Gut Microbiota and Helicobacter Pylori-Related Gastric Lesions in a High-Risk Population of Gastric Cancer. Front. Cell. Infect. Microbiol. 2018, 8, 202. [Google Scholar] [CrossRef]
- Sharabi, E.; Rezaie, A. Small Intestinal Bacterial Overgrowth. Curr. Infect. Dis. Rep. 2024, 26, 227–233. [Google Scholar] [CrossRef]
- Gasbarrini, A.; Corazza, G.R.; Gasbarrini, G.; Montalto, M.; Di Stefano, M.; Basilisco, G.; Parodi, A.; Satta, P.U.; Vernia, P.; Anania, C.; et al. Methodology and Indications of H 2 -Breath Testing in Gastrointestinal Diseases: The Rome Consensus Conference. Aliment. Pharmacol. Ther. 2009, 29 (Suppl. S1), 1–49. [Google Scholar] [CrossRef] [PubMed]
- Takakura, W.; Pimentel, M. Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome—An Update. Front. Psychiatry 2020, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Su, B.-B.; Xu, S.-P. Helicobacter Pylori Infection and Small Intestinal Bacterial Overgrowth: A Systematic Review and Meta-Analysis. BMC Microbiol. 2023, 23, 386. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, X.; Jiang, Z.; Jiang, Z. Association of Small Intestinal Bacterial Overgrowth with Parkinson’s Disease: A Systematic Review and Meta-Analysis. Gut Pathog. 2021, 13, 25. [Google Scholar] [CrossRef]
- Kuai, X.; Yao, X.; Xu, L.; Zhou, Y.; Zhang, L.; Liu, Y.; Pei, S.; Zhou, C. Evaluation of Fecal Microbiota Transplantation in Parkinson’s Disease Patients with Constipation. Microb. Cell Factories 2021, 20, 98. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, B.; Zhu, Y.; Wang, F.; Tai, Y.; Liu, Z.; Chen, J.; Liang, C.; Yang, H.; Pang, A.; et al. Association of Bacterial Overgrowth in the Small Intestine with Cortical Thickness and Functional Connectivity in Parkinson’s Disease Involving Mild Cognitive Impairment. Brain Imaging Behav. 2024, 18, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Talamantes, S.; Steiner, F.; Spencer, S.; Neshatian, L.; Sonu, I. Intestinal Methanogen Overgrowth (IMO) Is Associated with Delayed Small Bowel and Colonic Transit Time (TT) on the Wireless Motility Capsule (WMC). Dig. Dis. Sci. 2024, 69, 3361–3368. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A.; Bove, F.; Gabrielli, M.; Petracca, M.; Zocco, M.A.; Ragazzoni, E.; Barbaro, F.; Piano, C.; Fortuna, S.; Tortora, A.; et al. The Role of Small Intestinal Bacterial Overgrowth in Parkinson’s Disease. Mov. Disord. 2013, 28, 1241–1249. [Google Scholar] [CrossRef]
- Lauritano, E.C.; Gabrielli, M.; Scarpellini, E.; Lupascu, A.; Novi, M.; Sottili, S.; Vitale, G.; Cesario, V.; Serricchio, M.; Cammarota, G.; et al. Small Intestinal Bacterial Overgrowth Recurrence After Antibiotic Therapy. Am. J. Gastroenterol. 2008, 103, 2031–2035. [Google Scholar] [CrossRef]
Study, Design | Sample, Patients’ Characteristics | Treatment Characteristics | Clinical Effects of Treatment | Data on Gut Microbiota or Other Relevant Findings |
---|---|---|---|---|
Cassani et al., 2011 Italy [54] Open-label single-arm trial | 40 PD patients with functional constipation | Dietetic therapy for constipation + Fermented milk drink—65 mL—containing 6.5 × 109 CFU of Lactobacillus casei Shirota Duration: 5 weeks | Significant increase in the number of days per week in which stools were of normal consistency and significant reductions in the number of days per week in which patients felt bloated and experienced abdominal pain and sensation of incomplete emptying Effect of MDS-UPDRS scores not assessed | No data on gut microbiota |
Georgescu et al., 2016 Romania [55] Open-label RCT | 40 PD patients Group 1: 20 patients (M 7), 75.7 ± 9.7 y Group 2: 20 patients (M 10), 69.8 ± 5.6 y Age significantly different between the groups | Group 1: trimebutine 200 mg tid Group 2: Lactobacillus acidophilus and Bifidobacterium infantis, 2 tablets each 60 mg All patients: increased fluid intake to 2 L/d and dietary fibers 20–25 g/d Duration: 12 weeks | Significant improvement in all non-motor GI symptoms after treatment in the first group; significant improvement in abdominal pain and bloating but not in constipation in the second group Effect on MDS-UPDRS scores was not reported | No data on gut microbiota |
