HaptiScan: A Haptically-Enabled Robotic Ultrasound System for Remote Medical Diagnostics
<p>The graphical abstract representation of the proposed methodology in this research.</p> "> Figure 2
<p>(<b>a</b>) Haptically-Enabled Robotic Ultrasound Platform; (<b>b</b>) CAD model of the HaptiScan platform.</p> "> Figure 3
<p>The kinematics representation of Phantom Omni.</p> "> Figure 4
<p>Vectorial representation of Phantom Omni: (<b>a</b>) top view; (<b>b</b>) side view.</p> "> Figure 5
<p>UR5 robot model with the DH coordinate frames assignments.</p> "> Figure 6
<p>(<b>a</b>) Signostics Signos RT handheld ultrasound device [<a href="#B45-robotics-13-00164" class="html-bibr">45</a>], (<b>b</b>) ultrasound probe support mechanism with ATI Nano 17 sensor.</p> "> Figure 7
<p>UR5 robot model with the DH coordinate frames assignments.</p> "> Figure 8
<p>Teleoperation system scheme.</p> "> Figure 9
<p>The SimMechanics model of Phantom Omni.</p> "> Figure 10
<p>Time delay.</p> "> Figure 11
<p>Cartesian position and orientation of the slave manipulator.</p> "> Figure 12
<p>(<b>a</b>) Cartesian velocity of both manipulators; (<b>b</b>) Cartesian velocity error of the manipulators.</p> "> Figure 13
<p>(<b>a</b>) Joints’ angle and velocity of the master manipulator; (<b>b</b>) Joints’ angle and velocity of the slave manipulator.</p> "> Figure 14
<p>Force error observed during the teleoperation under varying time delays.</p> ">
Abstract
:1. Introduction
2. Telerobotic Ultrasound System Literature Review
3. System Design and Integration
- Patient bed;
- Force compliant probe, consisting of an ultrasound probe and a force/torque sensor;
- Emergency stops (eStop);
- UR5 robot manipulator;
- 3D stereo camera;
- Fold-up bed wings for easy transport;
- Control cabinet, holding the robot controller, networking gear, local PC, and ATI Net F/T;
- Adjustable and lockable wheels.
3.1. Master Manipulator
3.2. Slave Manipulator
3.3. Force Compliant Ultrasound Probe
3.4. Graphical User Interface
- Tele-operation Start/Stop button;
- Robot manipulator speed control slider;
- Home button: to send the robot manipulator to the start position (away from the patient);
- Run Mode button: activates the robot controller into a run state after being in a freedrive mode;
- Freedrive button: activates freedrive mode, which sets the robot into a back-drivable state;
- Stereo Vision button: triggers the Skype connection with the stereovision cameras at the robot end;
- Robot manipulator shut down button;
- Force levels graph: a real-time scrolling graph of force levels applied to the patient with the probe;
- Log window: indicates the current state of the program and connections;
- Force level bar graph: indicates force levels applied to the patient with the probe;
- Discomfort level bar graph: indicates the level of discomfort from the patient through the hand interface;
- Ultrasound probe data window: presents a real-time image stream of the ultrasound probe data;
- Ultrasound probe Start/Stop button;
- Ultrasound probe Gain control;
- Ultrasound probe Depth control;
- System status feedback window: provides robot mode status, state of the emergency stops, and network connection state.
3.5. Safety
4. Teleoperation Control System Design
4.1. Control Scheme in Joint Space
4.2. Bilateral Control Scheme in Cartesian Space
- Environment interaction and human dynamics are classified within a general passive systems class, i.e., for all s.t.
- 2.
- For simplicity in the analysis, gravitational forces are disregarded. Consequently, the dynamics equations are reformulated as follows:
- 3.
- The time delays have an upper bound, i.e., for all .
- 4.
- The time derivatives of time delays are limited. Particularly and .
