Rational Design of an Epidermal Growth Factor Receptor Vaccine: Immunogenicity and Antitumor Research
<p>Immunization with DTT-EG vaccines in combination with tumor cell injection protocol. (<b>A</b>) Prophylactic tumor model: tumor cell injection and vaccine immunization protocol (mouse diagram by <a href="http://medpeer.cn" target="_blank">medpeer.cn</a>) and (<b>B</b>) therapeutic tumor model: tumor cell injection and vaccine immunization protocol (mouse diagram by <a href="http://medpeer.cn" target="_blank">medpeer.cn</a> (accessed on 9 June 2024)).</p> "> Figure 2
<p>The predicted epitope EG in EGFR-ECD is demonstrated, along with the design and expression purification of DTT-EG utilizing DTT as a vector. (<b>A</b>) Displaying the EG epitope within EGFR-ECD (EGFR PDB id:3njp): EG1 is represented by a yellow sequence, EG2 by a red sequence, EG3 by a green sequence, EG4 by a blue and orange sequence, EG5 by an orange and purple sequence, EG6 by a cyan sequence, and EG7 by a pink sequence. (<b>B</b>) Design of DTT-EG tandem recombinant protein. DTT (202–373) denotes the amino acid fragment spanning from 202 to 373 of the DTT protein. The epitope prediction tool identified seven human-specific epitope peptides in the form of EG1, EG2, EG3, EG4, and E5G5G6G7 consisting of 15 amino acid residues each. GS represents the GS-linker sequence (GGTGGTGGTGGTAGTGGTGGTGGTGGTAGT). (<b>C</b>) Analysis of purified recombinant protein using 12% SDS-PAGE (M: Marker; A: DTT-EG1; B: DTT-EG2; C: DTT-EG3; D: DTT-EG4; E: DTT-EG5; F: DTT-EG6; G: DTT-EG7; H: DTT).</p> "> Figure 3
<p>Serum antibodies were detected using enzyme-linked immunosorbent assay (ELISA) following immunization of mice with the DTT-EG tandem recombinant protein. (Significance levels were denoted as ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, while “ns” indicated no significant difference). (<b>A</b>) Schematic representation of the immunization protocol for mice (mouse diagram by <a href="http://medpeer.cn" target="_blank">medpeer.cn</a> (accessed on 9 June 2024)). (<b>B</b>) ELISA analysis was conducted on the serum of immunized mice, with the coated proteins being DTT or EGFR. (<b>C</b>) The titer of antibodies against EGFR in the mouse serum following vaccination was determined by ELISA.</p> "> Figure 4
<p>The splenic lymphocytes of immunized mice were tested for cell proliferation, toxicity, and interferon-gamma release, and the spleens were tested for CD4 and CD8 immunohistochemistry. (Significance levels were denoted as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, while “ns” indicated no significant difference). (<b>A</b>) Schematic representation of the immunization protocol for mice (mouse diagram by <a href="http://medpeer.cn" target="_blank">medpeer.cn</a> (accessed on 9 June 2024)). (<b>B</b>) Cell proliferation detection experiment by CCK-8 method. (<b>C</b>) Cell cytotoxicity detection experiment by lactate dehydrogenase method. (<b>D</b>) Detection of IFN-γ release by ELISA method. (<b>E</b>) The spleen of immunized mice was stained by immunohistochemistry with anti-CD4 specific antibody. (<b>F</b>) The spleen of immunized mice was stained by immunohistochemistry with anti-CD8 specific antibody. (<b>G</b>) CD4+ T and CD8+ T-cell density was quantified using ImageJ.</p> "> Figure 5
