Maternal Obesity and Differences in Child Urine Metabolome
<p>Mean differences in acetylated peptides measured in offspring urine during childhood. Orange boxplots show the distribution of acetylated peptides in urine among offspring exposed to maternal obesity in utero. Gray boxplots show the distribution of acetylated peptides in urine among offspring unexposed to maternal obesity. Pre-pregnancy maternal BMI is categorized by normal weight (BMI 18.5–24.9 kg/m<sup>2</sup>) and obesity (BMI ≥ 30.0 kg/m<sup>2</sup>).</p> "> Figure 2
<p><b>Preservation of metabolite network modules in offspring urine.</b> Module preservation is used to assess the biological relevance of correlated metabolites in modules. Poor preservation can occur when the interrelatedness of metabolites differs between “reference/control” and “case/disease” samples. In our study, the reference group was based on BMI status—either exposure to maternal normal BMI range (<b>A</b>), or offspring normal BMI range in childhood (<b>B</b>). Modules with good preservation indicate that the interrelatedness of metabolites is similar in reference and case samples. Poor module preservation indicates that the interrelatedness of metabolites is not preserved in the case samples. Preservation is assessed qualitatively by superimposing the network derived in the reference group onto the cases, as well as quantitatively using a series of different preservation metrics that are summarized in a z-summary score. Metabolites assigned to the Gray module are considered unassigned. (<b>A</b>) The panel on the left shows the reference network and the two modules identified (Blue and Turquoise). The right panel shows the network after it is superimposed onto the urine metabolomics data from offspring exposed to obesity. Overall, the Turquoise cluster was well preserved, while the Blue cluster was poorly preserved. (<b>B</b>) This row of figures shows the metabolomic network derived using data from urine metabolomics in offspring who had a BMI in the normal range at the time of urine sampling (on the left panel). The right panel shows the network after it is superimposed onto the urine metabolomics data from offspring who had a BMI in the overweight/obese range at the time of urine sampling. Overall, the Turquoise cluster was well preserved, while the Blue cluster was poorly preserved.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Participants and Settings
2.2. Metabolomics
2.3. Statistical Analysis
3. Results
3.1. Primary Analysis
3.2. Sensitivity Analyses Based on Children’s BMI Exposure
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Driscoll, A.K.; Gregory, E.C.W. Increases in Prepregnancy Obesity: United States, 2016–2019; NCHS Data Brief, no 392; National Center for Health Statistics: Hyattsville, MD, USA, 2020; pp. 1–8.
- Athukorala, C.; Rumbold, A.R.; Willson, K.J.; A Crowther, C. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 2010, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Gibbins, K.J.; Abel, D.E.; Carletti, A.A.; Morrison, T.; Sullivan, E.L.; Marshall, N.E. Weight Bias in Obstetrics. Curr. Obstet. Gynecol. Rep. 2023, 12, 1–9. [Google Scholar] [CrossRef]
- Corrales, P.; Vidal-Puig, A.; Medina-Gómez, G. Obesity and pregnancy, the perfect metabolic storm. Eur. J. Clin. Nutr. 2021, 75, 1723–1734. [Google Scholar] [CrossRef]
- Santacroce, A.; Bernardo, G.; Negro, S.; Bracciali, C.; Alagna, M.G.; Tei, M.; Bazzini, F.; Belvisi, E.; Buonocore, G.; Perrone, S.; et al. Diabetes or Obesity in Pregnancy and Oxidative Stress in the Offspring. J. Pediatr. Biochem. 2016, 6, 92–95. [Google Scholar] [CrossRef]