Tamtaji et al., 2018 Iran [56] Double blind placebo-controlled RCT | 60 PD patients Treatment group: 30 patients, 68.2 ± 7.8 y Placebo group: 30 patients, age 67.7 ± 10.2 y Sex not reported | Probiotics: Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus reuteri, and Lactobacillus fermentum (each 2 × 109 CFU/g) Duration: 12 weeks | Significant improvement in MDS-UPDRS total score in the treatment group Effects on GI symptoms were not reported | No data on gut microbiota Significant reductions in HS-CRP, MDA, insulin levels, and insulin resistance; increase in glutathione levels and improvement of insulin sensitivity in the probiotic group |
Borzabadi et al., 2018 Iran [57] Double blind placebo-controlled RCT | 50 PD patients Treatment group: 25 patients (M 17), 66.9 ± 7.0 y Placebo group: 25 patients (M 16), 66.7 ± 10.7 y | Probiotics: Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus fermentum, and Bifidobacterium bifidum (each 2 × 109 CFU) Duration: 12 weeks | Effects on PD symptoms were not reported | No data on gut microbiota Significant reductions in expression of genes related to inflammation, such as IL-1, IL-8, TNF-α, and TGF-β, in the probiotic group |
Tan et al., 2021 Malaysia [58] Double blind placebo-controlled RCT | 72 PD patients with functional constipation Treatment group: 34 patients (M 20), 70.9 ± 6.6 y Placebo group: 38 patients (M 28), 68.6 ± 6.7 y | Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus gasseri, Lactobacillus rhamnosus, Bifidobacterium bifidum, Bifidobacterium longum, Enterococcus faecalis, and Enterococcus faecium, 10 × 109 CFU Duration: 4 weeks | Significant improvement in SBM, stool consistency, constipation severity score, and quality of life related to constipation in treatment group Effect on MDS-UPDRS scores was not assessed | No data on gut microbiota Changes in fecal calprotectin from baseline to end of intervention were not significantly different between groups |
Lu et al., 2021 Taiwan [59] Open-label single-arm baseline-controlled trial | 25 PD patients (M 17), 61.8 ± 5.7 y | Lactobacillus plantarum PS128, 60 × 109 CFU Duration: 12 weeks | Significant improvement in UPDR motor scores in both the OFF and ON states, the duration of the ON period, and the quality of life after treatment No significant change was noted in GI symptoms | No data on gut microbiota Significant decrease in markers of oxidative damage (plasma myeloperoxidase and urinary 8-hydroxy-2′-deoxyguanosine) |
Du et al., 2022 China [60] Open-label RCT | 46 PD patients with Constipation Treatment group: 23 patients (16 M), 68.4 ± 7.6 y 23 controls (10 M), 66.7 ± 8.7 y | Bacillus licheniformis (2.5 × 109 CFU/capsule, 2 capsules tid) + Lactobacillus acidophilus, Bifidobacterium longum and Enterococcus faecalis (1 × 107 CFU per strain), 4 capsules bid Duration: 12 weeks | Significant improvement in constipation in the treatment group (average number of complete bowel movements per week, BSS score, PAC-SYM score, PAC-QOL score, degree of defecation effort score) Effect on MDS-UPDRS scores was not assessed | After treatment with probiotics, Christensenella Marseille-P2437 levels significantly increased and Eubacterium oxidoreducens, Eubacterium_hallii and Odoribacter N54.MGS-14 levels decreased |
Sun et al., 2022 China [61] Double blind placebo-controlled RCT | 82 PD patients Treatment group: 48 patients (M 32), 66.5 ± 7.0 y Placebo group: 34 patients (M 23), 68.8 ± 6.9 y | Bifidobacterium animalis subsp. lactis Probio-M8, 3 × 1010 CFU/day) Duration: 12 weeks | Significant improvement in motor symptoms, sleep quality, anxiety state, mental state, and depression in treatment group was noted Significant improvement in GI symptoms (BSS, PAC-QOL, times of spontaneous defecations and completed defecations per week, feces hardness, and difficulty in defecation) | Significantly more species-level genome bins of Bifidobacterium animalis, Ruminococcaceae, and Lachnospira and less Lactobacillus fermentum and Klebsiella oxytoca were noted in the probiotic group Treatment with probiotics was associated with significant increase in number of species involved in tryptophan degradation, GABA, SCFAs, and secondary bile acid biosynthesis, as well as serum acetic acid and dopamine levels |