<p>Antitumor effects of the DTT-EG vaccine in a prophylactic and therapeutic mouse A549 tumor model. (Significance levels were denoted as * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001, while “ns” indicated no significant difference). (<b>A</b>) prophylactic tumor model tumor growth curve, (<b>B</b>) prophylactic tumor model tumor weight, (<b>C</b>) therapeutic tumor model tumor growth curve, and (<b>D</b>) therapeutic tumor model tumor weight.</p> "> Figure 6
<p>The DTT-EG vaccine modulates the infiltration of CD8+ T cells and induces necrosis within the intratumoral tissue. (Significance levels were denoted as ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001, while “ns” indicated no significant difference). (<b>A</b>) Tumor tissues underwent immunohistochemical staining using an anti-CD4 specific antibody. (<b>B</b>) Tumor tissues underwent immunohistochemical staining using an anti-CD8 specific antibody. (<b>C</b>) CD4+ T and CD8+ T cell density was quantified using ImageJ. (<b>D</b>) Revealing the histopathological features of tumor tissue through hematoxylin and eosin (H&E) staining.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Cell Lines and Adjuvants
2.3. Prediction of EGFR-ECD T-Cell Epitopes
2.4. DTT-EG Design and Expression Vector Construction
2.5. DTT-EG Expression and Purification
2.6. Mouse Immunity
2.7. ELISA Antibody Detection
2.8. T-Cell Proliferation Detection
2.9. Cytotoxicity Testing
2.10. Interferon-γ Detection
2.11. Immunohistochemical Analysis of Spleen in Immunized Mouse
2.12. Mouse Tumor Model Experiment
2.13. Immunohistochemical Analysis of Tumor Tissues
2.14. Statistical Analysis
3. Results
3.1. Design of DTT-EG Vaccine
3.2. Detection of DTT-EG-Induced Specific Antibody Response in Mouse
3.3. Analysis of Cell Responses Induced by DTT-EG
3.4. Effects of DTT-EG Vaccine in Mouse Tumor Models
3.5. Effects of DTT-EG Vaccine on Infiltration of CD8+ T Cells into the Tumor Microenvironment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uribe, M.L.; Marrocco, I.; Yarden, Y. Egfr in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers 2021, 13, 2748. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr.-Relat. Cancer 2001, 8, 3–9. [Google Scholar] [CrossRef]
- Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (egfr) signaling in cancer. Gene 2006, 366, 2–16. [Google Scholar] [CrossRef]
- Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. Egfr and cancer prognosis. Eur. J. Cancer 2001, 37, S9–S15. [Google Scholar] [CrossRef]
- Urban, J.L.; Schreiber, H. Tumor-antigens. Annu. Rev. Immunol. 1992, 10, 617–644. [Google Scholar] [CrossRef]
- Padfield, E.; Ellis, H.P.; Kurian, K.M. Current therapeutic advances targeting egfr and egfrviii in glioblastoma. Front. Oncol. 2015, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Koehne, C.-H.; Hitre, E.; Zaluski, J.; Chien, C.-R.C.; Makhson, A.; D’Haens, G.; Pinter, T.; Lim, R.; Bodoky, G.; et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 2009, 360, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Douillard, J.-Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Randomized, phase iii trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (folfox4) versus folfox4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The prime study. J. Clin. Oncol. 