4.3. Jacobian-Based Control Scheme in Joint Space
5. Simulation Model and Results
5.1. SimMechanics Model
5.2. Comprehensive Simulation and Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Swerdlow, D.R.; Cleary, K.; Wilson, E.; Azizi-Koutenaei, B.; Monfaredi, R. Robotic arm-assisted sonography: Review of technical developments and potential clinical applications. Am. J. Roentgenol. 2017, 208, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Fenster, A.; Downey, D.B.; Cardinal, H.N. Three-dimensional ultrasound imaging. Phys. Med. Biol. 2001, 46, R67. [Google Scholar] [CrossRef] [PubMed]
- Arbeille, P.; Ruiz, J.; Herve, P.; Chevillot, M.; Poisson, G.; Perrotin, F. Fetal tele-echography using a robotic arm and a satellite link. Ultrasound Obstet. Gynecol. 2005, 26, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Bellows, B.A.; Adedipe, A.A.; Totten, J.E.; Backlund, B.H.; Sajed, D. Perceived barriers in the use of ultrasound in developing countries. Crit. Ultrasound J. 2015, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- LaGrone, L.N.; Sadasivam, V.; Kushner, A.L.; Groen, R.S. A review of training opportunities for ultrasonography in low and middle income countries. Trop. Med. Int. Health 2012, 17, 808–819. [Google Scholar] [CrossRef]
- Burnett, D.R.; Campbell-Kyureghyan, N.H. Quantification of scan-specific ergonomic risk-factors in medical sonography. Int. J. Ind. Ergon. 2010, 40, 306–314. [Google Scholar] [CrossRef]
- Magnavita, N.; Bevilacqua, L.; Mirk, P.; Fileni, A.; Castellino, N. Work-related musculoskeletal complaints in sonologists. J. Occup. Environ. Med. 1999, 41, 981–988. [Google Scholar] [CrossRef]
- Najafi, F.; Sepehri, N. A novel hand-controller for remote ultrasound imaging. Mechatronics 2008, 18, 578–590. [Google Scholar] [CrossRef]
- Abolmaesumi, P.; Salcudean, S.E.; Zhu, W.H.; Sirouspour, M.R.; DiMaio, S.P. Image-guided control of a robot for medical ultrasound. IEEE Trans. Robot. Autom. 2002, 18, 11–23. [Google Scholar] [CrossRef]
- Salcudean, S.E.; Zhu, W.H.; Abolmaesumi, P.; Bachmann, S.; Lawrence, P.D. A robot system for medical ultrasound. In Robotics Research; Hollerbach, J.M., Koditschek, D.E., Eds.; Springer: London, UK, 2000; pp. 195–202. [Google Scholar]
- Vilchis, A.; Troccaz, J.; Cinquin, P.; Masuda, K.; Pellissier, F. A new robot architecture for tele-echography. IEEE Trans. Robot. Autom. 2003, 19, 922–926. [Google Scholar] [CrossRef]
- Delgorge, C.; Courreges, F.; Bassit, L.A.; Novales, C.; Rosenberger, C.; Smith-Guerin, N.; Bru, C.; Gilabert, R.; Vannoni, M.; Poisson, G.; et al. A tele-operated mobile ultrasound scanner using a light-weight robot. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Victorova, M.; Lau, H.H.T.; Lee, T.T.Y.; Navarro-Alarcon, D.; Zheng, Y. Comparison of ultrasound scanning for scoliosis assessment: Robotic versus manual. Int. J. Med. Robot. Comput. Assist. Surg. 2023, 19, e2468. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, Y.; Liu, L.; Meng, M.Q.H. A virtual scanning framework for robotic spinal sonography with automatic real-time recognition of standard views. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, Mexico, 1–5 November 2021; pp. 4574–4577. [Google Scholar]
- Su, K.; Liu, J.; Ren, X.; Huo, Y.; Du, G.; Zhao, W.; Wang, X.; Liang, B.; Li, D.; Liu, P.X. A fully autonomous robotic ultrasound system for thyroid scanning. Nat. Commun. 2024, 15, 4004. [Google Scholar] [CrossRef] [PubMed]
- Priester, A.M.; Natarajan, S.; Culjat, M.O. Robotic ultrasound systems in medicine. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Monfaredi, R.; Wilson, E.; Azizi-Koutenaei, B.; Labrecque, B.; Leroy, K.; Goldie, J.; Louis, E.; Swerdlow, D.; Cleary, K. Robot-assisted ultrasound imaging: Overview and development of a parallel telerobotic system. Minim. Invasive Ther. Allied Technol. 2015, 24, 54–62. [Google Scholar] [CrossRef]
- Adams, S.J.; Burbridge, B.; Obaid, H.; Stoneham, G.; Babyn, P.; Mendez, I. Telerobotic sonography for remote diagnostic imaging: Narrative review of current developments and clinical applications. J. Ultrasound Med. 2021, 40, 1287–1306. [Google Scholar] [CrossRef]
- Jiang, Z.; Salcudean, S.E.; Navab, N. Robotic ultrasound imaging: State-of-the-art and future perspectives. Med. Image Anal. 2023, 89, 102878. [Google Scholar] [CrossRef]
- Hidalgo, E.M.; Wright, L.; Isaksson, M.; Lambert, G.; Marwick, T.H. Current applications of robot-assisted ultrasound examination. Cardiovasc. Imaging 2023, 16, 239–247. [Google Scholar] [CrossRef]
- Shi, R.; Rosario, J. Paramedic-performed prehospital tele-ultrasound: A powerful technology or an impractical endeavor? A scoping review. Prehosp. Disaster Med. 2023, 38, 645–653. [Google Scholar] [CrossRef]
- Martinelli, T.; Bosson, J.L.; Bressollette, L.; Pelissier, F.; Boidard, E.; Troccaz, J.; Cinquin, P. Robot-based teleechography: Clinical evaluation of the TER system in abdominal aortic exploration. J. Ultrasound Med. 2007, 26, 1611–1616. [Google Scholar] [CrossRef]
