Classification of Packaged Vegetable Soybeans Based on Freshness by Metabolomics Combined with Convolutional Neural Networks
<p>Temporal changes in O<sub>2</sub> (unfilled symbols) and CO<sub>2</sub> (filled symbols) concentrations inside oriented polypropylene pouches with perforations containing vegetable soybeans stored for 21 d at 10 °C. Symbols: Circles denote pouches with six perforations of 6 mm diameter (normoxia). Squares denote pouches with one perforation of 6 mm diameter (creating a reduced O<sub>2</sub> and elevated CO<sub>2</sub>, modified atmosphere). Values are presented as the means ± SE of observations from five different biological samples. Symbols with the same letter over them, for the same type of gas, denote no significant difference at <span class="html-italic">p</span> < 0.05 using Tukey’s honestly significant difference test.</p> "> Figure 2
<p>Temporal changes in hue angles of vegetable soybeans sealed in oriented polypropylene pouches with perforations stored for 21 d at 10 °C. Symbols: Circles denote pouches with six perforations of 6 mm diameter (normoxia). Squares denote pouches with one perforation of 6 mm diameter (creating a reduced O<sub>2</sub> and elevated CO<sub>2</sub>, modified atmosphere). Values are presented as the means ± SE of observations from five different biological samples. Symbols with the same letter denote no significant differences at <span class="html-italic">p</span> < 0.05 using Tukey’s honestly significant difference test.</p> "> Figure 3
<p>Cluster analysis (Ward’s method) of 62 types of metabolites (dry basis) in vegetable soybeans sealed in oriented polypropylene pouches with perforations and stored for 21 d at 10 °C. Normoxia (pouches with six perforations of 6 mm diameter) and MA (pouches with one perforation of 6 mm diameter, reduced O<sub>2</sub>, and elevated CO<sub>2</sub>). All data obtained from five different biological samples. Color cells with the same letter for the same metabolite denote no significant difference at <span class="html-italic">p</span> < 0.05 using Tukey’s honestly significant difference test.</p> "> Figure 4
<p>Execution conditions and architecture of the convolution neural networks (CNNs). Initial values in Sony Neural Network Console ver. 2.10 [<a href="#B22-metabolites-15-00145" class="html-bibr">22</a>] were as follows: batch size 4, maximum number of epochs 100. Error calculated from categorical cross-entropy was 0.195. MA: modified atmosphere; Affine, Tan, SELU, Softmax, categorical cross-entropy: functions used in CNNs [<a href="#B22-metabolites-15-00145" class="html-bibr">22</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetable Materials
2.2. Packaging Materials
2.3. Measurement of In-Package Gas Composition, External Color, and Metabolite Concentrations
- Retention time within ±0.2 min of the database entry;
- A spectral similarity score of ≥70% compared to the standard mass spectra in the database.
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in In-Package Atmosphere over Time
3.2. Changes in Hue Angle on the Surface of Vegetable Soybeans over Time
3.3. Influence of Atmospheric Exposure During Storage on Metabolite Concentrations (Cluster Analysis)
3.4. Prediction of the Freshness of Vegetable Soybeans by Deep Learning Based on Dynamic Changes in Metabolite Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, J.E.; Brown, K.M.; Burton, W.G. Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol. 1975, 81, 399–408. [Google Scholar] [CrossRef]
- Li, L.; Lichter, A.; Kenigsbuch, D.; Porat, R. Effects of cooling delays at the wholesale market on the quality of fruit and vegetables after retail marketing. J. Food Process. Preserv. 2015, 39, 2533–2547. [Google Scholar] [CrossRef]
- Cia, P.; Benato, E.A.; Sigrist, J.M.M.; Sarantopóulos, C.; Oliveira, L.M.; Padula, M. Modified atmosphere packaging for extending the storage life of ‘Fuyu’ persimmon. Postharvest Biol. Technol. 2006, 42, 228–234. [Google Scholar] [CrossRef]
- Zhuang, H.; Hildebrand, D.F.; Barth, M.M. Senescence of broccoli buds is related to changes in lipid peroxidation. J. Agr. Food Chem. 1995, 43, 2585–2591. [Google Scholar] [CrossRef]
- Cheour, F.; Arul, J.; Makhlouf, J.; Willemot, C. Delay of membrane lipid degradation by calcium treatment during cabbage leaf senescence. Plant Physiol. 1992, 100, 1656–1660. [Google Scholar] [CrossRef] [PubMed]