Ghalandari et al., 2023 Iran [62] Triple-blind, parallel RCT | 27 PD patients Treatment group: 14 (M 8), 68.0 ± 6.7 y Placebo group: 13 (M 7), 68.5 ± 6.9 y | Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus bulgaricus; Bifidobacterium infantis, Bifidobacterium Longum, Bifidobacterium breve; Streptococcus thermophilus (each genus accounting for 1.5 × 1011 CFU) Duration: 8 weeks | Significant improvement in frequency of bowel movements and stool consistency was noted in treatment group No significant differences in PD motor symptoms were noted | No data on gut microbiota |
Yang et al., 2023 China [63] Double blind placebo-controlled RCT | 128 PD patients Treatment group: 65 patients (M 31), 67.2 ± 6.5 y Placebo group: 63 patients (M 42), 69.6 ± 6.4 y | Fermented milk containing 1 × 1010 living cells of Lacticaseibacillus strain Shirota Duration: 12 weeks | Significant improvement in constipation-related symptoms (Wexner score, BSS score, BMs, PAC-QOL) and significant reduction in use of laxatives were noted in treatment group Significant improvement in non-motor symptoms (NMSS, HAMD-17, and HAMA) was noted in treatment group Significant improvement in QL scores (PDQ-39) was noted in treatment group | No changes in the global gut microbiome were noted after intervention, but significantly increased abundance of the genus Lacticaseibacillus in the probiotic group compared with baseline and placebo group was noted Fecal concentration of L-tyrosine significantly decreased and plasma concentration of L-tyrosine increased in probiotic group |
Zali et al., 2024 Iran [64] Double blind placebo-controlled RCT | 46 PD patients Treatment group: 23 patients (M 14), 56.3 ± 10.2 y Placebo group: 23 patients (M 15), 55.7 ± 11.0 y | Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus paracasei; Bifidobacterium longum; Bacillus coagulans (2 × 109 CFU) + 400 IU vitamin D Duration: 12 weeks | Significant improvements in anxiety, GI symptom rating scale, and UPDRS sub-scales I, III, and IV were noted in treatment group | Significant decrease in IL-1β, INF-γ, IL-6, and MDA levels and significant increase in IL-10 levels were noted in the group treated with probiotics (and vitamin D) |
Study, Design | Sample, Patients’ Characteristics | Treatment Characteristics | Clinical Effects of Treatment | Data on Gut Microbiota or Other Relevant Findings |
---|---|---|---|---|
Barichella et al., 2016 Italy [65] Double-blind placebo-controlled RCT | 120 PD patients Treatment group: 80 patients (M 41), 71.8 ± 7.7 y Placebo group: 40 patients (M 24), 69.5 ± 10.3 y | Fermented milk with the following: -Probiotics: Streptococcus salivarius subsp thermophilus; Enterococcus faecium; Lactobacillus rhamnosus GG, acidophilus, plantarum, paracasei, delbrueckii subsp bulgaricus; Bifidobacterium breve and animalis subsp lactis (total content of probiotics: 250 × 109 CFU) + -Prebiotics: FOS 2% Duration: 4 weeks | Significant improvement in constipation (increase in the number of complete bowel movements) Effect on MDS-UPDRS scores not assessed | No data on gut microbiota |
Ibrahim et al., 2020 Malaysia [66] Double blind placebo-controlled RCT | 55 PD patients with functional constipation Treatment group: 27 patients (M 16), 69.0 (64.0–74.0) y Placebo group: 28 patients (M 17), 70.5 (62.0–70.3) y | -Probiotics: Lactobacillus acidophilus 107 mg, Lactobacillus casei 107 mg, Lactobacillus lactis 107 mg, Bifidobacterium infantis 107 mg, and Bifidobacterium longum 107 mg + -Prebiotics: FOS 2% Duration: 8 weeks | Improvement in constipation in treatment group (significant improvement of BOF and GTT, and reduction % of patients remaining constipated) No significant differences in the total MDS-UPDRS score, NMSS scores and PDQ-39 scores between groups | No data on gut microbiota |
