Late-Life Alcohol Exposure Does Not Exacerbate Age-Dependent Reductions in Mouse Spatial Memory and Brain TFEB Activity
<p>Aging and chronic plus binge EtOH (Gao-binge) feeding impair TFEB-mediated autophagy in mouse brains. Male 3-month-old young mice (3M) and 23-month-old aged mice (23M) were subjected to Gao-binge alcohol feeding. Representative images of immunohistochemistry staining for TFEB (<b>A</b>) and ubiquitin (UB) (<b>B</b>) are shown. Black and white arrows denote positive TFEB and UB stained cells whereas red arrows denote decreased TFEB and UB staining in hippocampi CA1 (Cornu Ammonis) region. (<b>C</b>) Total lysates from the hippocampus were subjected to western blot analysis. (<b>D</b>) Densitometry analysis from (<b>C</b>). Data are presented as mean ± SEM (N = 3–4). CD: Control diet, ED: ethanol diet with a binge.</p> "> Figure 2
<p>Electron microscopy analysis of the ultrastructure of Gao-binge alcohol-fed young and aged mouse hippocampi. Male 3-month-old young mice (3M) and 23-month-old aged mice (23M) were subjected to Gao-binge alcohol feeding. Representative EM images of mouse hippocampi from 3M control (<b>A</b>), ED (<b>B</b>), 23M control (<b>C</b>), and 23M ED (<b>D</b>) mice. The right panels are enlarged images from the boxed area in (<b>B</b>,<b>D</b>). The left panels are enlarged images from (<b>C</b>). Red arrows denote lysosomes (LY); white arrows denote lipid droplets (LD) in lysosomes; black arrows denote damaged mitochondria; blue arrows denote myelinated axon with lamellar sheath; and green arrows denote endoplasmic reticulum. LY: lysosome, LD: lipid droplet, M: mitochondria, N: nucleus. Bar: 500 nm.</p> "> Figure 3
<p>Transcriptomic analysis of Gao-binge alcohol-fed young and aged mouse hippocampi. Male 3-month-old young mice (3M) and 23-month-old aged mice (23M) were subjected to Gao-binge alcohol feeding. mRNAs were extracted from the mouse hippocampi after the feeding and subjected to RNAseq analysis. (<b>A</b>–<b>D</b>) Circos plot analysis from the RNAseq data set. Red: 23M CD (control diet) vs. 3M CD; blue: 23M ED vs. 23M CD; green: 3M ED vs. 3M CD. The inner circle represents gene lists, where hits are arranged along the arc. Purple curves link identical genes. Genes that hit multiple lists are colored in dark orange, and genes unique to a list are shown in light orange. Each arc represents a distinct group of genes, color-coded to align with the corresponding experimental conditions, while the interconnecting chords depict shared ontology terms, including the shared term level, where blue curves link genes that belong to the same enriched ontology term. The thickness of each chord is proportional to the number of genes that contribute to the common functional annotation analysis (<b>C</b>) for up-regulated genes, and (<b>D</b>) for down-regulated genes. (<b>E</b>) Volcano plots illustrating differential gene expression across experimental conditions. The x-axis represents the log2 fold change, and the y-axis represents the log10 <span class="html-italic">p</span>-value, indicating the magnitude and statistical significance of gene expression changes, respectively. Upregulated genes are marked in red, downregulated genes in blue, and non-significant changes in gray. Key genes with a fold change greater than 2 and a <span class="html-italic">p</span>-value less than 0.05 are labeled.</p> "> Figure 4
