Dimensional Synthesis of Parallel Robots Using Bilevel Optimization for Design Optimization and Resolution of Functional Redundancy
<p>Overview of the procedure for combined structural and dimensional synthesis, which structures the paper. Abbreviations: degree of freedom (DoF); optimal (opt.).</p> "> Figure 2
<p>Sketch of the general parallel-robot kinematics for the conventional approach (<b>a</b>) and the modified model for functional redundancy with different definitions for first and following leg chains (<b>b</b>). Constraints are denoted by <math display="inline"><semantics> <mi mathvariant="bold-italic">δ</mi> </semantics></math> for the full set or by <math display="inline"><semantics> <mi mathvariant="bold-italic">ψ</mi> </semantics></math> if a component related to the redundant coordinate was removed.</p> "> Figure 3
<p>Single design problems within the parallel-robot synthesis in the notation of [<a href="#B44-robotics-14-00029" class="html-bibr">44</a>].</p> "> Figure 4
<p>Parallel-robot synthesis as a simplified co-design problem in the notation of [<a href="#B44-robotics-14-00029" class="html-bibr">44</a>].</p> "> Figure 5
<p>Flowchart diagram summarizing the dimensional-synthesis optimization problem.</p> "> Figure 6
<p>Flowchart diagram of the particle swarm optimization and the structure of the fitness function with hierarchical constraints. Mod. from [<a href="#B99-robotics-14-00029" class="html-bibr">99</a>].</p> "> Figure 7
<p>Parallel robot with annotation of geometric structural entities. Mod. from [<a href="#B103-robotics-14-00029" class="html-bibr">103</a>].</p> "> Figure 8
<p>Geometric principles for circular alignments of the base-coupling joint with given coupling joint frame (the blue <span class="html-italic">z</span>-axis corresponds to first joint axis): (<b>a</b>) <span class="underline">v</span>ertical (mod. from [Figure 9.10g] in [<a href="#B6-robotics-14-00029" class="html-bibr">6</a>]), (<b>b</b>) <span class="underline">t</span>angential (mod. from [Figure 9.14] in [<a href="#B104-robotics-14-00029" class="html-bibr">104</a>]), (<b>c</b>) <span class="underline">r</span>adial (mod. from [<a href="#B105-robotics-14-00029" class="html-bibr">105</a>]), (<b>d</b>) <span class="underline">c</span>onical ([Figure 9.10f] in [<a href="#B6-robotics-14-00029" class="html-bibr">6</a>]).</p> "> Figure 9
<p>Geometric principles for pairwise circular alignments of the base-coupling joint with given coupling joint frames: (<b>a</b>) <span class="underline">V</span>ertical (mod. from [Figure 2f] in [<a href="#B103-robotics-14-00029" class="html-bibr">103</a>]), (<b>b</b>) <span class="underline">T</span>angential (mod. from [Figure 2a] in [<a href="#B103-robotics-14-00029" class="html-bibr">103</a>]), (<b>c</b>) <span class="underline">R</span>adial (top view on base), (<b>d</b>) <span class="underline">C</span>onical/pyramidal (source: Daniel Ramirez, LUH; mod).</p> "> Figure 10
<p>Extended dimensional-synthesis scheme with design optimization (<a href="#sec3dot3-robotics-14-00029" class="html-sec">Section 3.3</a>) and loop over assembly modes (see <a href="#sec3dot5-robotics-14-00029" class="html-sec">Section 3.5</a>), mod. from [<a href="#B97-robotics-14-00029" class="html-bibr">97</a>] (there published under <a href="http://creativecommons.org/licenses/by/4.0/" target="_blank">CC-BY License</a>).</p> "> Figure 11
<p>Block diagram of extending the existing optimization scheme (<b>a</b>) by the dynamics regressor form (<b>b</b>), mod. from [<a href="#B100-robotics-14-00029" class="html-bibr">100</a>]. The dynamics parameters <math display="inline"><semantics> <msub> <mi mathvariant="bold-italic">p</mi> <mi>dyn</mi> </msub> </semantics></math> may be in inertial- or base-parameter form.</p> "> Figure 12
<p>Dimensional synthesis scheme with functional redundancy. Mod. from [<a href="#B101-robotics-14-00029" class="html-bibr">101</a>].</p> "> Figure 13