Andreozzi et al., 2024 Italy [67] Open-label single-arm trial | 30 PD (M 20) 64.7 ± 7.1 y patients with functional constipation | Probiotics: Lacticaseibacillus paracasei DG (≥8 × 109 CFU) Prebiotics: fiber inulin 4.0 g Duration: 12 weeks | No significant improvement in motor symptoms (MDS-UPRDS part 3) Significant improvement in: -non-motor symptoms (MDS-UPDRS part 1 and anxiety, depression and autonomic dysfunction scores) -constipation (PAC-SYM score, number of complete bowel movement and BSFS) | Significant increase in abundance of the order Oscillospirales, family Oscillospiraceae, and species Faecalibacterium prausnitzii was noted after treatment |
Study, Design | Sample, Patients’ Characteristics | Treatment Characteristics | Clinical Effects of Treatment | Other Relevant Findings |
---|---|---|---|---|
Pierantozzi et al., 2006 Italy [80] Double blind placebo-controlled parallel-group RCT | 34 PD patients with motor fluctuations—HP infection and eradication assessed by gastric biopsy Eradication group 17 patients (M 8), 64.9 ± 9.6 y Placebo group 17 patients (M 8), 66.3 ± 6.9 y | Eradication therapy: omeprazole 20 mg BID, amoxicillin 1 g BID, clarithromycin 500 mg BID, 7 days Allopurinol (chosen for its antioxidant properties) 100 mg BID, 15 days Placebo and active therapies were supplied and formulated in the same way | Eradication group: 2 still HP-positive Placebo group: all HP-positive HP eradication but not allopurinol was associated with significant improvement in clinical disability and a prolonged “on-time” duration | HP eradication, but not allopurinol, was associated with significant increase in L-dopa absorption Gastritis/duodenitis scores significantly decreased in line with a better L-dopa pharmacokinetics |
Yong Lee et al., 2008 South Korea [81] Open-label study | 65 PD patients with motor fluctuations and HP infection HP infection and eradication assessed by UBT | Eradication therapy: esomeprazole 20 mg BID, amoxicillin 500 mg BID, clarithromycin 500 mg BID, 7 days | Eradicated: 35 patients (M 20), 60.0 ± 9.5 y Not eradicated: 30 patients (M 16), 60.2 ± 8.4 y Delay to L-dopa ‘‘onset’’ time was significantly greater and ‘‘on-time’’ duration shorter in the infected than in noninfected subjects Delay in L-dopa ‘onset’ time was significantly reduced and ‘on-time’ duration significantly prolonged after successful eradication | - |
Dobbs et al., 2010 United Kingdom [82] Double blind placebo-controlled RCT | 30 PD patients with HP infection assessed by gastric biopsy. HP eradication assessed by UBT only after de-blinding Eradication group: 14 patients (M 6), 59 (41–78) y Placebo group:16 patients (M 13), 63 (45–81) y | Eradication therapy: omeprazole 20 mg BID, amoxicillin 500 mg BID, clarithromycin 500 mg BID, 7 days (metronidazole 400 mg or tetracycline 500 mg QID was used in case of in vitro insensitivity or suspected intolerance) | 20 patients were de-blinded early due to marked clinical deterioration Eradication group: 4 still HP-positive Placebo group: all HP-positive Brady-hypokinesia significantly improved after successful blinded active treatment compared with placebo and significantly worse in patients with eradication failure compared with those successfully eradicated Correction of deficit continued for 3.4 years post eradication Significance was maintained also after excluding patients taking L-dopa | ANA was present in all 4 eradication failures In the remaining cases, ANA positivity associated with a significantly poorer response during the year following eradication therapy |
Hashim et al., 2014 Malaysia [83] Open-label study | 82 PD patients HP infection and eradication assessed by UBT | Eradication therapy: esomeprazole 40 mg BID, amoxicillin 1000 mg BID, clarithromycin 500 mg BID, 7 days | HP-positive: 27 (6 lost at follow-up); 21 (M 10) patients, 65.1 ± 10.0 y HP-negative: 55 (M 24), 67.5 ± 7.3 y All 21 HP-positive patients treated were successfully eradicated Significantly poorer total UPDRS and PDQ-39 scores were noted in HP-positive patients than in HP-negative patients Significant improvement in mean L-dopa onset time; mean ON duration time; total UPDRS scores; UPDRS scores for parts II, III and IV; total PDQ-39 scores; and subdomains of mobility, ADL, emotional well-being, and stigma were noted 12 weeks post eradication | - |