<p>Heatmap analysis from the RNAseq dataset of Gao-binge alcohol-fed young and aged mouse hippocampi. Male 3-month-old young mice (3M) and 23-month-old aged mice (23M) were subjected to Gao-binge alcohol feeding. mRNAs were extracted from the mouse hippocampi after the feeding and subjected to RNAseq analysis. The color scale represents the magnitude of gene expression, with warmer colors (red) indicating higher expression and cooler colors (blue) indicating lower expression. The x-axis represents different experimental conditions, while the y-axis corresponds to the genes of interest in different pathways. The heatmap was generated using R with the ggplot2 package (version 3.5.1). (<b>A</b>) Heatmap analysis of alcohol metabolism gene expression from the RNAseq dataset. (<b>B</b>) Heatmap analysis of immune response gene expression from the RNAseq dataset. Heatmap analysis of TFEB target genes (<b>C</b>) and autophagy genes (<b>D</b>) from the RNAseq dataset.</p> "> Figure 5
<p>Immunohistochemistry staining of cortices and hippocampi TFEB in chronic EtOH-fed young mice and aged mice. Male 3-month-old young mice (3M) and 23-month-old aged mice (23M) were subjected to chronic EtOH feeding for 4 weeks. (<b>A</b>) Representative images of TFEB IHC staining of mouse cortices and (<b>B</b>) hippocampi are shown. Arrows denote cytosolic TFEB staining. CA: Cornu Ammonis, DG: dentate gyrus.</p> "> Figure 6
<p>Chronic EtOH feeding does not affect Tau levels but increases levels of protein ubiquitination in young but not in aged mouse brains. Male 3-month-old young mice and 23-month-old aged mice were subjected to chronic EtOH feeding for 4 weeks. (<b>A</b>) Cortex brain lysates were subjected to western blot analysis followed by (<b>B</b>–<b>F</b>) Densitometry analysis of (<b>A</b>), which are normalized to loading control β-actin. Data are presented as mean ± SEM (n = 3–4).</p> "> Figure 7
<p>Chronic EtOH feeding increases apoptotic-like cell populations in young mice but not in aged mice brains, and without affecting body weight and food intake. Male 3-month-old young mice and 23-month-old aged mice were subjected to Gao-binge alcohol feeding. (<b>A</b>) Food intake, and (<b>B</b>) body weight (BW) were measured (n = 4–6). (<b>C</b>) Representative brain hematoxylin and eosin images are shown. Lower panels are enlarged images from the boxed areas. Original magnifications (4× and 10×).</p> "> Figure 8
<p>Chronic ethanol feeding has no effects on synapses but synapses are reduced in aged mice compared to young mice. Male 3-month-old young mice (3M) and 23-month-old aged mice (23M) were subjected to chronic EtOH feeding for 4 weeks. (<b>A</b>) Cortex brain lysates were subjected to western blot analysis followed by (<b>B</b>) Densitometry analysis of (<b>A</b>), which are normalized to loading control GAPDH. Data are presented as mean ± SEM (n = 3–4) in (<b>B</b>). <span class="html-italic">p</span>-value; one-way analysis of variance with Bonferroni’s post hoc test.</p> "> Figure 9
<p>Chronic EtOH feeding impairs spatial learning and memory of young mice but not aged mice in the Morris Water Maze test. Male 3-month-old young mice (3M) and 23-month-old aged mice (23M) were subjected to chronic EtOH feeding for 4 weeks, followed by a Morris Water Maze test. (<b>A</b>) Swimming speed of indicated four mouse groups. (<b>B</b>) Representative images of swimming paths of indicated four mice groups during the probe test. (<b>C</b>) Escape latency decreased across the training days, representing the spatial learning ability of four groups of young and aged mice fed with or without EtOH. 3M control vs. 23M control. <span class="html-italic">* p <</span> 0.05<span class="html-italic">;</span> one-way analysis of variance with Bonferroni’s post hoc test. (<b>D</b>) Spatial reference memory of indicated four mice groups evaluated by time spent in the target quadrant and (<b>E</b>) number of times crossing the target platform. Data are presented as mean ± SEM. 3-month-old mice: Control, <span class="html-italic">n =</span> 4; EtOH, <span class="html-italic">n =</span> 4; 23-month-old mice: Control, <span class="html-italic">n =</span> 4; EtOH, <span class="html-italic">n =</span> 6; one-way analysis of variance with Bonferroni’s post hoc test.</p> "> Figure 10