- Makino, Y.; Amino, G. Digitization of broccoli freshness integrating external color and mass loss. Foods 2020, 9, 1305. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Makino, Y.; Duan, Z.N.; Yoshimura, M.; Sotome, I. Nondestructive detection of decay in vegetable soybeans stored at different temperatures using chlorophyll fluorescence imaging. Environ. Control Biol. 2020, 58, 51–57. [Google Scholar] [CrossRef]
- Hanada, K.; Sawada, Y.; Kuromori, T.; Klausnitzer, R.; Saito, K.; Toyoda, T.; Shinozaki, K.; Li, W.H.; Hirai, M.Y. Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Mol. Biol. Evol. 2011, 28, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhong, W.; Zhou, Y.; Ji, P.; Wan, Y.; Shi, S.; Yang, Z.; Gong, Y.; Mu, F.; Chen, S. Integrative analysis of metabolome and transcriptome reveals the improvements of seed quality in vegetable soybean (Glycine max (L.) Merr.). Phytochemistry 2022, 200, 113216. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Goto, H.; Otomo, K.; Ito, M.; Onuma, H.; Suzuki, A.; Sugawara, M.; Abe, S.; Tomita, M.; Soga, T. Metabolomic profiles and sensory attributes of edamame under various storage duration and temperature conditions. J. Agr. Food Chem. 2010, 58, 8418–8425. [Google Scholar] [CrossRef]
- Pedreschi, R.; Muñoz, P.; Robledo, P.; Becerra, C.; Defilippi, B.G.; van Eekelen, H.; Mumm, R.; Westra, E.; de Vos, R.C. Metabolomics analysis of postharvest ripening heterogeneity of ‘Hass’ avocadoes. Postharvest Biol. Technol. 2014, 92, 172–179. [Google Scholar] [CrossRef]
- Hatoum, D.; Annaratone, C.; Hertog, M.; Geeraerd, A.; Nicolaï, B. Targeted metabolomics study of ‘Braeburn’ apples during long-term storage. Postharvest Biol. Technol. 2014, 96, 33–41. [Google Scholar] [CrossRef]
- Pedreschi, R.; Franck, C.; Lammertyn, J.; Erban, A.; Kopka, J.; Hertog, M.; Verlinden, B.; Nicolaï, B. Metabolic profiling of ‘Conference’ pears under low oxygen stress”. Postharvest Biol. Technol. 2009, 51, 123–130. [Google Scholar] [CrossRef]
- Syukri, D.; Thammawong, M.; Naznin, H.A.; Kuroki, S.; Tsuta, M.; Yoshida, M.; Nakano, K. Identification of a freshness marker metabolite in stored soybean sprouts by comprehensive mass-spectrometric analysis of carbonyl compounds. Food Chem. 2018, 269, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Makino, Y.; Nishizaka, A.; Yoshimura, M.; Sotome, I.; Kawai, K.; Akihiro, T. Influence of low O2 and high CO2 environment on changes in metabolite concentrations in harvested vegetable soybeans. Food Chem. 2020, 317, 126380. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sekiyama, Y.; Nakamura, N.; Suzuki, Y.; Tsuta, M. Estimation of komatsuna freshness using visible and near-infrared spectroscopy based on the interpretation of NMR metabolomics analysis. Food Chem. 2021, 364, 130381. [Google Scholar] [CrossRef] [PubMed]
- Katsumi, N.; Ishikawa, Y.; Kitazawa, H.; Endo, M.; Kijima, N.; Adachi, A. Optimum design for commercial packaging of green soybeans using micro-perforated pouches. J. Jpn. Soc. Food Sci. Technol. 2013, 60, 295–300. [Google Scholar] [CrossRef]
- Makino, Y.; Goto, K.; Oshita, S.; Sato, A.; Tsukada, M. A grading method for mangoes on the basis of peel color measurement using a computer vision system. Agr. Sci. 2016, 7, 327–334. [Google Scholar] [CrossRef]
- Pongsuwan, W.; Fukusaki, E.; Bamba, T.; Yonetani, T.; Yamahara, T.; Kobayashi, A. Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agr. Food Chem. 2007, 55, 231–236. [Google Scholar] [CrossRef]
- Yokota, Y.; Akihiro, T.; Boerzhijin, S.; Yamada, T.; Makino, Y. Effect of the storage atmosphere on metabolomics of harvested tomatoes (Solanum lycopersicum L.). Food Sci. Nutr. 2019, 7, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Kusano, M.; Fukushima, A.; Arita, M.; Jonsson, P.; Moritz, T.; Kobayashi, M.; Hayashi, N.; Tohge, T.; Saito, K. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Syst. Biol. 2007, 1, 53. [Google Scholar] [CrossRef]
- Sony Corporation, Neural Network Console. Available online: https://dl.sony.com/ (accessed on 3 January 2025).
- Thakur, B.R.; Singh, R.K.; Handa, A.K. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef]
- Plaxton, W.C. The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 185–214. [Google Scholar] [CrossRef] [PubMed]
- Hulme, A.C. Carbon Dioxide Injury and the Presence of Succinic Acid in Apples. Nature 1956, 178, 218–219. [Google Scholar] [CrossRef]
- Johnson, D.; Wang, S.; Suzuki, A. A vegetable soybean for Colorado. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 385–387. Available online: https://hort.purdue.edu/newcrop/proceedings1999/v4-385.html (accessed on 27 December 2024).