<p>Photograph of the LuFI wave basin with sketched dimensions (not true to scale) of the allowed robot installation space (green) and workspace (blue) (<b>a</b>), rendering of the robot (<b>b</b>) with detail on the end effector (<b>c</b>). Geometrical relations and perspectives are depicted qualitatively. Modified from [<a href="#B113-robotics-14-00029" class="html-bibr">113</a>].</p> "> Figure 14
<p>Pareto fronts for design-oriented objectives for chains with three and four joints with lightweight link dimensioning without the link-design optimization loop.</p> "> Figure 15
<p>Visualization of valid solutions for the naval-testbed robot from <a href="#robotics-14-00029-f014" class="html-fig">Figure 14</a>. The fixed base is at the top, and the moving platform is at the bottom. Red cuboids mark active prismatic joints, and blue cylinders or spheres mark passive joints.</p> "> Figure 16
<p>Pareto fronts for combinations of coupling-joint alignments of selected parallel robots: (<b>a</b>) Hexapod, (<b>b</b>) Hexa, and (<b>c</b>) HexaSlide.</p> "> Figure 17
<p>Grouped Pareto fronts of all results of the naval-testbed robot.</p> "> Figure 18
<p>Details of the engineering solution; modified from [<a href="#B113-robotics-14-00029" class="html-bibr">113</a>]: (<b>a</b>) leg chain (modified from the catalog “Electromechanical cylinders EMC” from Bosch Rexroth AG, Lohr am Main, Germany), (<b>b</b>) spherical joint, (<b>c</b>) universal joint (derived from a CAD file of Elso Elbe GmbH & Co. KG., Hofheim, Germany), (<b>d</b>) hexapod assembly, (<b>e</b>) moving platform, and (<b>f</b>) fixed base.</p> "> Figure 19
<p>Visualization of selected results for the handling task from the Pareto diagrams in <a href="#robotics-14-00029-f020" class="html-fig">Figure 20</a>.</p> "> Figure 20
<p>Pareto fronts for robots with (<b>a</b>) prismatic and (<b>b</b>) revolute actuation. The notation of [<a href="#B6-robotics-14-00029" class="html-bibr">6</a>] is used for distinguishing kinematic structures, where two <math display="inline"><semantics> <mrow> <mover> <mi mathvariant="normal">R</mi> <mo>̀</mo> </mover> </mrow> </semantics></math> denote two parallel revolute joints and Ŕ denotes a joint with a different axis. In addition to [<a href="#B6-robotics-14-00029" class="html-bibr">6</a>], prismatic joints with an axis parallel to a revolute <math display="inline"><semantics> <mrow> <mover> <mi mathvariant="normal">R</mi> <mo>̀</mo> </mover> </mrow> </semantics></math> joint are denoted by <math display="inline"><semantics> <mrow> <mover> <mi mathvariant="normal">P</mi> <mo>̀</mo> </mover> </mrow> </semantics></math>.</p> "> Figure 21
<p>Trajectory of end-effector position (<b>a</b>) and of the planar rotation (redundant coordinate) within the force performance map with markers for constraint violation (<b>b</b>) for the 4-R<span class="underline">P</span>UR.</p> "> Figure 22
<p>Redundant-coordinate trajectory (<b>a</b>) and Pareto fronts (<b>b</b>,<b>c</b>) for another 4-R<span class="underline">P</span>UR structure based on the same parameters with different inverse-kinematics optimization objectives. The method legend in (<b>b</b>) holds for all (<b>a</b>–<b>c</b>). Large markers in (<b>b</b>,<b>c</b>) represent parameters for the performance map in (<b>a</b>).</p> "> Figure A1
<p>Pareto fronts for the design-oriented objectives for chains with five and six joints and fixed-dimension lightweight links without link design optimization.</p> "> Figure A2
<p>Pareto fronts for the resulting link dimensioning of the results above together with the collision distance as third optimization objective. Only Pareto-dominant particles in these two criteria are shown. The legend is identical to that of <a href="#robotics-14-00029-f0A3" class="html-fig">Figure A3</a> and <a href="#robotics-14-00029-f0A4" class="html-fig">Figure A4</a>.</p> "> Figure A3
<p>Pareto fronts for the actuator-oriented objectives for prismatic actuation.</p> "> Figure A4
<p>Pareto fronts for the actuator-oriented objectives for revolute actuation.</p> "> Figure A5