2010, 28, 4697–4705. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.D.; Nori, A.; Tijerina, M.; Kopecková, P.; Kopecek, J. Cytoplasmic delivery and nuclear targeting of synthetic macromolecules. J. Control. Release 2003, 87, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, T.A. Immunotherapy: Past, present and future. Nat. Med. 2003, 9, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A. Recognizing and managing toxicities of molecular targeted therapies for colorectal cancer. Oncology 2006, 20, 21–28. [Google Scholar]
- Tagliamento, M.; Rijavec, E.; Barletta, G.; Biello, F.; Rossi, G.; Grossi, F.; Genova, C. CIMAvax-EGF, a therapeutic non-small cell lung cancer vaccine. Expert. Opin. Biol. Ther. 2018, 18, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, D.; Crombet, T. CIMAvax-EGF: A New Therapeutic Vaccine for Advanced Non-Small Cell Lung Cancer Patients. Front. Immunol. 2017, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, D.; Neninger, E.; Rodriguez, C.; Viada, C.; Mazorra, Z.; Lage, A.; Crombet, T. CIMAvax-EGF: Toward long-term survival of advanced NSCLC. Semin. Oncol. 2018, 45, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, P.C.; Popa, X.; Martínez, O.; Mendoza, S.; Santiesteban, E.; Crespo, T.; Amador, R.M.; Fleytas, R.; Acosta, S.C.; Otero, Y.; et al. A Phase III Clinical Trial of the Epidermal Growth Factor Vaccine CIMAvax-EGF as Switch Maintenance Therapy in Advanced Non-Small Cell Lung Cancer Patients. Clin. Cancer Res. 2016, 22, 3782–3790. [Google Scholar] [CrossRef] [PubMed]
- Ortiz Carrodeguas, R.A.; Lorenzo Monteagudo, G.; Guerra Chaviano, P.P.; Álvarez Montané, I.; Salomón Saldívar, E.E.; Lobaina Lambert, L.; Camacho Sosa, K.; Bermúdez Pino, R.; Blanco Mustelier, P.; Valdés Rodríguez, E.; et al. Safety and effectiveness of CIMAvax-EGF administered in community polyclinics. Front. Oncol. 2023, 13, 1287902. [Google Scholar] [CrossRef] [PubMed]
- Flores Vega, Y.I.; Páramo González, D.L.; Alsina Sarmiento, S.C.; Alsina Tul, L.E.; Inguanzo Valdés, I.B.; Rodríguez Machado, J.; Elejalde Larrinaga, Á.; Flores Rodríguez, J.E.; Lamadrid García, J.; Corrales Otero, D.; et al. Survival of NSCLC Patients Treated with Cimavax-EGF as Switch Maintenance in the Real-World Scenario. J. Cancer 2023, 14, 874–879. [Google Scholar] [CrossRef]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Paston, S.J.; Brentville, V.A.; Symonds, P.; Durrant, L.G. Cancer Vaccines, Adjuvants, and Delivery Systems. Front. Immunol. 2021, 12, 627932. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Poznańska, J.; Fechner, F.; Michalska, N.; Paszkowska, S.; Napierała, A.; Mackiewicz, A. Cancer Vaccine Therapeutics: Limitations and Effectiveness—A Literature Review. Cells 2023, 12, 2159. [Google Scholar] [CrossRef] [PubMed]
- Jäger, E.; Höhn, H.; Necker, A.; Förster, R.; Karbach, J.; Freitag, K.; Neukirch, C.; Castelli, C.; Salter, R.D.; Knuth, A.; et al. Peptide-specific CD8+ T-cell evolution in vivo: Response to peptide vaccination with Melan-A/MART-1. Int. J. Cancer 2002, 98, 376–388. [Google Scholar] [CrossRef]