- Aubry, E.M.; Oelhafen, S.; Fankhauser, N.; Raio, L.; Cignacco, E.L. Adverse perinatal outcomes for obese women are influenced by the presence of comorbid diabetes and hypertensive disorders. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Perng, W.; Oken, E.; Dabelea, D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia 2019, 62, 1779–1788. [Google Scholar] [CrossRef]
- Francis, E.C.; Dabelea, D.; E Boyle, K.; Jansson, T.; Perng, W. Maternal Diet Quality Is Associated with Placental Proteins in the Placental Insulin/Growth Factor, Environmental Stress, Inflammation, and mTOR Signaling Pathways: The Healthy Start ECHO Cohort. J. Nutr. 2021, 152, 816–825. [Google Scholar] [CrossRef]
- Keleher, M.R.; Erickson, K.; Smith, H.A.; Kechris, K.J.; Yang, I.V.; Dabelea, D.; Friedman, J.E.; Boyle, K.E.; Jansson, T. Placental Insulin/IGF-1 Signaling, PGC-1α, and Inflammatory Pathways Are Associated With Metabolic Outcomes at 4–6 Years of Age: The ECHO Healthy Start Cohort. Diabetes 2021, 70, 745–751. [Google Scholar] [CrossRef]
- Kelly, A.C.; Powell, T.L.; Jansson, T. Placental function in maternal obesity. Clin. Sci. 2020, 134, 961–984. [Google Scholar] [CrossRef]
- Rosario, F.J.; Powell, T.L.; Jansson, T. Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity associated with fetal overgrowth. Am. J. Physiol. Integr. Comp. Physiol. 2016, 310, R87–R93. [Google Scholar] [CrossRef]
- Howe, C.G.; Cox, B.; Fore, R.; Jungius, J.; Kvist, T.; Lent, S.; Miles, H.E.; Salas, L.A.; Rifas-Shiman, S.; Starling, A.P.; et al. Maternal Gestational Diabetes Mellitus and Newborn DNA Methylation: Findings From the Pregnancy and Childhood Epigenetics Consortium. Diabetes Care 2019, 43, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.C.; A Salas, L.; Monnereau, C.; Allard, C.; Yousefi, P.; Everson, T.M.; Bohlin, J.; Xu, Z.; Huang, R.-C.; E Reese, S.; et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum. Mol. Genet. 2017, 26, 4067–4085. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.C.; A Lawlor, D.; Richmond, R.C.; Fraser, A.; Simpkin, A.; Suderman, M.; A Shihab, H.; Lyttleton, O.; McArdle, W.; Ring, S.M.; et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: Findings from the Avon Longitudinal Study of Parents and Children. Leuk. Res. 2015, 44, 1288–1304. [Google Scholar] [CrossRef] [PubMed]
- Lowe, W.L., Jr.; Bain, J.R.; Nodzenski, M.; Reisetter, A.C.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Maternal BMI and Glycemia Impact the Fetal Metabolome. Diabetes Care 2017, 40, 902–910. [Google Scholar] [CrossRef]
- Perng, W.; Gillman, M.W.; Fleisch, A.F.; Michalek, R.D.; Watkins, S.M.; Isganaitis, E.; Patti, M.-E.; Oken, E. Metabolomic profiles and childhood obesity. Obesity 2014, 22, 2570–2578. [Google Scholar] [CrossRef]
- Francis, E.C.; Kechris, K.; Cohen, C.C.; Michelotti, G.; Dabelea, D.; Perng, W. Metabolomic Profiles in Childhood and Adolescence Are Associated with Fetal Overnutrition. Metabolites 2022, 12, 265. [Google Scholar] [CrossRef]
- Handakas, E.; Lau, C.H.; Alfano, R.; Chatzi, V.L.; Plusquin, M.; Vineis, P.; Robinson, O. A systematic review of metabolomic studies of childhood obesity: State of the evidence for metabolic determinants and consequences. Obes. Rev. 2021, 23, e13384. [Google Scholar] [CrossRef]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The Human Urine Metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef]
- Perrone, S.; Laschi, E.; De Bernardo, G.; Giordano, M.; Vanacore, F.; Tassini, M.; Calderisi, M.; Toni, A.L.; Buonocore, G.; Longini, M. Newborn metabolomic profile mirrors that of mother in pregnancy. Med. Hypotheses 2020, 137, 109543. [Google Scholar] [CrossRef]
- Rauschert, S.; Uhl, O.; Koletzko, B.; Hellmuth, C. Metabolomic Biomarkers for Obesity in Humans: A Short Review. Ann. Nutr. Metab. 2014, 64, 314–324. [Google Scholar] [CrossRef]
