Urinary Biomarkers of Strawberry and Blueberry Intake
"> Figure 1
<p>Metabolites with significant dose–response relationships (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001). The feature with a mass = 368.11 is significant between the low and medium portions. The metabolites in the bottom row were acquired in the positive mode. Values are the means ± SEM. <span class="html-italic">X</span>-axis values represent different portions of berry intake; low, medium, and high portions of mixed strawberries and blueberries were 78 g, 278 g, and 428 g (equal parts strawberries and blueberries). <span class="html-italic">Y</span>-axis values represent the peak height normalized by osmolality. Significance was assessed using repeated measures ANOVA.</p> "> Figure 2
<p>The supplementary biomarkers from previous research with time– and dose–response relationships in the positive mode. Values are the means ± SEM. The top panel represents the time-course plots with the <span class="html-italic">X</span>-axis indicating the timepoints after intake of 192 g of strawberries with 150 g of blueberries; <span class="html-italic">Y</span>-axis values represent the peak height. The bottom panel represent the dose–response data with the <span class="html-italic">X</span>-axis values representing different portions of mixed strawberries and blueberries intake, specifically 78 g (low), 278 g (medium), and 428 g (high), consisting of equal parts strawberries and blueberries. <span class="html-italic">Y</span>-axis values represent the peak height normalized by osmolality. Repeated measures ANOVA was conducted to assess significant changes in the intensities of the biomarkers after consuming the 3 different portions of mixed strawberries and blueberries ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>Metabolism of gallic acid in humans.</p> "> Figure 4
<p>Metabolism of the metabolite furaneol in humans.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. US–Ireland Discovery Study: Participant Recruitment and Study Design
2.2. US–Ireland Dose–Response Study
2.3. Sample Profiling by LC-MS
2.4. Data Processing and Statistical Analysis
2.5. Multiple Biomarkers for Prediction of Intake
3. Results
3.1. Identification of Features Associated with Mixed Strawberry and Blueberry Intake
3.2. Identification of Biomarkers of Mixed Strawberry and Blueberry Intake
3.3. Prediction of Intake Using a Biomarker Panel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Praticò, G.; Gao, Q.; Scalbert, A.; Vergères, G.; Kolehmainen, M.; Manach, C.; Brennan, L.; Pedapati, S.H.; Afman, L.A.; Wishart, D.S.; et al. Guidelines for biomarker of food intake reviews (BFIRev): How to conduct an extensive literature search for biomarker of food intake discovery. Genes Nutr. 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Manjarrez, N.; Weinert, C.H.; Ulaszewska, M.M.; Mack, C.I.; Micheau, P.; Pétéra, M.; Durand, S.; Pujos-Guillot, E.; Egert, B.; Mattivi, F.; et al. Discovery and validation of banana intake biomarkers using untargeted metabolomics in human intervention and cross-sectional studies. J. Nutr. 2019, 149, 1701–1713. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huo, W.; Zhang, L.; Lian, J.; Tao, W.; Song, C.; Tang, J.; Shi, S.; Gao, Y. Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor. Biosens. Bioelectron. 2019, 123, 204–210. [Google Scholar] [CrossRef] [PubMed]