- Brentville, V.A.; Metheringham, R.L.; Gunn, B.; Symonds, P.; Daniels, I.; Gijon, M.; Cook, K.; Xue, W.; Durrant, L.G. Citrullinated Vimentin Presented on MHC-II in Tumor Cells Is a Target for CD4+ T-Cell-Mediated Antitumor Immunity. Cancer Res. 2016, 76, 548–560. [Google Scholar] [CrossRef]
- Brentville, V.A.; Metheringham, R.L.; Daniels, I.; Atabani, S.; Symonds, P.; Cook, K.W.; Vankemmelbeke, M.; Choudhury, R.; Vaghela, P.; Gijon, M.; et al. Combination vaccine based on citrullinated vimentin and enolase peptides induces potent CD4-mediated anti-tumor responses. J. Immunother. Cancer 2020, 8, e000560. [Google Scholar] [CrossRef]
- Largeot, A.; Pagano, G.; Gonder, S.; Moussay, E.; Paggetti, J. The B-side of Cancer Immunity: The Underrated Tune. Cells 2019, 8, 449. [Google Scholar] [CrossRef] [PubMed]
- Barve, M.; Bender, J.; Senzer, N.; Cunningham, C.; Greco, F.A.; McCune, D.; Steis, R.; Khong, H.; Richards, D.; Stephenson, J.; et al. Induction of immune responses and clinical efficacy in a phase ii trial of idm-2101, a 10-epitope cytotoxic t-lymphocyte vaccine, in metastatic non-small-cell lung cancer. J. Clin. Oncol. 2008, 26, 4418–4425. [Google Scholar] [CrossRef] [PubMed]
- Kenter, G.G.; Welters, M.J.P.; Valentijn, A.R.P.M.; Lowik, M.J.G.; Berends-van der Meer, D.M.A.; Vloon, A.P.G.; Essahsah, F.; Fathers, L.M.; Offringa, R.; Drijfhout, J.W.; et al. Vaccination against hpv-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 2009, 361, 1838–1847. [Google Scholar] [CrossRef] [PubMed]
- Schirle, M.; Weinschenk, T.; Stevanovic, S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of t cell epitopes from defined antigens. J. Immunol. Methods 2001, 257, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.L.; Cascio, P.; Saric, T.; Rock, K.L. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 2002, 39, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Flower, D.R. Towards in silico prediction of immunogenic epitopes. Trends Immunol. 2003, 24, 667–674. [Google Scholar] [CrossRef]
- Sayers, S.; Ulysse, G.; Xiang, Z.; He, Y. Vaxjo: A web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development. J. Biomed. Biotechnol. 2012, 2012, 831486. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, G.; Usmani, S.S.; Raghava, G.P.S. A web resource for designing subunit vaccine against major pathogenic species of bacteria. Front. Immunol. 2018, 9, 2280. [Google Scholar] [CrossRef] [PubMed]
- Collison, J. Rheumatoid arthritis: Paving the way for tnf vaccines. Nat. Rev. Rheumatol. 2016, 12, 692. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Xu, A.; Zhong, C.; Lu, W.; Deng, L.; Li, R. A rationally designed tnf-α epitope-scaffold immunogen induces sustained antibody response and alleviates collagen-induced arthritis in mice. PLoS ONE 2016, 11, e163080. [Google Scholar] [CrossRef]
- Ebben, J.D.; Lubet, R.A.; Gad, E.; Disis, M.L.; You, M. Epidermal growth factor receptor derived peptide vaccination to prevent lung adenocarcinoma formation: An in vivo study in a murine model of egfr mutant lung cancer. Mol. Carcinog. 2016, 55, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Falk, K.; Rotzschke, O.; Stevanovic, S.; Jung, G.; Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from mhc molecules. Nature 1991, 351, 290–296. [Google Scholar] [CrossRef]