- Arbeille, P.; Capri, A.; Ayoub, J.; Kieffer, V.; Georgescu, M.; Poisson, G. Use of a robotic arm to perform remote abdominal telesonography. Am. J. Roentgenol. 2007, 188, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Arbeille, P.; Provost, R.; Zuj, K.; Dimouro, D.; Georgescu, M. Teles-operated echocardiography using a robotic arm and an internet connection. Ultrasound Med. Biol. 2014, 40, 2521–2529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Yin, H.H.; He, T.; Guo, L.H.; Zhao, C.K.; Xu, H.X. Clinical application of a 5G-based telerobotic ultrasound system for thyroid examination on a rural island: A prospective study. Endocrine 2022, 76, 620–634. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Pu, Y.-Y.; Zhang, Y.-Q.; Qian, Z.-B.; Guo, L.-H.; Sun, L.-P.; Zhao, C.-K.; Xu, H.-X. 5G-based telerobotic ultrasound system improves access to breast examination in rural and remote areas: A prospective and two-scenario study. Diagnostics 2023, 13, 362. [Google Scholar] [CrossRef]
- Mitsuishi, M.; Warisawa, S.I.; Tsuda, T.; Higuchi, T.; Koizumi, N.; Hashizume, H.; Fujiwara, K. Remote ultrasound diagnostic system. In Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation, Seoul, Republic of Korea, 21–26 May 2001; Volume 2, pp. 1567–1574. [Google Scholar]
- Vieyres, P.; Poisson, G.; Courreges, F.; Smith-Guerin, N.; Novales, C.; Arbeille, P. A tele-operated robotic system for mobile tele-echography: The OTELO project. In Tele-Echography; Springer: Boston, MA, USA, 2006; pp. 461–473. [Google Scholar]
- Solazzi, M.; Frisoli, A.; Bergamasco, M.; Sotgiu, E.; PERCRO, S.S.S.A. Kinematic design of a gravity-compensated robot for ultrasound examination and assessment of endothelial dysfunction. In Proceedings of the 12th IFToMM World Congress, Besancon, Besançon, France, 17–21 June 2007. [Google Scholar]
- Koizumi, N.; Warisawa, S.I.; Nagoshi, M.; Hashizume, H.; Mitsuishi, M. Construction methodology for a remote ultrasound diagnostic system. IEEE Trans. Robot. 2009, 25, 522–538. [Google Scholar] [CrossRef]
- Najafi, F.; Sepehri, N. A robotic wrist for remote ultrasound imaging. Mech. Mach. Theory 2011, 46, 1153–1170. [Google Scholar] [CrossRef]
- Virga, S.; Zettinig, O.; Esposito, M.; Pfister, K.; Frisch, B.; Neff, T.; Navab, M.; Hennersperger, C. Automatic force-compliant robotic ultrasound screening of abdominal aortic aneurysms. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 508–513. [Google Scholar]
- Kuhlemann, I.; Jauer, P.; Schweikard, A.; Ernst, F. Robotic system for ultrasound tracking in radiation therapy. Med. Phys. 2016, 43, 3672. [Google Scholar] [CrossRef]
- Mathiassen, K.; Fjellin, J.E.; Glette, K.; Hol, P.K.; Elle, O.J. An ultrasound robotic system using the commercial robot UR5. Front. Robot. AI 2016, 3, 1. [Google Scholar] [CrossRef]
- Finocchi, R.; Aalamifar, F.; Fang, T.Y.; Taylor, R.H.; Boctor, E.M. Co-robotic ultrasound imaging: A cooperative force control approach. In Proceedings of the Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling, SPIE, Orlando, FL, USA, 11–16 February 2017; Volume 10135, pp. 270–280. [Google Scholar]
- Ning, G.; Chen, J.; Zhang, X.; Liao, H. Force-guided autonomous robotic ultrasound scanning control method for soft uncertain environment. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 2189–2199. [Google Scholar] [CrossRef]
- Ning, G.; Zhang, X.; Liao, H. Autonomic robotic ultrasound imaging system based on reinforcement learning. IEEE Trans. Biomed. Eng. 2021, 68, 2787–2797. [Google Scholar] [CrossRef]
- Cavusoglu, M.C.; Feygin, D. Kinematics and Dynamics of Phantom Model 1.5, Haptic Interface; Tech. Rep. UCB/ERL M01/15; EECS Department, University of California: Berkeley, CA, USA, 2001. [Google Scholar]
- Silva, A.J.; Ramirez, O.A.D.; Vega, V.P.; Oliver, J.P.O. Phantom omni haptic device: Kinematic and manipulability. In Proceedings of the 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), Cuernavaca, Mexico, 22–25 September 2009; pp. 193–198. [Google Scholar]
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 2nd ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Kebria, P.M.; Al-wais, S.; Abdi, H.; Nahavandi, S. Kinematic and dynamic modelling of UR5 manipulator. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 004229–004234. [Google Scholar]
- Hawkins, K.P. Analytic Inverse Kinematics for the Universal Robots UR5/UR10 Arms; Tech. Rep.; Institute for Robotics and Intelligent Machines, Georgia Institute of Technology: Atlanta, GA, USA, 2013. [Google Scholar]
- Kufieta, K. Force Estimation in Robotic Manipulators: Modeling, Simulation and Experiments. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Kebria, P.M.; Khosravi, A.; Nahavandi, S.; Najdovski, Z.; Hilton, S.J. Neural Network Adaptive Control of Teleoperation Systems with Uncertainties and Time-Varying Delay. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018. [Google Scholar]
- Signostics Signos RT Handheld Ultrasound Device. Available online: http://www.signostics.com/SignosRT (accessed on 1 July 2024).