<p>Comparison of particle swarm optimization (blue) and genetic algorithm (red) for the same settings as <a href="#robotics-14-00029-f0A3" class="html-fig">Figure A3</a> and <a href="#robotics-14-00029-f0A4" class="html-fig">Figure A4</a> for three different parallel robots (<b>a</b>–<b>c</b>). Each independent repetition has its own marker. The optimal solution after several iterations (from <a href="#robotics-14-00029-f0A3" class="html-fig">Figure A3</a> and <a href="#robotics-14-00029-f0A4" class="html-fig">Figure A4</a>) is marked in green for reference. Identical markers were thinned out to improve visibility.</p> "> Figure A6
<p>Computation time of the fitness function (logarithmic scale) in relation to the number of the violated constraint (from <a href="#sec3dot2dot2-robotics-14-00029" class="html-sec">Section 3.2.2</a>) that led to abortion. The class “chainlength” comes from checking if the length of a leg chain that includes a prismatic joint exceeds the maximum allowed length. Outlier markers were thinned out (193 of 97 k left over) to increase visibility of the data. Duplicate constraints result from multiple similar checks, e.g., for different Jacobian matrices in constraint 9.</p> "> Figure A7
<p>Visualization of the results with <span class="html-italic">prismatic actuation</span> from <a href="#robotics-14-00029-t0A1" class="html-table">Table A1</a> with corresponding marker from <a href="#robotics-14-00029-f017" class="html-fig">Figure 17</a> and <a href="#robotics-14-00029-f0A3" class="html-fig">Figure A3</a>—part 1.</p> "> Figure A8
<p>Visualization of the results with <span class="html-italic">prismatic actuation</span> from <a href="#robotics-14-00029-t0A1" class="html-table">Table A1</a> with corresponding marker from <a href="#robotics-14-00029-f017" class="html-fig">Figure 17</a> and <a href="#robotics-14-00029-f0A3" class="html-fig">Figure A3</a>—part 2.</p> "> Figure A9
<p>Visualization of the results with <span class="html-italic">revolute actuation</span> from <a href="#robotics-14-00029-t0A3" class="html-table">Table A3</a> with corresponding marker from <a href="#robotics-14-00029-f017" class="html-fig">Figure 17</a> and <a href="#robotics-14-00029-f0A4" class="html-fig">Figure A4</a>.</p> "> Figure A10
<p>Visualization of <span class="html-italic">3T0R</span> parallel robots for the handling task with <span class="html-italic">revolute</span> actuation. Markers are consistent with <a href="#robotics-14-00029-f020" class="html-fig">Figure 20</a>.</p> "> Figure A11
<p>Visualization of <span class="html-italic">3T1R</span> parallel robots for the handling task with <span class="html-italic">revolute</span> actuation.</p> "> Figure A12
<p>Visualization of <span class="html-italic">3T0R</span> parallel robots for the handling task with <span class="html-italic">prismatic</span> actuation. Markers are consistent with <a href="#robotics-14-00029-f020" class="html-fig">Figure 20</a>. Continued in <a href="#robotics-14-00029-f0A13" class="html-fig">Figure A13</a>.</p> "> Figure A13
<p>Visualization of <span class="html-italic">3T0R</span> parallel robots (part 2), continuation of <a href="#robotics-14-00029-f0A12" class="html-fig">Figure A12</a>.</p> "> Figure A14
<p>Visualization of <span class="html-italic">3T1R</span> parallel robots for the handling task with <span class="html-italic">prismatic</span> actuation.</p> "> Figure A15
<p>Pareto fronts for robots with prismatic actuation using only 27 reference points.</p> "> Figure A16
<p>Visualization of the 3T0R parallel robots with parameters from [<a href="#B123-robotics-14-00029" class="html-bibr">123</a>], listed in the bottom of <a href="#robotics-14-00029-t0A5" class="html-table">Table A5</a> and <a href="#robotics-14-00029-t0A6" class="html-table">Table A6</a>.</p> "> Figure A17