- Delisi, C.; Berzofsky, J.A. T-cell antigenic sites tend to be amphipathic structures. Proc. Natl. Acad. Sci. USA 1985, 82, 7048–7052. [Google Scholar] [CrossRef]
- Stille, C.J.; Thomas, L.J.; Reyes, V.E.; Humphreys, R.E. Hydrophobic strip-of-helix algorithm for selection of t-cell-presented peptides. Mol. Immunol. 1987, 24, 1021–1027. [Google Scholar] [CrossRef]
- Brusic, V.; Rudy, G.; Honeyman, M.; Hammer, J.; Harrison, L. Prediction of mhc class ii-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 1998, 14, 121–130. [Google Scholar] [CrossRef]
- Rothbard, J.B.; Marshall, K.; Wilson, K.J.; Fugger, L.; Zaller, D. Prediction of peptide affinity to hla drb1-asterisk-01401. Int. Arch. Allergy Immunol. 1994, 105, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.D.; Pinilla, C.; Valmori, D.; Martin, R.; Simon, R. Application of support vector machines for T-cell epitopes prediction. Bioinformatics 2003, 19, 1978–1984. [Google Scholar] [CrossRef] [PubMed]
- Stern, L.J.; Brown, J.H.; Jardetzky, T.S.; Gorga, J.C.; Urban, R.G.; Strominger, J.L.; Wiley, D.C. Crystal-structure of the human class-ii mhc protein hla-dr1 complexed with an influenza-virus peptide. Nature 1994, 368, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, F.Z.; Skwarczynski, M.; Toth, I. Developments in Vaccine Adjuvants. Methods Mol. Biol. 2022, 2412, 145–178. [Google Scholar] [CrossRef]
- Zhou, S.H.; Li, Y.T.; Zhang, R.Y.; Liu, Y.L.; You, Z.W.; Bian, M.M.; Wen, Y.; Wang, J.; Du, J.J.; Guo, J. Alum Adjuvant and Built-in TLR7 Agonist Synergistically Enhance Anti-MUC1 Immune Responses for Cancer Vaccine. Front. Immunol. 2022, 13, 857779. [Google Scholar] [CrossRef]
- Yang, J.; Li, B.; Yang, D.; Wu, J.; Yang, A.; Wang, W.; Lin, F.; Wan, X.; Li, Y.; Chen, Z.; et al. The immunogenicity of Alum+CpG adjuvant SARS-CoV-2 inactivated vaccine in mice. Vaccine 2023, 41, 6064–6071. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Jiang, M.; Yu, W.; Xu, Z.; Liu, X.; Jia, Q.; Guan, X.; Zhang, W. CpG-Based Nanovaccines for Cancer Immunotherapy. Int. J. Nanomed. 2021, 16, 5281–5299. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.; Li, B.; Sun, X.; Pan, Q.; Zheng, Y.; Liu, J.; Zhao, Y.; Wang, J.; Liu, L.; et al. A novel CpG ODN compound adjuvant enhances immune response to spike subunit vaccines of porcine epidemic diarrhea virus. Front. Immunol. 2024, 15, 1336239. [Google Scholar] [CrossRef]
- Kayraklioglu, N.; Horuluoglu, B.; Klinman, D.M. CpG Oligonucleotides as Vaccine Adjuvants. Methods Mol. Biol. 2021, 2197, 51–85. [Google Scholar] [CrossRef]
- Campbell, J.D. Development of the CpG Adjuvant 1018: A Case Study. Methods Mol. Biol. 2017, 1494, 15–27. [Google Scholar] [CrossRef]
- Cheng, C.; Deng, L.; Li, R. The immunogenicity and anti-tumor efficacy of a rationally designed egfr vaccine. Cell. Physiol. Biochem. 2018, 46, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Jie, J.; Zhang, Y.; Zhou, H.; Zhai, X.; Zhang, N.; Yuan, H.; Ni, W.; Tai, G. CpG ODN1826 as a Promising Mucin1-Maltose-Binding Protein Vaccine Adjuvant Induced DC Maturation and Enhanced Antitumor Immunity. Int. J. Mol. Sci. 2018, 19, 920. [Google Scholar] [CrossRef] [PubMed]