<p>Aging but not chronic EtOH feeding impairs mouse spatial learning and memory in the Barnes Maze test. Male 3-month-old young mice (3M) and 23-month-old aged mice (23M) were subjected to chronic EtOH feeding for 4 weeks, followed by Barnes Maze testing. (<b>A</b>) Representative heat maps of Days 1 and 5 from each treatment group. (<b>B</b>) The average latency to escape for each test day. (<b>C</b>) Average distance traveled to escape for young and aged mice fed with and without EtOH. (<b>D</b>) Day 1 average latency to escape for 3-month-old and 23-month-old mice fed with or without EtOH. 3M control vs. 23M control (<b>B</b>,<b>C</b>). * <span class="html-italic">p</span> < 0.05; one-way analysis of variance with Dunn’s post hoc test. (<b>E</b>) Day 1 average distance traveled to escape for 3-month-old and 23-month-old mice fed with or without EtOH. (<b>F</b>) Day 5 average latency to escape for 3-month-old and 23-month-old mice fed with or without EtOH. (<b>G</b>) Day 5 average distance traveled to escape for 3-month-old and 23-month-old mice fed with or without EtOH. Data are presented as mean ± SEM. 3-month-old: CD, n = 5; ED, n = 5; 23-month-old: CD, n = 5; ED, n = 4. * <span class="html-italic">p</span> < 0.05; one-way analysis of variance with Dunn’s post hoc test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. Mouse Behavioral Testing
2.3. RNAseq Data Analysis
2.4. Western Blot Analysis
2.5. Histology and Immunohistochemistry (IHC) Staining
2.6. Electron Microscopy Analysis
2.7. Immunofluorescence Staining
2.8. Statistical Analysis
3. Results
3.1. Aging and Chronic Plus Binge EtOH (Gao-Binge) Feeding Impair TFEB-Mediated Autophagy in Mouse Brains
3.2. Transcriptomic Analysis of Hippocampi from Chronic Plus Binge EtOH (Gao-Binge) Fed Young and Aged Mice
3.3. Chronic Alcohol Feeding Increases Cytosolic Retention of TFEB in Young and Aged Mouse Brains but Does Not Significantly Affect the Levels of Phosphorylated Tau and Histology Changes in Mouse Brains
3.4. Aging Increases Synaptic Loss
3.5. Aging Affects Spatial Memory to a Greater Extent than Alcohol
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hardy, J. A hundred years of Alzheimer’s disease research. Neuron 2006, 52, 3–13. [Google Scholar] [CrossRef]
- Van Giau, V.; An, S.S.A.; Hulme, J.P. Mitochondrial therapeutic interventions in Alzheimer’s disease. J. Neurol. Sci. 2018, 395, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, R.H. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2018, 62, 1403–1416. [Google Scholar] [CrossRef]
- Piumatti, G.; Moore, S.C.; Berridge, D.M.; Sarkar, C.; Gallacher, J. The relationship between alcohol use and long-term cognitive decline in middle and late life: A longitudinal analysis using UK Biobank. J. Public Health (Oxf.) 2018, 40, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Stavro, K.; Pelletier, J.; Potvin, S. Widespread and sustained cognitive deficits in alcoholism: A meta-analysis. Addict. Biol. 2013, 18, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Schwarzinger, M.; Pollock, B.G.; Hasan, O.S.M.; Dufouil, C.; Rehm, J.; QalyDays Study, G. Contribution of alcohol use disorders to the burden of dementia in France 2008-13: A nationwide retrospective cohort study. Lancet Public Health 2018, 3, e124–e132. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D.; Stern, Y.; Cosentino, S.; Tatarina-Nulman, O.; Dorrejo, J.N.; Gu, Y. The Association Between Alcohol Use and the Progression of Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 13, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.K.K.; Chiu, K.C.; Chu, L.W. Association between alcohol consumption and cognitive impairment in Southern Chinese older adults. Int. J. Geriatr. Psych. 2010, 25, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.H.; Han, K.; Jeong, S.M.; Park, J.; Yoo, J.E.; Yoo, J.; Lee, J.; Kim, S.; Shin, D.W. Changes in Alcohol Consumption and Risk of Dementia in a Nationwide Cohort in South Korea. JAMA Network Open 2023, 6, e2254771. [Google Scholar] [CrossRef]
- Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature 2008, 451, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.J.; Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290, 1717–1721. [Google Scholar] [CrossRef]
- Czaja, M.J.; Ding, W.X.; Donohue, T.M., Jr.; Friedman, S.L.; Kim, J.S.; Komatsu, M.; Lemasters, J.J.; Lemoine, A.; Lin, J.D.; Ou, J.H.; et al. Functions of autophagy in normal and diseased liver. Autophagy 2013, 9, 1131–1158. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.M.; Czaja, M.J. Autophagy regulates lipid metabolism. Nature 2009, 458, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Ni, H.M.; Ding, Y.; Ding, W.X. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G324–G340. [Google Scholar] [CrossRef] [PubMed]
- Martini-Stoica, H.; Xu, Y.; Ballabio, A.; Zheng, H. The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci. 2016, 39, 221–234. [Google Scholar] [CrossRef]
- Settembre, C.; Fraldi, A.; Medina, D.L.; Ballabio, A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 2013, 14, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31, 1095–1108. [Google Scholar] [CrossRef]
- Settembre, C.; Di Malta, C.; Polito, V.A.; Garcia Arencibia, M.; Vetrini, F.; Erdin, S.; Erdin, S.U.; Huynh, T.; Medina, D.; Colella, P.; et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332, 1429–1433. [Google Scholar] [CrossRef] [PubMed]
- Lapierre, L.R.; De Magalhaes, C.D.; McQuary, P.R.; Chu, C.C.; Visvikis, O.; Chang, J.T.; Gelino, S.; Ong, B.; Davis, A.E.; Irazoqui, J.E.; et al. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in. Nat. Commun. 2013, 4, 2267. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.; Wang, S.; Zhao, K.; Li, Y.; Williams, J.A.; Li, T.; Chavan, H.; Krishnamurthy, P.; He, X.C.; Li, L.; et al. Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice. Gastroenterology 2018, 155, 865–879.e12. [Google Scholar] [CrossRef]
- Wang, S.; Ni, H.M.; Chao, X.; Ma, X.; Kolodecik, T.; De Lisle, R.; Ballabio, A.; Pacher, P.; Ding, W.X. Critical Role of TFEB-Mediated Lysosomal Biogenesis in Alcohol-Induced Pancreatitis in Mice and Humans. Cell Mol. Gastroenterol. Hepatol. 2020, 10, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Babuta, M.; Furi, I.; Bala, S.; Bukong, T.N.; Lowe, P.; Catalano, D.; Calenda, C.; Kodys, K.; Szabo, G. Dysregulated Autophagy and Lysosome Function Are Linked to Exosome Production by Micro-RNA 155 in Alcoholic Liver Disease. Hepatology 2019, 70, 2123–2141. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Rodriguez, Y.; Ma, X.W.; Swerdlow, R.H.; Zhang, J.H.; Ding, W.X. A perspective on autophagy and transcription factor EB in Alcohol-Associated Alzheimer’s disease. Biochem. Pharmacol. 2023, 213, 115576. [Google Scholar] [CrossRef] [PubMed]
- Nixon, R.A. Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 2007, 120, 4081–4091. [Google Scholar] [CrossRef]
- Wang, H.; Wang, R.; Xu, S.; Lakshmana, M.K. Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer’s and Amyotrophic Lateral Sclerosis Brains. Neurosci. J. 2016, 2016, 4732837. [Google Scholar] [CrossRef] [PubMed]