<p>Distribution of actuator force (<b>a</b>,<b>b</b>), position error/precision (<b>c</b>,<b>d</b>), and dexterity (<b>e</b>,<b>f</b>) as performance criterion computed with parameters from Table 4 of [<a href="#B123-robotics-14-00029" class="html-bibr">123</a>] with this paper’s implementation (left side) in comparison to the original results obtained from [<a href="#B123-robotics-14-00029" class="html-bibr">123</a>] (right side, with structures for comparison in red).</p> "> Figure A18
<p>Performance maps for the prismatic-actuation parallel robots of <a href="#robotics-14-00029-f0A14" class="html-fig">Figure A14</a> with maximum actuator force as IK objective and heat-map criterion. For marker legend, see below in <a href="#robotics-14-00029-f0A19" class="html-fig">Figure A19</a>.</p> "> Figure A19
<p>Performance maps for the revolute-actuation parallel robots of <a href="#robotics-14-00029-f0A11" class="html-fig">Figure A11</a> with maximum actuator torque as IK objective and heat-map criterion.</p> "> Figure A20
<p>Performance maps for the prismatic-actuation parallel robots of <a href="#robotics-14-00029-f0A14" class="html-fig">Figure A14</a> with position error (precision) as heat-map criterion and trajectory from <a href="#robotics-14-00029-f0A18" class="html-fig">Figure A18</a>. For marker legend, see below in <a href="#robotics-14-00029-f0A21" class="html-fig">Figure A21</a>.</p> "> Figure A21
<p>Performance maps for the revolute-actuation parallel robots of <a href="#robotics-14-00029-f0A11" class="html-fig">Figure A11</a> with position error as heat-map criterion and trajectory from <a href="#robotics-14-00029-f0A19" class="html-fig">Figure A19</a>. Color scale is different than in <a href="#robotics-14-00029-f0A20" class="html-fig">Figure A20</a> above.</p> "> Figure A22
<p>Performance maps for the prismatic-actuation parallel robots of <a href="#robotics-14-00029-f0A14" class="html-fig">Figure A14</a> with IK-Jacobian condition number as heat-map criterion and trajectory from <a href="#robotics-14-00029-f0A18" class="html-fig">Figure A18</a>. For marker legend, see below in <a href="#robotics-14-00029-f0A23" class="html-fig">Figure A23</a>.</p> "> Figure A23
<p>Performance maps for the revolute-actuation parallel robots of <a href="#robotics-14-00029-f0A11" class="html-fig">Figure A11</a> with IK-Jacobian condition number as heat-map criterion and trajectory from <a href="#robotics-14-00029-f0A19" class="html-fig">Figure A19</a>. Color scale is different than in <a href="#robotics-14-00029-f0A22" class="html-fig">Figure A22</a> above.</p> ">
Abstract
:1. Introduction
1.1. Structural and Dimensional Synthesis of Parallel Robots
1.2. Functional Redundancy
1.3. Design Optimization
1.4. Motivation and Structure of the Paper
2. Related Work
2.1. Preliminaries on Parallel Robots: Functional Redundancy and Kinematic Constraints
2.2. Requirements-Oriented Development Process
2.3. Co-Design Formalism
2.4. Combined Structural and Dimensional Synthesis
2.5. Dimensional Synthesis of Kinematic Parameters
2.6. Design Optimization: Drive Trains, Link Geometry, and Static Balance
2.7. Optimizing Robot Motion Within the Dimensional Synthesis
2.8. Methods for Optimization
2.9. Summary of Existing Works and Contributions
- It includes design optimization—for the first time in parallel-robot synthesis in a bilevel (cascaded) optimization of two nested evolutionary algorithms.
- For the first time, the resolution of functional redundancy is included in the synthesis of parallel robots—likewise by bilevel optimization but also using a classical algorithm.
- The complete implementation using Matlab is provided as open source [96].
- The framework is validated against simulative results from the literature.
3. Materials and Methods
3.1. Optimization Problem, Hierarchical Constraints, and Optimization Scheme
3.1.1. Optimization Problem
3.1.2. Hierarchical Constraints
3.1.3. Optimization Scheme
3.2. Constraints, Objectives, and Optimization Variables
3.2.1. Optimization Variables
- the scaling parameter , which increases the size of the whole robot (platform and legs) without changing its overall kinematics characteristics.