- Curtis, P.J.; van der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; O Fernandez, B.; Meiss, M.S.; Minnion, M.; et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome—Results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Sim, X.; Teh, Y.; Ismail, M.N.; Greimel, P.; Murugaiyah, V.; Ibrahim, B.; Gam, L. The effects of high-fat diet and metformin on urinary metabolites in diabetes and prediabetes rat models. Biotechnol. Appl. Biochem. 2020, 68, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, G. Recent advances in using mass spectrometry for mitochondrial metabolomics and lipidomics—A review. Anal. Chim. Acta 2018, 1037, 3–12. [Google Scholar] [CrossRef]
- Villarreal-Pérez, J.Z.; Villarreal-Martínez, J.Z.; Lavalle-González, F.J.; Torres-Sepúlveda, M.d.R.; Ruiz-Herrera, C.; Cerda-Flores, R.M.; Castillo-García, E.R.; Rodríguez-Sánchez, I.P.; de Villarreal, L.E.M. Plasma and urine metabolic profiles are reflective of altered beta-oxidation in non-diabetic obese subjects and patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Lau, C.-H.E.; Siskos, A.P.; Maitre, L.; Robinson, O.; Athersuch, T.J.; Want, E.J.; Urquiza, J.; Casas, M.; Vafeiadi, M.; Roumeliotaki, T.; et al. Determinants of the urinary and serum metabolome in children from six European populations. BMC Med. 2018, 16, 1–19. [Google Scholar] [CrossRef]
- Troisi, J.; Pierri, L.; Landolfi, A.; Marciano, F.; Bisogno, A.; Belmonte, F.; Palladino, C.; Nuzio, S.G.; Campiglia, P.; Vajro, P. Urinary Metabolomics in Pediatric Obesity and NAFLD Identifies Metabolic Pathways/Metabolites Related to Dietary Habits and Gut-Liver Axis Perturbations. Nutrients 2017, 9, 485. [Google Scholar] [CrossRef]
- Brachem, C.; Langenau, J.; Weinhold, L.; Schmid, M.; Nöthlings, U.; Oluwagbemigun, K. Associations of BMI and Body Fat with Urine Metabolome in Adolescents Are Sex-Specific: A Cross-Sectional Study. Metabolites 2020, 10, 330. [Google Scholar] [CrossRef]
- Concepcion, J.; Chen, K.; Saito, R.; Gangoiti, J.; Mendez, E.; Nikita, M.E.; Barshop, B.A.; Natarajan, L.; Sharma, K.; Kim, J.J. Identification of pathognomonic purine synthesis biomarkers by metabolomic profiling of adolescents with obesity and type 2 diabetes. PLoS ONE 2020, 15, e0234970. [Google Scholar] [CrossRef]
- Cho, K.; Moon, J.S.; Kang, J.; Jang, H.B.; Lee, H.; Park, S.I.; Yu, K.; Cho, J. Combined untargeted and targeted metabolomic profiling reveals urinary biomarkers for discriminating obese from normal-weight adolescents. Pediatr. Obes. 2016, 12, 93–101. [Google Scholar] [CrossRef]
- Grewal, J.; Grantz, K.L.; Zhang, C.; Sciscione, A.; A Wing, D.; A Grobman, W.; Newman, R.B.; Wapner, R.; E D’alton, M.; Skupski, D.; et al. Cohort Profile: NICHD Fetal Growth Studies–Singletons and Twins. Leuk. Res. 2017, 47, 25–25l. [Google Scholar] [CrossRef]
- Hunt, K.J.; Ferguson, P.L.; Neelon, B.; Commodore, S.; Bloom, M.S.; Sciscione, A.C.; Grobman, W.A.; Kominiarek, M.A.; Newman, R.B.; Tita, A.T.; et al. The association between maternal pre-pregnancy BMI, gestational weight gain and child adiposity: A racial-ethnically diverse cohort of children. Pediatr. Obes. 2022, 17, e12911. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.; Kennedy, A.D.; Goodman, K.D.; Pappan, K.L.; Evans, A.M.; Miller, L.A.D.; E Wulff, J.; Wiggs, B.R.; Lennon, J.J.; Elsea, S.; et al. Precision of a Clinical Metabolomics Profiling Platform for Use in the Identification of Inborn Errors of Metabolism. J. Appl. Lab. Med. 2020, 5, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Luo, R.; Oldham, M.C.; Horvath, S. Is My Network Module Preserved and Reproducible? PLOS Comput. Biol. 2011, 7, e1001057. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chen, C.; Gao, J. Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients 2022, 15, 151. [Google Scholar] [CrossRef]