Liu et al., 2017 China [84] Open-label study | 48 PD patients HP infection and eradication assessed by UBT | Eradication therapy: omeprazole 20 mg BID, amoxicillin 1 g BID, clarithromycin 500 mg BID, 14 days | Group 1: HP-negative; 26 patients (M 14), 63.7 ± 8.3 y Group 2: HP-positive refusing eradication therapy; 12 patients (M 4), 62.7 ± 10.0 y Group 3: HP-positive receiving eradication therapy; 10 patients (M 5), 63.2 ± 7.4 y UPDRS-III scores were significantly lower compared to baseline at 1-year follow-up in group 3 UPDRS-26 was significantly improved in group 3 when compared to group 1 and group 2 at 1-year follow-up | - |
Tan et al., 2020 Malaysia [85] Double blind placebo-controlled RCT | 67 PD patients with HP infection HP infection assessed by UBT and serology HP eradication assessed by UBT | Eradication therapy: omeprazole 20 mg BID, amoxicillin 1 g BID, clarithromycin 500 mg BID, 7 days | Eradication group: 32 patients (M 19), 66.0 ± 9.8 y Placebo group: 35 patients (M 22), 67.4 ± 8.1 y Successful eradication was achieved in 81.3% of the treatment group and 9.1% with the placebo HP eradication was not associated with significant improvement in MDS-UPDRS motor scores at week 12 | Lactulose breath test was used to assess SIBO SIBO status did not influence treatment results |
Lolekha et al., 2021 Thailand [86] Open-label study | 40 PD patients HP infection and eradication assessed by UBT | Eradication therapy: omeprazole 40 mg BID, amoxicillin 1 g BID, clarithromycin 500 mg BID, 14 days | HP-negative: 26 patients (M 14), 63.7 ± 8.3 y HP-positive: 10 patients (M 5), 63.2 ± 7.4 y Successful eradication was achieved in 77.3% of patients In successfully eradicated patients, the following were noted: - Significant decrease in daily ‘off’ time and increase in daily ‘on’ time; - Significant improvement in total wearing-off score and the GI symptom score; - No significant improvement in L-dopa onset time, UPDRS motor score, or quality of life score | - |
Study, Design | Sample, Patients’ Characteristics | Treatment | Clinical Effects of Treatment | Other Relevant Findings |
---|---|---|---|---|
Fasano et al., 2012 Italy [104] Open-label study | 33 PD patients (M 18), 67.8 ± 8.5 y SIBO assessed by GBT and LBT: positivity if at least one was positive SIBO positivity: 54.5% (18/33) | Decontamination therapy: rifaximin 400 mg TID for 7 days GBT/LBT repeated 1 month after the end of the treatment Decontamination rate: 77.8% (14/18) | Successful decontamination associated with significant improvement in motor fluctuations without affecting the pharmacokinetics of L-dopa | No side effects SIBO recurrence at 6-month follow-up: 42.9% (6/14) |
Kuai et al., 2021 China [101] Open-label study | 11 PD patients (M 7), 62.4 ± 13.1 y SIBO assessed by LBT SIBO positivity: 100% (11/11) | FMT (40–50 mL of frozen fecal microbiota transplanted into the intestine through a nasoduodenal tube) LBT repeated 12 weeks after the treatment Decontamination rate: 100% (11/11) | Significant reduction in H-Y grade, UPDRS, NMSS, PAC-QOL score, and Wexner constipation score after FMT | Increased abundance of Blautia and Prevotella and decreased abundance of Bacteroidetes in PD patients after FMT were noted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrielli, M.; Zileri Dal Verme, L.; Zocco, M.A.; Nista, E.C.; Ojetti, V.; Gasbarrini, A. The Role of the Gastrointestinal Microbiota in Parkinson’s Disease. Biomolecules 2025, 15, 26. https://doi.org/10.3390/biom15010026
Gabrielli M, Zileri Dal Verme L, Zocco MA, Nista EC, Ojetti V, Gasbarrini A. The Role of the Gastrointestinal Microbiota in Parkinson’s Disease. Biomolecules. 2025; 15(1):26. https://doi.org/10.3390/biom15010026
Chicago/Turabian StyleGabrielli, Maurizio, Lorenzo Zileri Dal Verme, Maria Assunta Zocco, Enrico Celestino Nista, Veronica Ojetti, and Antonio Gasbarrini. 2025. "The Role of the Gastrointestinal Microbiota in Parkinson’s Disease" Biomolecules 15, no. 1: 26. https://doi.org/10.3390/biom15010026
APA StyleGabrielli, M., Zileri Dal Verme, L., Zocco, M. A., Nista, E. C., Ojetti, V., & Gasbarrini, A. (2025). The Role of the Gastrointestinal Microbiota in Parkinson’s Disease. Biomolecules, 15(1), 26. https://doi.org/10.3390/biom15010026