- 2.
- the base scaling parameter , giving the base radius by ,
- 3.
- the platform scaling parameter that sets the moving-platform radius relative to the base by ,
- 4.
- the base-coupling-joint pair-distance scaling parameter , giving the distanceof the joint pairs, in case of the alignments V, T, R, or C,
- 5.
- the similar pair-distance scaling parameter with for the moving platform for platform-coupling-joint alignments V, T, and R,
- 6.
- the elevation of the base-coupling joint, in case of a conical or pyramidal alignment of the first joint axis of the leg chains (alignments c and C), and
- 7.
- the angle inclination for platform-coupling-joint alignment c.
- 8.
- The leg-length parameters are scaled by and , and
- 9.
- the leg-angle parameters are optimized directly by and .
- 10.
- the base position and
- 11.
- the base orientation, expressed as using a rotation matrix obtained from intrinsic X-- Euler angles.
- 12.
- the end-effector position relative to the platform frame and
- 13.
- the end-effector orientation expressed as .
3.2.2. Constraints
- The inclination angle and in a conical (c) alignment of base or platform joints should differ about a minimal value of, e.g., 5° from the radial (r, 0°) or vertical alignment (v, ±90°).
- Since the joint position in the pairwise alignment of coupling joints is dependent on two parameters and , the effective radius (as the distance of the coupling joints to the center) of the base or platform has to be computed from both.
- The Denavit–Hartenberg parameters and express the distance between two joints. A minimal joint distance can be required to take the mechanical designs into account.
- The length of the leg chain is determined from the and parameters and the elongation of prismatic joints within the chain. A maximum length can be demanded to ensure the feasibility of the design.
- 5.
- by leg lengths matching the base and platform radii and
- 6.
- by checking if all platform-coupling points can be reached by all the leg chains for all reference points .
- 7.
- The inverse-kinematics problem is solved for all reference points using the methods from [22]. Failure leads to a constraint violation according to the index of the failing point. This is carried out by assigning to the kinematic constraints of failed or not computed points, which is far above the threshold of for the success of the inverse kinematics implemented via Newton Raphson. In this way, penalizing IK results depending on their violation of the kinematic constraints is possible. The violation term then is , applied component-wise.
- 8.
- If the resulting IK solution is a singular configuration, this is counted as a constraint violation. First, leg-chain singularities (type I) and then parallel singularities (type II) are considered.
- 9.
- Next, a constraint on the Jacobian condition number is checked for all points.
- 10.
- The range of revolute and prismatic joint coordinates is tested against technical limits, which can be obtained as upper limits for plausible values from data sheets, e.g., for universal or spherical joints. For rotatory joint DoFs, the -periodicity has to be regarded using tools from directional statistics (of non-Euclidean spaces) and circular distributions for calculating the range of angles.
- 11.
- If absolute values for joint coordinates are already known, e.g., when optimizing the base position of an existing robot, the joint coordinates are checked against these limits.
- 12.
- If base-mounted prismatic joints are aligned within the base plane, the robot’s allowed base diameter is checked against the necessary length and position of the guide rails of these joints, obtained from the range of prismatic-joint coordinates and assuming leg-chain symmetry.
- 13.
- If a prismatic joint exists within the structure, a lift cylinder consisting of an outer cylinder and a push rod is assumed for technical realization. The joint-coordinate limits define the length of the rod and outer cylinder. If the outer cylinder needs to start beyond the previous joint, this is infeasible for technical realization and penalized. The check is performed for each leg separately and for a symmetric design based on all legs’ prismatic-joint coordinates.
- 14.
- A self-collision of the robot structure leads to a constraint violation with a penalty obtained from the collision bodies’ penetration depth, using a simplified geometric model with spheres and capsules.
- 15.
- A violation of the allowed installation space is counted as a less severe constraint violation since the robot works if regarded solely. The maximal distance of any part of the robot to the allowed volume is taken for the penalty.
- 16.
- A collision with an obstacle object within the workspace is counted as another constraint since this is less severe than the self-collision by the same argumentation.
- 17.