- Carlow, D.A.; Lai, J.C.Y.; Kollmann, T.R.; Sadarangani, M.; Dutz, J.P. Cutaneous CpG adjuvant conditioning to enhance vaccine responses. Vaccine 2022, 40, 1385–1389. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, R.; Zhao, Y.; Zhang, Y.; Yuan, G.; Li, W.; Xiao, Z.; Dong, X.; Ma, M.; Guo, Y.; et al. Alum/CpG adjuvant promotes immunogenicity of inactivated SARS-CoV-2 Omicron vaccine through enhanced humoral and cellular immunity. Virology 2024, 594, 110050. [Google Scholar] [CrossRef] [PubMed]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. Netmhcpan-4.1 and netmhciipan-4.0: Improved predictions of mhc antigen presentation by concurrent motif deconvolution and integration of ms mhc eluted ligand data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ponomarenko, J.; Zhu, Z.; Tamang, D.; Wang, P.; Greenbaum, J.; Lundegaard, C.; Sette, A.; Lund, O.; Bourne, P.E.; et al. Immune epitope database analysis resource. Nucleic Acids Res. 2012, 40, W525–W530. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.K.; Andreatta, M.; Marcatili, P.; Buus, S.; Greenbaum, J.A.; Yan, Z.; Sette, A.; Peters, B.; Nielsen, M. Improved methods for predicting peptide binding affinity to mhc class ii molecules. Immunology 2018, 154, 394–406. [Google Scholar] [CrossRef]
- Wang, P.; Sidney, J.; Kim, Y.; Sette, A.; Lund, O.; Nielsen, M.; Peters, B. Peptide binding predictions for hla dr, dp and dq molecules. BMC Bioinform. 2010, 11, 568. [Google Scholar] [CrossRef]
- Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006, 7, 153. [Google Scholar] [CrossRef] [PubMed]
- Kaabinejadian, S.; Barra, C.; Alvarez, B.; Yari, H.; Hildebrand, W.H.; Nielsen, M. Accurate MHC Motif Deconvolution of Immunopeptidomics Data Reveals a Significant Contribution of DRB3, 4 and 5 to the Total DR Immunopeptidome. Front. Immunol. 2022, 13, 835454. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Jiao, Y.-Y.; Ma, Y.; Peng, X.-L.; Fu, Y.-H.; Zhang, X.-J.; Zheng, Y.-B.; Zheng, Y.-P.; Hong, T.; He, J.-S. Enhanced humoral and cd8+t cell immunity in mice vaccinated by DNA vaccine against human respiratory syncytial virus through targeting the encoded f protein to dendritic cells. Int. Immunopharmacol. 2017, 46, 62–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Z.; Wan, Y.; Cai, H.; Deng, L.; Li, R. The immunogenicity and anti-tumor efficacy of a rationally designed neoantigen vaccine for b16f10 mouse melanoma. Front. Immunol. 2019, 10, 2472. [Google Scholar] [CrossRef]
- Greenfield, E.A. Standard immunization of mice, rats, and hamsters. Cold Spring Harb. Protoc. 2020, 2020, 100297. [Google Scholar] [CrossRef] [PubMed]
- Rammensee, H.G. Chemistry of peptides associated with mhc class-i and class-ii molecules. Curr. Opin. Immunol. 1995, 7, 85–96. [Google Scholar] [CrossRef]
- Lippolis, J.D.; White, F.M.; Marto, J.A.; Luckey, C.J.; Bullock, T.N.J.; Shabanowitz, J.; Hunt, D.F.; Engelhard, V.H. Analysis of mhc class ii antigen processing by quantitation of peptides that constitute nested sets. J. Immunol. 2002, 169, 5089–5097. [Google Scholar] [CrossRef] [PubMed]
- Castle, J.C.; Kreiter, S.; Diekmann, J.; Loewer, M.; Van de Roemer, N.; de Graaf, J.; Selmi, A.; Diken, M.; Boegel, S.; Paret, C.; et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012, 72, 1081–1091. [Google Scholar] [CrossRef]