- Tiribuzi, R.; Crispoltoni, L.; Porcellati, S.; Di Lullo, M.; Florenzano, F.; Pirro, M.; Bagaglia, F.; Kawarai, T.; Zampolini, M.; Orlacchio, A.; et al. miR128 up-regulation correlates with impaired amyloid beta(1-42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiol. Aging 2014, 35, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Cusack, C.L.; Nnah, I.C.; Khayati, K.; Saqcena, C.; Huynh, T.B.; Noggle, S.A.; Ballabio, A.; Dobrowolski, R. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency. Cell Rep. 2016, 14, 2166–2179. [Google Scholar] [CrossRef] [PubMed]
- Polito, V.A.; Li, H.; Martini-Stoica, H.; Wang, B.; Yang, L.; Xu, Y.; Swartzlander, D.B.; Palmieri, M.; di Ronza, A.; Lee, V.M.; et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med. 2014, 6, 1142–1160. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, R.; Carrera, I.; Xu, S.; Lakshmana, M.K. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. eNeuro 2016, 3, ENEURO.0042-16.2016. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zheng, L.; Zhang, Q.; Li, X.; Zhang, X.; Li, Z.; Bai, X.; Zhang, Z.; Huo, W.; Zhao, X.; et al. Deacetylation of TFEB promotes fibrillar Abeta degradation by upregulating lysosomal biogenesis in microglia. Protein Cell 2016, 7, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Song, J.X.; Malampati, S.; Zeng, Y.; Durairajan, S.S.K.; Yang, C.B.; Tong, B.C.; Iyaswamy, A.; Shang, W.B.; Sreenivasmurthy, S.G.; Zhu, Z.; et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 2020, 19, e13069. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.G.; Garrud, P.; Rawlins, J.N.; O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 1982, 297, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006, 1, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.A. Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 1979, 93, 74–104. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, A.; Melo, L.; Clemente-Sanchez, A.; Chao, X.; Ahmadi, A.R.; Peiffer, B.; Sun, Z.; Sesaki, H.; Li, T.; et al. Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology 2023, 77, 159–175. [Google Scholar] [CrossRef]
- Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008, 2008, pdb.prot4986. [Google Scholar] [CrossRef]
- Qian, H.; Chao, X.; Williams, J.; Fulte, S.; Li, T.; Yang, L.; Ding, W.X. Autophagy in liver diseases: A review. Mol. Asp. Med. 2021, 82, 100973. [Google Scholar] [CrossRef]
- Androuin, A.; Thierry, M.; Boluda, S.; Baskaran, A.; Langui, D.; Duyckaerts, C.; Potier, M.C.; El Hachimi, K.H.; Delatour, B.; Marty, S.; et al. Alterations of Neuronal Lysosomes in Alzheimer’s Disease and in APPxPS1-KI Mice. J. Alzheimers Dis. 2022, 87, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Ota, M.; Hori, H.; Hattori, K.; Teraishi, T.; Matsuo, J.; Kinoshita, Y.; Ishida, I.; Nagashima, A.; Kunugi, H. The common functional variant rs1360780 is associated with altered cognitive function in aged individuals. Sci. Rep. 2014, 4, 6696. [Google Scholar] [CrossRef]
- Fujii, T.; Hori, H.; Ota, M.; Hattori, K.; Teraishi, T.; Sasayama, D.; Yamamoto, N.; Higuchi, T.; Kunugi, H. Effect of the common functional variant (rs1360780) on the hypothalamic-pituitary-adrenal axis and peripheral blood gene expression. Psychoneuroendocrino 2014, 42, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Mirza, F.J.; Zahid, S. The Role of Synapsins in Neurological Disorders. Neurosci. Bull. 2018, 34, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Scheff, S.W.; Price, D.A.; Ansari, M.A.; Roberts, K.N.; Schmitt, F.A.; Ikonomovic, M.D.; Mufson, E.J. Synaptic Change in the Posterior Cingulate Gyrus in the Progression of Alzheimer’s Disease. J. Alzheimers Dis. 2015, 43, 1073–1090. [Google Scholar] [CrossRef] [PubMed]
- Scheff, S.W.; Price, D.A. Alzheimer’s disease-related synapse loss in the cingulate cortex. J. Alzheimers Dis. 2001, 3, 495–505. [Google Scholar] [CrossRef]