- The failure of the differential IK creates a penalty resulting from the progress achieved.
- 18.
- Singularities of types I and II are checked, similar to constraint 8.
- 19.
- An inconsistency within the acceleration, velocity, or position between the leg chains can result from errors in the robot models or the check of infeasible kinematic structures within the structural synthesis (performed with the dimensional-synthesis framework) and produces a penalty.
- 20.
- A parasitic motion is an end-effector velocity component in an undesired degree of freedom for a robot with reduced mobility, which leads to a penalty.
- 21.
- The range of joint coordinates from constraint 10 is checked for each leg chain and for symmetric robots for all leg chains together, assuming a symmetric construction.
- 22.
- The feasibility of the lift cylinders for the prismatic joints from constraint 13 is rechecked for the joint configurations within the trajectory.
- 23.
- Limits on the velocity and the accelerations of active joints are checked. The limits result from plausibility considerations or may be obtained from data sheets.
- 24.
- If the differential IK algorithm leads to a flipping configuration, this is detected by using correlations—if it is not already discovered by the consistency check of constraint 19.
- 25.
- Finally, self-collisions, installation space violations, and workspace collisions are checked, similar to constraints 14–16.
- 26.
- The threshold for the condition number is checked, similar to constraint 9.
- 27.
- A design optimization is performed after success in the constraints above, elaborated in Section 3.3. A penalty is given if no valid solution can be found within the design optimization.
- 28.
- After computation of the inverse dynamics, the internal forces (see [99]), and the eventual design optimization, exceeding the material’s yield strength with a given safety factor results in a penalty depending on the material-stress violation.
- 29.
- Limits on the physical values of the performance criteria, such as stiffness (objective 6 of the next section), precision (objective 1), or actuator force (objective 2), are checked and lead to a penalty corresponding to the relative degree of limit violation.
3.2.3. Objective Function
- maximum position error (precision) of the tool center point, cf. [108],
- maximum actuator force (in the case of the same type of actuators),
- maximum actuator velocity (similar to number 2),
- maximum actuators’ rated power as a product of maximum motor torque and speed,
- energy consumption during the reference trajectory (cf. [99]),
- stiffness of the end-effector platform,
- mass of the structure assuming hollow cylinders and a solid platform plate.
- 8.
- material stress (internal forces in relation to the material’s yield strength; see [99]),
- 9.
- length of the links (summed over all leg chains),
- 10.
- maximization of the smallest collision distance during reference motion (cf. constraint 14),
- 11.
- installation-space volume from a convex volume containing all joint positions throughout the trajectory, obtained by the alpha-shape algorithm [109],
- 12.
- footprint, i.e., the floor area taken by the robot projected from the points of the installation space, using the alpha-shape algorithm [109], and
- 13.
- used joint-coordinate range in relation to the maximum allowed joint range. If absolute position limits are given, they can also be used for the criterion.
- 14.
- the rank deficiency of the manipulator Jacobian.
- 15.
- maximum condition number of the manipulator Jacobian,
- 16.
- manipulability (based on the Jacobian, [108]),
- 17.
- smallest singular value of the Jacobian.
3.3. Design Optimization
3.3.1. Structure of the Design-Optimization Problem
3.3.2. Dynamics Regressor Form Within the Design Optimization
3.4. Discrete Redundancy: Assembly Modes
3.5. Continuous (Functional) Redundancy
3.5.1. Optimization Structure for Dimensional Synthesis and Redundancy Resolution
3.5.2. Selection of the Objective Function
- the soft (parabolic) joint-limit criterion from [22] (equation 44),
- the Jacobian condition number as part of the singularity criterion [29] (equation 17),
- the self-collision-distance criterion of [29] (equation 18) using a parabolic function,
- a similar parabolic installation-space criterion,
- the minimum actuator speed, and
- the minimum actuator force or torque.