- Normanno, N.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; De Luca, A.; Caponigro, F.; Salomon, D.S. The erbb receptors and their ligands in cancer: An overview. Curr. Drug Targets 2005, 6, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, D.; Angelo, M.A.; de Azeredo, E.L.; Sidney, J.; Greenbaum, J.A.; Fernando, A.N.; Broadwater, A.; Kolla, R.V.; De Silva, A.D.; de Silva, A.M.; et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl. Acad. Sci. USA 2013, 110, E2046–E2053. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, J.; Sidney, J.; Chung, J.; Brander, C.; Peters, B.; Sette, A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 2011, 63, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Yarchoan, M.; Johnson, B.A., III; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 2017, 17, 209–222. [Google Scholar] [CrossRef]
- Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 2018, 18, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Diethelm-Okita, B.M.; Okita, D.K.; Banaszak, L.; Conti-Fine, B.M. Universal epitopes for human cd4+ cells on tetanus and diphtheria toxins. J. Infect. Dis. 2000, 181, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.C.; Altreuter, D.H.; Ilyinskii, P.; Pittet, L.; LaMothe, R.A.; Keegan, M.; Johnston, L.; Kishimoto, T.K. Generation of a universal cd4 memory t cell recall peptide effective in humans, mice and non-human primates. Vaccine 2014, 32, 2896–2903. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef] [PubMed]
- Crombet Ramos, T.; Santos Morales, O.; Dy, G.K.; León Monzón, K.; Lage Dávila, A. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 639745. [Google Scholar] [CrossRef]
- Evans, R.; Lee, K.; Wallace, P.K.; Reid, M.; Muhitch, J.; Dozier, A.; Mesa, C.; Luaces, P.L.; Santos-Morales, O.; Groman, A.; et al. Augmenting antibody response to EGF-depleting immunotherapy: Findings from a phase I trial of CIMAvax-EGF in combination with nivolumab in advanced stage NSCLC. Front. Oncol. 2022, 12, 958043. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wei, Y.Q.; Tian, L.; Zhao, X.; Yang, L.; Hu, B.; Kan, B.; Wen, Y.J.; Liu, F.; Deng, H.X.; et al. Immunogene therapy of tumors with vaccine based on xenogeneic epidermal growth factor receptor. J. Immunol. 2003, 170, 3162–3170. [Google Scholar] [CrossRef]
Servers for Epitope Prediction | HLA Supertype and Allele |
---|---|
NetMHCpan-4.1 and IEDB Consensus-2.18 | A01: HLA-A-01:01, HLA-A-26:01, HLA-A-30:02, HLA-A-32:01 A01/A03 (1): HLA-A-30:01 A02: HLA-A-02:01, HLA-A-02:03, HLA-A-02:06, HLA-A-68:02 A03: HLA-A-03:01, HLA-A-11:01, HLA-A-31:01, HLA-A-33:01, HLA-A-68:01 A24: HLA-A-23:01, HLA-A-24:02 B07: HLA-B-07:02, HLA-B-35:01, HLA-B-51:01, HLA-B-53:01 B08: HLA-B-08:01 B44: HLA-B-40:01, HLA-B-44:02, HLA-B-44:03 B58: HLA-B-57:01, HLA-B-58:01 B62: HLA-B-15:01 |
NetMHCIIpan-3.2 and IEDB Consensus-2.22 | Main DR: HLA-DRB1-01:01, HLA-DRB1-07:01, HLA-DRB1-09:01, HLA-DRB1-11:01, DRB1-12:01, HLA-DRB1-15:01, HLA-DRB5-01:01 DR4: HLA-DRB1-04:01, HLA-DRB1-04:05, HLA-DRB1-08:02 DRB3: HLA-DRB1-03:01, HLA-DRB1-13:02, HLA-DRB3-01:01, HLA-DRB1-02:02, HLA-DRB4-01:01 |
No. | Peptide sequence | Start–End | Supertype and Allele: NetMHCpan-4.1 and IEDB Consensus-2.18 |
---|---|---|---|
1 | YVLIALNTV | 88–96 | A02 (HLA-A-02:06) |
2 | MYYENSYAL | 111–119 | B27 (HLA-B-39:01) A24 (HLA-A-23:01, HLA-A-24:02) |
3 | YENSYALAV | 113–121 | B44 (HLA-B-40:01, HLA-B-18:01) |