- LeVatte, M.; Hassanzadeh Keshteli, A.; Zarei, P.; Wishart, D. Applications of metabolomics to precision nutrition. Lifestyle Genom. 2021, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, H.; Su, Z.; Khoo, C.; Gu, L. Identifying cranberry juice consumers with predictive OPLS-DA models of plasma metabolome and validation of cranberry juice intake biomarkers in a double-blinded, randomized, placebo-controlled, cross-over study. Mol. Nutr. Food Res. 2020, 64, 1901242. [Google Scholar] [CrossRef]
- Landberg, R.; Kamal-Eldin, A.; Andersson, R.; Åman, P. Alkylresorcinol content and homologue composition in durum wheat (Triticum durum) kernels and pasta products. J. Agric. Food Chem. 2006, 54, 3012–3014. [Google Scholar] [CrossRef]
- Gibbons, H.; Michielsen, C.J.; Rundle, M.; Frost, G.; McNulty, B.A.; Nugent, A.P.; Walton, J.; Flynn, A.; Gibney, M.J.; Brennan, L. Demonstration of the utility of biomarkers for dietary intake assessment; proline betaine as an example. Mol. Nutr. Food Res. 2017, 61, 1700037. [Google Scholar] [CrossRef]
- Basu, A.; Rhone, M.; Lyons, T.J. Berries: Emerging impact on cardiovascular health. Nutr. Rev. 2010, 68, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Ulaszewska, M.; Garcia-Aloy, M.; Vázquez-Manjarrez, N.; Soria-Florido, M.T.; Llorach, R.; Mattivi, F.; Manach, C. Food intake biomarkers for berries and grapes. Genes Nutr. 2020, 15, 1–35. [Google Scholar] [CrossRef]
- Azzini, E.; Vitaglione, P.; Intorre, F.; Napolitano, A.; Durazzo, A.; Foddai, M.S.; Fumagalli, A.; Catasta, G.; Rossi, L.; Venneria, E. Bioavailability of strawberry antioxidants in human subjects. Br. J. Nutr. 2010, 104, 1165–1173. [Google Scholar] [CrossRef]
- Banaszewski, K.; Park, E.; Edirisinghe, I.; Cappozzo, J.C.; Burton-Freeman, B.M. A pilot study to investigate bioavailability of strawberry anthocyanins and characterize postprandial plasma polyphenols absorption patterns by Q-TOF LC/MS in humans. J. Berry Res. 2013, 3, 113–126. [Google Scholar] [CrossRef]
- Cerdá, B.; Periago, P.; Espín, J.C.; Tomás-Barberán, F.A. Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. J. Agric. Food Chem. 2005, 53, 5571–5576. [Google Scholar] [CrossRef]
- Truchado, P.; Larrosa, M.; García-Conesa, M.T.; Cerdá, B.; Vidal-Guevara, M.L.; Tomás-Barberán, F.A.; Espín, J.C. Strawberry processing does not affect the production and urinary excretion of urolithins, ellagic acid metabolites, in humans. J. Agric. Food Chem. 2012, 60, 5749–5754. [Google Scholar] [CrossRef] [PubMed]
- Djedjibegovic, J.; Marjanovic, A.; Panieri, E.; Saso, L. Ellagic acid-derived urolithins as modulators of oxidative stress. Oxid. Med. Cell Longev. 2020, 2020, 5194508. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.G.; Olías, R.; Luaces, P.; Sanz, C. Biosynthesis of strawberry aroma compounds through amino acid metabolism. J. Agric. Food Chem. 2002, 50, 4037–4042. [Google Scholar] [CrossRef] [PubMed]
- Haag, F.; Hoffmann, S.; Krautwurst, D. Key food furanones furaneol and sotolone specifically activate distinct odorant receptors. J. Agric. Food Chem. 2021, 69, 10999–11005. [Google Scholar] [CrossRef]
- Schwab, W. Natural 4-hydroxy-2, 5-dimethyl-3 (2 H)-furanone (Furaneol®). Molecules 2013, 18, 6936–6951. [Google Scholar] [CrossRef]
- Kallio, H.P. Historical review on the identification of mesifurane, 2, 5-dimethyl-4-methoxy-3 (2 H)-furanone, and its occurrence in berries and fruits. J. Agric. Food Chem. 2018, 66, 2553–2560. [Google Scholar] [CrossRef]
- Kalt, W.; McDonald, J.E.; Liu, Y.; Fillmore, S.A. Flavonoid metabolites in human urine during blueberry anthocyanin intake. J. Agric. Food Chem. 2017, 65, 1582–1591. [Google Scholar] [CrossRef]
- Zhong, S.; Sandhu, A.; Edirisinghe, I.; Burton-Freeman, B. Characterization of wild blueberry polyphenols bioavailability and kinetic profile in plasma over 24-h period in human subjects. Mol. Nutr. Food Res. 2017, 61, 1700405. [Google Scholar] [CrossRef]