- Kebria, P.M.; Khosravi, A.; Nahavandi, S.; Shi, P.; Alizadehsani, R. Robust adaptive control scheme for teleoperation systems with delay and uncertainties. IEEE Trans. Cybern. 2020, 50, 3243–3253. [Google Scholar] [CrossRef] [PubMed]
- Kebria, P.M.; Khosravi, A.; Nahavandi, S.; Wu, D.; Bello, F. Adaptive Type-2 Fuzzy Neural-Network Control for Teleoperation Systems with Delay and Uncertainties. IEEE Trans. Fuzzy Syst. 2020, 28, 2543–2554. [Google Scholar] [CrossRef]
- Lawrence, D.A. Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 1993, 9, 624–637. [Google Scholar] [CrossRef]
i | ai | α | di | |
---|---|---|---|---|
0 | 0 | 0 | - | - |
1 | 0 | 0.089 | ||
2 | 0.425 | 0 | 0 | |
3 | 0.392 | 0 | 0 | |
4 | 0 | 0.109 | ||
5 | 0 | 0.095 | ||
6 | - | - | 0.082 | |
0 | 0 | - |
System | Force Feedback | Latency Handling | Safety Features | Teleportation Range |
---|---|---|---|---|
HaptiScan (Developed System) | Yes | 10 ms (Low Latency) | Over force sensing, discomfort monitoring, motion control, emergency stop | Long-distance (Stable) |
Mathiassen et al. [34] | Yes | Unstable in high latency | Basic force feedback and motion control | Medium-range |
Vilchis et al. [11] | No | No interest in latency | No specific safety features reported | Short-range |
Kuhlemann et al. [33] | Yes | Not explicitly tested for long distances | Force-sensitive manipulator with basic safety mechanism | Short-range |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najdovski, Z.; Pedrammehr, S.; Chalak Qazani, M.R.; Abdi, H.; Deshpande, S.; Liu, T.; Mullins, J.; Fielding, M.; Hilton, S.; Asadi, H. HaptiScan: A Haptically-Enabled Robotic Ultrasound System for Remote Medical Diagnostics. Robotics 2024, 13, 164. https://doi.org/10.3390/robotics13110164
Najdovski Z, Pedrammehr S, Chalak Qazani MR, Abdi H, Deshpande S, Liu T, Mullins J, Fielding M, Hilton S, Asadi H. HaptiScan: A Haptically-Enabled Robotic Ultrasound System for Remote Medical Diagnostics. Robotics. 2024; 13(11):164. https://doi.org/10.3390/robotics13110164
Chicago/Turabian StyleNajdovski, Zoran, Siamak Pedrammehr, Mohammad Reza Chalak Qazani, Hamid Abdi, Sameer Deshpande, Taoming Liu, James Mullins, Michael Fielding, Stephen Hilton, and Houshyar Asadi. 2024. "HaptiScan: A Haptically-Enabled Robotic Ultrasound System for Remote Medical Diagnostics" Robotics 13, no. 11: 164. https://doi.org/10.3390/robotics13110164
APA StyleNajdovski, Z., Pedrammehr, S., Chalak Qazani, M. R., Abdi, H., Deshpande, S., Liu, T., Mullins, J., Fielding, M., Hilton, S., & Asadi, H. (2024). HaptiScan: A Haptically-Enabled Robotic Ultrasound System for Remote Medical Diagnostics. Robotics, 13(11), 164. https://doi.org/10.3390/robotics13110164