- Sun, D.W. Innovations in postharvest handling of fresh produce: A review. Postharvest Biol. Technol. 2002, 24, 261–273. [Google Scholar]
- Coomans, D.; Massart, D.L.; Kaufman, L. Optimization by statistical linear discriminant-analysis in analytical-chemistry. Anal. Chim. Acta 1979, 112, 97–122. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Chapter 1, Introduction. In Deep Learning (Adaptive Computation and Machine Learning Series), Illustrated ed.; The MIT Press: Cambridge, MA, USA, 2016; pp. 1–26. [Google Scholar]
- Song, K.; Zhang, X.; Liu, J.; Yao, Q.; Li, Y.; Hou, X.; Liu, S.; Qiu, X.; Yang, Y.; Chen, L.; et al. Integration of metabolomics and transcriptomics to explore dynamic alterations in fruit color and quality in ‘comte de paris’ pineapples during ripening processes. Int. J. Mol. Sci. 2023, 24, 16384. [Google Scholar] [CrossRef] [PubMed]
- Villanyi, V.; Gondor, O.K.; Banfalvi, Z. Metabolite profiling of tubers of an early- and a late-maturing potato line and their grafts. Metabolomics 2022, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Van Treuren, R.; van Eekelen, H.D.L.M.; Wehrens, R.; de Vos, R.C.H. Metabolite variation in the lettuce gene pool: Towards healthier crop varieties and food. Metabolomics 2018, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- White, I.R.; Blake, R.S.; Andrew, J.; Taylor, A.J.; Monks, P.S. Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv. ‘Tommy Atkins’ by real-time measurement of volatile organic compounds. Metabolomics 2016, 12, 57. [Google Scholar] [CrossRef]
(A) Linear Discriminant Analysis | ||||||||
Pr | 0 d | N-7 d | M-7 d | N-14 d | M-14 d | N-21 d | M-21 d | |
Ac | ||||||||
0 d | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
N-7 d | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |
M-7 d | 0 | 0 | 2 | 0 | 0 | 0 | 0 | |
N-14 d | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |
M-14 d | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
N-21 d | 0 | 0 | 0 | 0 | 0 | 2 | 0 | |
M-21 d | 0 | 0 | 0 | 0 | 1 | 0 | 1 | |
(B) Convolutional Neural Networks | ||||||||
Pr | 0 d | N-7 d | M-7 d | N-14 d | M-14 d | N-21 d | M-21 d | |
Ac | ||||||||
0 d | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
N-7 d | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |
M-7 d | 0 | 0 | 2 | 0 | 0 | 0 | 0 | |
N-14 d | 0 | 0 | 0 | 2 | 0 | 0 | 0 | |
M-14 d | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
N-21 d | 0 | 0 | 0 | 0 | 0 | 2 | 0 | |
M-21 d | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Commodity | Variable | Data Analysis Method |
---|---|---|
Vegetable soybeans * | Storage atmosphere and period | CA, DL (CNNs) |
Pineapple [30] | Ripeness stage | CA |
Potato tuber [31] | Earliness of tuberization | PCA, CA |
Vegetable soybeans [15] | Storage atmosphere and period | PCA, CA |
Tomato [20] | Storage atmosphere and period | PCA |
Soybean sprout [14] | Storage temperature | PCA-DA |
Lettuce [32] | Genetic resource | CA |
Mango [33] | Ripeness stage | PCA |
Avocado [11] | Ripeness stage | PCA |
Apple [12] | Storage period | PLS-DA |
Vegetable soybeans [10] | Storage period | PCA, CA |
Pear [13] | Low O2 stress | PLS-DA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makino, Y.; Kurokawa, Y.; Kawai, K.; Akihiro, T. Classification of Packaged Vegetable Soybeans Based on Freshness by Metabolomics Combined with Convolutional Neural Networks. Metabolites 2025, 15, 145. https://doi.org/10.3390/metabo15030145
Makino Y, Kurokawa Y, Kawai K, Akihiro T. Classification of Packaged Vegetable Soybeans Based on Freshness by Metabolomics Combined with Convolutional Neural Networks. Metabolites. 2025; 15(3):145. https://doi.org/10.3390/metabo15030145
Chicago/Turabian StyleMakino, Yoshio, Yuta Kurokawa, Kenji Kawai, and Takashi Akihiro. 2025. "Classification of Packaged Vegetable Soybeans Based on Freshness by Metabolomics Combined with Convolutional Neural Networks" Metabolites 15, no. 3: 145. https://doi.org/10.3390/metabo15030145
APA StyleMakino, Y., Kurokawa, Y., Kawai, K., & Akihiro, T. (2025). Classification of Packaged Vegetable Soybeans Based on Freshness by Metabolomics Combined with Convolutional Neural Networks. Metabolites, 15(3), 145. https://doi.org/10.3390/metabo15030145