- Ancillotti, C.; Ulaszewska, M.; Mattivi, F.; Del Bubba, M. Untargeted metabolomics analytical strategy based on liquid chromatography/electrospray ionization linear ion trap quadrupole/orbitrap mass spectrometry for discovering new polyphenol metabolites in human biofluids after acute ingestion of vaccinium myrtillus berry supplement. J. Am. Soc. Mass Spectrom. 2018, 30, 381–402. [Google Scholar] [PubMed]
- Feliciano, R.P.; Istas, G.; Heiss, C.; Rodriguez-Mateos, A. Plasma and urinary phenolic profiles after acute and repetitive intake of wild blueberry. Molecules 2016, 21, 1120. [Google Scholar] [CrossRef] [PubMed]
- McGhie, T.K.; Ainge, G.D.; Barnett, L.E.; Cooney, J.M.; Jensen, D.J. Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J. Agric. Food Chem. 2003, 51, 4539–4548. [Google Scholar] [CrossRef] [PubMed]
- Mueller, D.; Jung, K.; Winter, M.; Rogoll, D.; Melcher, R.; Richling, E. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chem. 2017, 231, 275–286. [Google Scholar] [CrossRef]
- Langer, S.; Kennel, A.; Lodge, J.K. The influence of juicing on the appearance of blueberry metabolites 2 h after consumption: A metabolite profiling approach. Br. J. Nutr. 2018, 119, 1233–1244. [Google Scholar] [CrossRef]
- McNamara, A.E.; Collins, C.; Harsha, P.S.S.; González-Peña, D.; Gibbons, H.; McNulty, B.A.; Nugent, A.P.; Walton, J.; Flynn, A.; Brennan, L. Metabolomic-based approach to identify biomarkers of apple intake. Mol. Nutr. Food Res. 2020, 64, 1901158. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L. Proposed minimum reporting standards for chemical analysis: Chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- D’Angelo, S.; Brennan, L.; Gormley, I.C. Inferring food intake from multiple biomarkers using a latent variable model. Ann. Appl. Stat. 2021, 15, 2043–2060. [Google Scholar] [CrossRef]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.-F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef]
- Degu, A.; Hochberg, U.; Sikron, N.; Venturini, L.; Buson, G.; Ghan, R.; Plaschkes, I.; Batushansky, A.; Chalifa-Caspi, V.; Mattivi, F. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biol. 2014, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, M.; Liu, Y.; Zhu, M.; Zhao, G.; Zhou, Y.; Zhang, L.; Wu, Y.; Dai, X.; Xia, T. Functional analysis of 3-dehydroquinate dehydratase/shikimate dehydrogenases involved in shikimate pathway in Camellia sinensis. Front. Plant Sci. 2019, 10, 1268. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Zengin, G.; Ak, G.; Sinan, K.I.; Mahomoodally, M.F.; Gevrenova, R.; Balabanova, V.; Stefanova, A.; Nedialkov, P.; Voynikov, Y. Innovative biochemometric approach to the metabolite and biological profiling of the Balkan thistle (Cirsium appendiculatum Griseb.), Asteraceae. Plants 2021, 10, 2046. [Google Scholar] [CrossRef] [PubMed]
- McNamara, A.E.; Walton, J.; Flynn, A.; Nugent, A.P.; McNulty, B.A.; Brennan, L. The potential of multi-biomarker panels in nutrition research: Total fruit intake as an example. Front. Nutr. 2021, 7, 577720. [Google Scholar] [CrossRef] [PubMed]
- Valanciene, E.; Jonuskiene, I.; Syrpas, M.; Augustiniene, E.; Matulis, P.; Simonavicius, A.; Malys, N. Advances and prospects of phenolic acids production, biorefinery and analysis. Biomolecules 2020, 10, 874. [Google Scholar] [CrossRef]
- Warner, R.; Wu, B.S.; MacPherson, S.; Lefsrud, M. A review of strawberry photobiology and fruit flavonoids in controlled environments. Front. Plant Sci. 2021, 12, 611893. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef]