4 | AVRFSNNPA | 147–155 | A01/A03 (HLA-A-30:01) |
5 | GEFKDSLSI | 343–351 | B44 (HLA-B-40:02, HLA-B-40:01, HLA-B-44:02) |
6 | NATNIKHFK | 352–360 | A03 (HLA-A-68:01) |
7 | KEITGFLLI | 399–407 | B44 (HLA-B-44:02, HLA-B-40:02, HLA-B-44:03) |
8 | YANTINWKK | 471–479 | A03 (HLA-A-68:01) |
No. | Peptide Sequence (HTL Epitopes) | Start–End | Supertype and Allele: NetMHCIIpan-3.2 and IEDB Consensus-2.22 | Peptide Sequence (CTL Epitopes) | Sequence Homology (EGFR-Mus Musculus) | Population Coverage: World (MHC Class I and II Combined) |
---|---|---|---|---|---|---|
EG1 | YVLIALNTVERIPLE | 88–102 | DRB3 (HLA-DRB1-13:02) DR4 (HLA-DRB1-04:05) | YVLIALNTV | 100.00% | 11.37% |
EG2 | RGNMYYENSYALAVL | 108–122 | Main DR (HLA-DRB1-09:01, HLA-DRB1-07:01, HLA-DRB1-01:01, HLA-DRB1-15:01) DR4 (HLA-DRB1-04:01) DRB3 (HLA-DRB1-13:02) | MYYENSYAL YENSYALAV | 73.33% | 76.26% |
EG3 | HGAVRFSNNPALCNV | 145–159 | DRB3 (HLA-DRB1-13:02) DR4 (HLA-DRB1-04:01) | AVRFSNNPA | 85.71% | 29.75% |
EG4 | IGIGEFKDSLSINAT | 340–354 | DR4 (HLA-DRB1-04:01) | GEFKDSLSI | 93.33% | 27.46% |
EG5 | KDSLSINATNIKHFK | 346–360 | DRB3 (HLA-DRB1-13:02) | NATNIKHFK | 93.33% | 12.14% |
EG6 | VKEITGFLLIQAWPE | 398–412 | DR4 (HLA-DRB1-04:05) Main DR (HLA-DRB1-07:01, HLA-DRB1-01:01) | KEITGFLLI | 93.33% | 42.76% |
EG7 | LCYANTINWKKLFGT | 469–483 | Main DR (HLA-DRB5-01:01) | YANTINWKK | 100.00% | 5.83% (without HLA-DRB5-01:01) |
No. | Peptide Sequence | Mouse MHC-II Haplotypes:IEDB NetMHCIIpan 4.1 BA | CTL Epitopes (9 mer) and Mouse MHC-I Haplotypes and BindLevel: NetMHCpan-4.1 (%Rank) |
---|---|---|---|
EG1 | YVLIALNTVERIPLE | H2-IAd (low affinity), H2-IEd (low affinity) | IALNTVERI (H-2-Dd, weak binder) |
EG2 | RGNMYYENSYALAVL | H2-IAd (low affinity), H2-IEd (low affinity) | MYYENSYAL (H-2-Dd, WB/H-2-Kd, SB/H-2-Ld, weak binder) YYENSYALA (H-2-Kd, weak binder) |
EG3 | HGAVRFSNNPALCNV | H2-IAd (low affinity), H2-IEd (low affinity) | VRFSNNPAL (H-2-Kd, weak binder) |
EG4 | IGIGEFKDSLSINAT | H2-IAd (low affinity) | None |
EG5 | KDSLSINATNIKHFK | H2-IAd (low affinity), H2-IEd (low affinity) | INATNIKHF (H-2-Dd, weak binder) SLSINATNI (H-2-Kd, weak binder) |
EG6 | VKEITGFLLIQAWPE | H2-IAd (low affinity), H2-IEd (low affinity) | TGFLLIQAW (H-2-Dd, strong binder) KEITGFLLI (H-2-Kd, weak binder) |
EG7 | LCYANTINWKKLFGT | H2-IAd (low affinity), H2-IEd (low affinity) | LCYANTINW (H-2-Dd, weak binder) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Z.; Zheng, Z. Rational Design of an Epidermal Growth Factor Receptor Vaccine: Immunogenicity and Antitumor Research. Biomolecules 2024, 14, 1620. https://doi.org/10.3390/biom14121620
Liu Y, Liu Z, Zheng Z. Rational Design of an Epidermal Growth Factor Receptor Vaccine: Immunogenicity and Antitumor Research. Biomolecules. 2024; 14(12):1620. https://doi.org/10.3390/biom14121620
Chicago/Turabian StyleLiu, Yifei, Zehui Liu, and Zhongliang Zheng. 2024. "Rational Design of an Epidermal Growth Factor Receptor Vaccine: Immunogenicity and Antitumor Research" Biomolecules 14, no. 12: 1620. https://doi.org/10.3390/biom14121620
APA StyleLiu, Y., Liu, Z., & Zheng, Z. (2024). Rational Design of an Epidermal Growth Factor Receptor Vaccine: Immunogenicity and Antitumor Research. Biomolecules, 14(12), 1620. https://doi.org/10.3390/biom14121620