- Hu, J.; Wang, C.; Huang, X.; Yi, S.; Pan, S.; Zhang, Y.; Yuan, G.; Cao, Q.; Ye, X.; Li, H. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep. 2021, 36, 109726. [Google Scholar] [CrossRef]
- Asano, Y.; Nakazawa, A.; Endo, K.; Hibino, Y.; Ohmori, M.; Numao, N.; Kondo, K. Phenylalanine dehydrogenase of Bacillus badius. Purification, characterization and gene cloning. Eur. J. Biochem. 1987, 168, 153–159. [Google Scholar] [CrossRef]
- Krishnamoorthy, N.K.; Kalyan, M.; Hediyal, T.A.; Anand, N.; Kendaganna, P.H.; Pendyala, G.; Yelamanchili, S.V.; Yang, J.; Chidambaram, S.B.; Sakharkar, M.K.; et al. Role of the Gut Bacteria-Derived Metabolite Phenylacetylglutamine in Health and Diseases. ACS Omega 2024, 9, 3164–3172. [Google Scholar] [CrossRef]
- Zhu, Y.; Dwidar, M.; Nemet, I.; Buffa, J.A.; Sangwan, N.; Li, X.S.; Anderson, J.T.; Romano, K.A.; Fu, X.; Funabashi, M.; et al. Two distinct gut microbial pathways contribute to meta-organismal production of phenylacetylglutamine with links to cardiovascular disease. Cell Host Microbe 2022, 31, 18–32.e9. [Google Scholar] [CrossRef]
- 3El Kihel, L. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)—Recent reports. Steroids 2012, 77, 10–26. [Google Scholar] [CrossRef]
- Hewagalamulage, S.; Lee, T.; Clarke, I.; Henry, B. Stress, cortisol, and obesity: A role for cortisol responsiveness in identifying individuals prone to obesity. Domest. Anim. Endocrinol. 2016, 56, S112–S120. [Google Scholar] [CrossRef]
- Krumbeck, J.A.; Rasmussen, H.E.; Hutkins, R.W.; Clarke, J.; Shawron, K.; Keshavarzian, A.; Walter, J. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 2018, 6, 121. [Google Scholar] [CrossRef]
Pre-Pregnancy Weight Status | p-Value | |||
---|---|---|---|---|
Overall | Normal Weight | Obesity | ||
n = 68 | n = 34 | n = 34 | ||
Age of Mother | 0.26 | |||
Mean (SD) | 28.0 (6.3) | 27.1 (6.5) | 28.9 (6.1) | |
Maternal Education Status | 0.83 | |||
≤High School | 20 (29.4%) | 9 (26.5%) | 11 (32.4%) | |
Some College/Associate Degree | 24 (35.3%) | 12 (35.3%) | 12 (35.3%) | |
≥4-Year College Degree | 24 (35.3%) | 13 (38.2%) | 11 (32.4%) | |
Maternal Race | 0.70 | |||
Non-Hispanic White | 18 (26.5%) | 9 (26.5%) | 9 (26.5%) | |
Non-Hispanic Black | 27 (39.7%) | 15 (44.1%) | 12 (35.3%) | |
Hispanic | 23 (33.8%) | 10 (29.4%) | 13 (38.2%) | |
Asian/Pacific Islander | 0 (0%) | 0 (0%) | 0 (0%) | |
Parity | 0.96 | |||
0 | 27 (39.7%) | 13 (38.2%) | 14 (41.2%) | |
1 | 29 (42.6%) | 15 (44.1%) | 14 (41.2%) | |
2 | 12 (17.6%) | 6 (17.6%) | 6 (17.6%) | |
Sex of Child | 1.00 | |||
Male | 38 (55.9%) | 19 (55.9%) | 19 (55.9%) | |
Female | 30 (44.1%) | 15 (44.1%) | 15 (44.1%) | |
Age of Child | 0.17 | |||
Mean (SD) | 6.6 (0.8) | 6.7 (0.8) | 6.5 (0.8) | |
Child BMI Percentile | 0.002 | |||
Mean (SD) | 68.3 (29.4) | 57.5 (29.3) | 79.1 (25.5) | |
Child Weight Status | 0.01 | |||
Normal Weight | 42 (61.8%) | 26 (76.5%) | 16 (47.1%) | |
Obesity | 26 (38.2%) | 8 (23.5%) | 18 (52.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francis, E.C.; Hunt, K.J.; Grobman, W.A.; Skupski, D.W.; Mani, A.; Hinkle, S.N. Maternal Obesity and Differences in Child Urine Metabolome. Metabolites 2024, 14, 574. https://doi.org/10.3390/metabo14110574
Francis EC, Hunt KJ, Grobman WA, Skupski DW, Mani A, Hinkle SN. Maternal Obesity and Differences in Child Urine Metabolome. Metabolites. 2024; 14(11):574. https://doi.org/10.3390/metabo14110574
Chicago/Turabian StyleFrancis, Ellen C., Kelly J. Hunt, William A. Grobman, Daniel W. Skupski, Ashika Mani, and Stefanie N. Hinkle. 2024. "Maternal Obesity and Differences in Child Urine Metabolome" Metabolites 14, no. 11: 574. https://doi.org/10.3390/metabo14110574
APA StyleFrancis, E. C., Hunt, K. J., Grobman, W. A., Skupski, D. W., Mani, A., & Hinkle, S. N. (2024). Maternal Obesity and Differences in Child Urine Metabolome. Metabolites, 14(11), 574. https://doi.org/10.3390/metabo14110574