- Hidalgo, M.; Oruna-Concha, M.J.; Kolida, S.; Walton, G.E.; Kallithraka, S.; Spencer, J.P.; de Pascual-Teresa, S. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agric. Food Chem. 2012, 60, 3882–3890. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; García-Villalba, R.; González-Sarrías, A.; Selma, M.V.; Espín, J.C. Ellagic acid metabolism by human gut microbiota: Consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J. Agric. Food Chem. 2014, 62, 6535–6538. [Google Scholar] [CrossRef]
- Raab, T.; López-Ráez, J.A.; Klein, D.; Caballero, J.L.; Moyano, E.; Schwab, W.; Muñoz-Blanco, J. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2, 5-dimethyl-3 (2H)-furanone, encodes an enone oxidoreductase. Plant Cell 2006, 18, 1023–1037. [Google Scholar] [CrossRef]
- Cuparencu, C.S.; Andersen, M.-B.S.; Gürdeniz, G.; Schou, S.S.; Mortensen, M.W.; Raben, A.; Astrup, A.; Dragsted, L.O. Identification of urinary biomarkers after consumption of sea buckthorn and strawberry, by untargeted LC–MS metabolomics: A meal study in adult men. Metabolomics 2016, 12, 1–20. [Google Scholar] [CrossRef]
- Andersen, M.B.S.; Rinnan, Å.; Manach, C.; Poulsen, S.K.; Pujos-Guillot, E.; Larsen, T.M.; Astrup, A.; Dragsted, L.O. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J. Proteome Res. 2014, 13, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Feng, J.; Huang, W.Y.; An, X.T. Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. J. Agric. Food Chem. 2013, 61, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Lawand, C.; Ryan, D.A.; McDonald, J.E.; Donner, H.; Forney, C.F. Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. J. Am. Soc. Hortic. Sci. 2003, 128, 917–923. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, J.Y.; Li, J.; Zhang, H.; Li, Y.; Farooq, S.; Bacha, S.A.S.; Wang, J. Evaluation of sugar and organic acid composition and their levels in highbush blueberries from two regions of China. J. Integr. Agric. 2020, 19, 2352–2361. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Sun, J.; Jackson, A. Dynamic changes of enzymes involved in sugar and organic acid level modification during blueberry fruit maturation. Food Chem. 2020, 309, 125617. [Google Scholar] [CrossRef]
- Curtis, P.J.; Berends, L.; van der Velpen, V.; Jennings, A.; Haag, L.; Chandra, P.; Kay, C.D.; Rimm, E.B.; Cassidy, A. Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: Results from a double blind, randomized controlled trial in metabolic syndrome participants. Clin. Nutr. 2022, 41, 165–176. [Google Scholar] [CrossRef]
M | RT | Mass | M/Z | Ion | MS/MS | Suggested Metabolite | Formula | Pathway |
---|---|---|---|---|---|---|---|---|
M01 | 1.211 | 263.9936 | 262.9866 | [M − H]− | 79.9564, 96.9603, 167.0204, 183.0290 | Methylgallic acid-O-sulfate II | C8H8O8S | Group 1 |
M02 | 1.464 | 237.978 | 236.9705 | [M − H]− | 41.0031, 55.0194, 157.0132 | Zymonic acid sulfate II | C6H6O8S | - |
M03 | 13.043 | 456.1618 | 455.1543 | [M − H]− | 113.0245, 175.0231, 217.1220, 279.1213 | Hydroxy-abscisic acid glucuronide II | C21H28O11 | - |
M04 | 5.748 | 278.0089 | 277.0015 | [M − H]− | 182.0209, 197.0447 | Syringic acid sulfate I | C9H10O8S | Group 1 |
M05 | 0.961 | 302.0855 | 301.0781 | [M − H]− | 124.0146, 167.0200 | Folerogenin II | C16H14O6 | - |
M06 | 10.867 | 222.0197 | 221.0117 | [M − H]− | 79.9569, 126.0315, 141.0552 | Mesifurane sulfate II | C7H10O6S | Group 2 |
M07 | 12.657 | 368.0194 | 367.0118 | [M − H]− | 93.0341, 165.0189, 191.0549, 287.0542 | Dihydrokaempferol-7-O-sulfate II | C15H12O9S | Group 3 |
M08 | 4.381 | 264.0295 | 263.0219 | [M − H]− | 168.0429, 183.0656 | 3-Methoxy-4-hydroxyphenylglycol sulfate II | C9H12O7S | - |