- Bertola, A.; Mathews, S.; Ki, S.H.; Wang, H.; Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 2013, 8, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Ashleigh, T.; Swerdlow, R.H.; Beal, M.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimers Dement. 2023, 19, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Nixon, R.A.; Wegiel, J.; Kumar, A.; Yu, W.H.; Peterhoff, C.; Cataldo, A.; Cuervo, A.M. Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 2005, 64, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.D.; Gonatas, N.K.; Weiss, M. The ultrastructure of the cerebral cortex in Alzheimer’s disease. Trans. Am. Neurol. Assoc. 1964, 89, 12. [Google Scholar]
- Wang, H.J.; Karuppan, M.K.M.; Devadoss, D.; Nair, M.; Chand, H.S.; Lakshmana, M.K. TFEB protein expression is reduced in aged brains and its overexpression mitigates senescence-associated biomarkers and memory deficits in mice. Neurobiol. Aging 2021, 106, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Rubinsztein, D.C.; Mariño, G.; Kroemer, G. Autophagy and Aging. Cell 2011, 146, 682–695. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.; Niu, M.; Wang, S.; Ma, X.; Yang, X.; Sun, H.; Hu, X.; Wang, H.; Zhang, L.; Huang, R.; et al. High-throughput screening of novel TFEB agonists in protecting against acetaminophen-induced liver injury in mice. Acta Pharm. Sin. B 2024, 14, 190–206. [Google Scholar] [CrossRef]
- Giannouli, V. Violence in severe mental illness: Is cognition missing in the associations with ethnicity, cannabis and alcohol? Australas. Psychiatry 2017, 25, 633. [Google Scholar] [CrossRef]
- Franks, K.H.; Bransby, L.; Saling, M.M.; Pase, M.P. Association of Stress with Risk of Dementia and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2021, 82, 1573–1590. [Google Scholar] [CrossRef] [PubMed]
- Tyas, S.L. Alcohol use and the risk of developing Alzheimer’s disease. Alcohol. Res. Health 2001, 25, 299–306. [Google Scholar]
- Weyerer, S.; Schäufele, M.; Wiese, B.; Maier, W.; Tebarth, F.; van den Bussche, H.; Pentzek, M.; Bickel, H.; Luppa, M.; Riedel-Heller, S.G.; et al. Current alcohol consumption and its relationship to incident dementia: Results from a 3-year follow-up study among primary care attenders aged 75 years and older. Age Ageing 2011, 40, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Neafsey, E.J.; Collins, M.A. Moderate alcohol consumption and cognitive risk. Neuropsych Dis. Treat. 2011, 7, 465–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Hinz, K.; Zhang, C.; Rodriguez, Y.; Williams, S.N.; Niu, M.; Ma, X.; Chao, X.; Frazier, A.L.; McCarson, K.E.; et al. Late-Life Alcohol Exposure Does Not Exacerbate Age-Dependent Reductions in Mouse Spatial Memory and Brain TFEB Activity. Biomolecules 2024, 14, 1537. https://doi.org/10.3390/biom14121537
Chen H, Hinz K, Zhang C, Rodriguez Y, Williams SN, Niu M, Ma X, Chao X, Frazier AL, McCarson KE, et al. Late-Life Alcohol Exposure Does Not Exacerbate Age-Dependent Reductions in Mouse Spatial Memory and Brain TFEB Activity. Biomolecules. 2024; 14(12):1537. https://doi.org/10.3390/biom14121537
Chicago/Turabian StyleChen, Hao, Kaitlyn Hinz, Chen Zhang, Yssa Rodriguez, Sha Neisha Williams, Mengwei Niu, Xiaowen Ma, Xiaojuan Chao, Alexandria L. Frazier, Kenneth E. McCarson, and et al. 2024. "Late-Life Alcohol Exposure Does Not Exacerbate Age-Dependent Reductions in Mouse Spatial Memory and Brain TFEB Activity" Biomolecules 14, no. 12: 1537. https://doi.org/10.3390/biom14121537
APA StyleChen, H., Hinz, K., Zhang, C., Rodriguez, Y., Williams, S. N., Niu, M., Ma, X., Chao, X., Frazier, A. L., McCarson, K. E., Wang, X., Peng, Z., Liu, W., Ni, H. -M., Zhang, J., Swerdlow, R. H., & Ding, W. -X. (2024). Late-Life Alcohol Exposure Does Not Exacerbate Age-Dependent Reductions in Mouse Spatial Memory and Brain TFEB Activity. Biomolecules, 14(12), 1537. https://doi.org/10.3390/biom14121537