M09 | 7.815 | 370.035 | 369.0274 | [M − H]− | 96.9596, 153.0186, 289.0700 | Leucopelargonidin sulfate II | C15H14O9S | Group 3 |
M10 | 12.717 | 368.11 | 367.1025 | [M − H]− | 93.0342, 134.0366, 173.0443, 287.0542 | Feruloylquinic acid II | C17H20O9 | Group 4 |
M11 | 6.449 | 251.9936 | 250.9859 | [M − H]− | 79.9568, 171.0292 | 3-Dehydroshikimate sulfate II | C7H8O8S | Group 4 |
M12 | 8.101 | 374.0839 | 373.0764 | [M − H]− | 113.0245, 197.0447 | Unknown glucuronide III | C15H18O11 | - |
M13 | 10.878 | 190.0837 | 189.0764 | [M − H]− | 107.0495, 129.0552, 149.0601 | 3-Hydroxysuberic acid II | C8H14O5 | - |
M14 | 8.646 | 158.0576 | 157.0498 | [M − H]− | 97.0663, 115.0758 | Isopropylmaleic acid II | C7H10O4 | - |
M15 | 0.699 | 176.0034 | 174.9554 | [M − H]− | 44.9981, 86.9764, 130.9660 | Unknown IV | - | - |
M16 | 12.342 | 446.0842 | 447.0917 | [M + H]+ | 271.0607 | Pelargonidin glucuronide I | C21H19O11 | Group 3 |
M17 | 3.337 | 208.0039 | 209.0114 | [M + H]+ | 43.0173, 57.0327, 129.0549 | Furaneol sulfate I | C6H8O6S | Group 2 |
M18 | 6.18 | 508.1684 | 509.1758 | [M + H]+ | 129.0547, 146.0595, 188.0705, 205.0969, 305.0875 | L-tryptophan furaneol glucuronide III | C23H28N2O11 | Group 2 |
M19 | 13.452 | 228.0421 | 229.049 | [M + H]+ | 128.0618, 157.0647, 185.0595 | Urolithin A I | C13H8O4 | Group 1 |
M20 | 6.349 | 304.0788 | 305.0862 | [M + H]+ | 43.016, 57.0335, 95.0131, 129.0547 | Furaneol glucuronide I | C12H16O9 | Group 2 |
M21 | 13.484 | 404.0733 | 405.0808 | [M + H]+ | 229.0512 | Urolithin A-3-O-glucuronide I | C19H16O10 | Group 1 |
Observation | Intake (g) | Predicted Intake (g) | Standard Deviation | 2.5% Percentile | 97.5% Percentile |
---|---|---|---|---|---|
1 | 78 | 79.1 | 8.9 | 64.0 | 99.9 |
2 | 78 | 77.6 | 8.6 | 59.2 | 94.2 |
3 | 78 | 77.0 | 8.6 | 57.2 | 92.1 |
4 | 78 | 77.7 | 8.3 | 60.7 | 94.2 |
5 | 78 | 78.2 | 8.5 | 61.5 | 95.7 |
6 | 78 | 77.2 | 8.7 | 58.2 | 92.4 |
7 | 78 | 78.7 | 8.7 | 62.9 | 98.0 |
8 | 78 | 77.5 | 8.5 | 59.0 | 93.1 |
9 | 78 | 77.5 | 8.7 | 59.3 | 93.9 |
10 | 78 | 77.6 | 8.7 | 59.0 | 94.3 |
11 | 278 | 78.5 | 8.7 | 61.9 | 97.1 |
12 | 278 | 277.5 | 5.6 | 265.4 | 288.0 |
13 | 278 | 278.3 | 5.6 | 267.1 | 289.6 |
14 | 278 | 276.6 | 6.3 | 262.3 | 286.6 |
15 | 278 | 277.1 | 5.7 | 264.5 | 287.2 |
16 | 278 | 276.6 | 6.3 | 262.2 | 286.6 |
17 | 278 | 278.4 | 5.8 | 267.1 | 290.4 |
18 | 278 | 278.2 | 5.7 | 266.9 | 289.6 |
19 | 278 | 278.7 | 5.7 | 268.0 | 291.0 |
20 | 278 | 77.8 | 8.6 | 59.7 | 94.1 |
21 | 428 | 277.5 | 5.6 | 265.4 | 288.3 |
22 | 428 | 80.1 | 11.6 | 66.5 | 111.1 |
23 | 428 | 278.7 | 5.8 | 268.2 | 291.1 |
24 | 428 | 427.2 | 6.0 | 414.6 | 437.7 |
25 | 428 | 427.3 | 5.6 | 415.4 | 437.6 |
26 | 428 | 429.3 | 6.3 | 419.0 | 443.6 |
27 | 428 | 430.0 | 9.02 | 420.0 | 447.3 |
28 | 428 | 278.1 | 5.64 | 267.3 | 289.6 |
29 | 428 | 426.7 | 6.15 | 413.2 | 436.8 |
30 | 428 | 430.8 | 27.1 | 421.0 | 507.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Finlay, R.; Yin, X.; Brennan, L. Urinary Biomarkers of Strawberry and Blueberry Intake. Metabolites 2024, 14, 505. https://doi.org/10.3390/metabo14090505
Gao Y, Finlay R, Yin X, Brennan L. Urinary Biomarkers of Strawberry and Blueberry Intake. Metabolites. 2024; 14(9):505. https://doi.org/10.3390/metabo14090505
Chicago/Turabian StyleGao, Ya, Rebecca Finlay, Xiaofei Yin, and Lorraine Brennan. 2024. "Urinary Biomarkers of Strawberry and Blueberry Intake" Metabolites 14, no. 9: 505. https://doi.org/10.3390/metabo14090505
APA StyleGao, Y., Finlay, R., Yin, X., & Brennan, L. (2024). Urinary Biomarkers of Strawberry and Blueberry Intake. Metabolites, 14(9), 505. https://doi.org/10.3390/metabo14090505