3.5.3. Redundancy Resolution and Limits of the Robot
3.5.4. On the Necessity of Global Optimization over the Trajectory
3.6. Summary
4. Case Study: High-Payload Parallel Robot for Naval Experiments
4.1. Introduction and Related Work
4.2. Task Description and Requirements
4.3. Transfer to the Combined Structural and Dimensional Synthesis
4.4. Synthesis Results for the Naval-Testbed Robot
4.5. Engineering Solution
4.6. Summary of the Case Study
5. Translational Parallel Handling Robots with Arbitrary Planar Rotation
5.1. Task Requirements
5.2. Overview of the Synthesis Results
5.3. Comparison to Results from the Literature and Evaluation of the Framework
5.4. Evaluation of Functional Redundancy of 3T1R Parallel Robots
5.5. Discussion of Redundancy Resolution Within the Dimensional Synthesis
5.6. Summary of the Case Study
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3T0R | three translations and no rotation (also for 3T1R, 3T2R, and 3T3R) |
C | cylindrical joint |
CAD | computer-aided design |
DH | Denavit–Hartenberg |
DoFs | degrees of freedom |
GA | genetic algorithm |
IK | inverse kinematics |
MOO | multi-objective optimization |
P | prismatic joint |
PR | parallel robot |
PSO | particle swarm optimization |
R | revolute joint |
S | spherical joint |
SOO | single-objective optimization |
U | universal joint |
Appendix A. Further Results for the Case Study of Section 4
Robot | Performance | Kinematic and Design Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
coll. | Power | Force | velo. | cond. | |||||||||
mm | kW | kN | m/s | mm | mm | deg | mm | mm | mm | mm | |||
6-PRUU, C-R | 18 | 1.15 | 2.17 | 0.53 | 25 | 16 | 613 | 219 | 37 | 165 | 346 | 11 | 27 |
6-PRRRU, V-R | 0 | 1.45 | 2.73 | 0.53 | 24 | 17 | 495 | 618 | 0 | 212 | 219 | 10 | 40 |
6-PRRRRR, C-T | 10 | 1.82 | 3.47 | 0.52 | 50 | 21 | 410 | 255 | 173 | 152 | 275 | 14 | 31 |
6-PRRS, V-V | 69 | 1.62 | 2.89 | 0.56 | 23 | 16 | 551 | 254 | 0 | 194 | 273 | 10 | 36 |
6-PUS, V-V | 35 | 1.28 | 2.46 | 0.52 | 23 | 13 | 534 | 257 | 0 | 174 | 320 | 4 | 33 |
6-RPUU, R-R | 69 | 1.42 | 3.03 | 0.47 | 25 | 13 | 722 | 159 | 0 | 183 | 287 | 12 | 32 |
6-RPRRU, C-R | 14 | 1.94 | 4.06 | 0.48 | 30 | 16 | 536 | 269 | 33 | 210 | 233 | 10 | 37 |
6-RPRRRR, C-c | 11 | 2.57 | 5.92 | 0.43 | 116 | 19 | 419 | 146 | 10 | 148 | — | 18 | 43 |
6-RPRS, C-V | 27 | 1.47 | 2.84 | 0.52 | 20 | 15 | 407 | 126 | 83 | 166 | 297 | 10 | 36 |
6-RRPRU var. 1, T-T | 2 | 1.43 | 2.66 | 0.54 | 31 | 14 | 502 | 203 | 0 | 157 | 305 | 19 | 38 |
6-UPRU var. 1, T-T | 25 | 1.06 | 2.06 | 0.52 | 17 | 11 | 691 | 196 | 0 | 171 | 330 | 15 | 33 |
6-UPUR var. 1, R-T | 35 | 3.73 | 3.08 | 1.21 | 21 | 11 | 403 | 1112 | 0 | 216 | 186 | 8 | 46 |
6-UPUR var. 2, V-T | 3 | 1.87 | 2.61 | 0.71 | 34 | 10 | 401 | 80 | 0 | 176 | 326 | 18 | 43 |
6-RRPUR, C-R | 11 | 1.99 | 3.19 | 0.62 | 35 | 13 | 398 | 203 | 14 | 191 | 275 | 20 | 49 |
6-RRPRU var. 2, V-T | 25 | 1.32 | 2.69 | 0.49 | 19 | 13 | 411 | 230 | 0 | 177 | 324 | 10 | 40 |
6-UPRU var. 3, C-T | 48 | 1.41 | 2.93 | 0.48 | 37 | 11 | 470 | 237 | 14 | 170 | 289 | 16 | 32 |
6-RRPR, V-T | 10 | 1.76 | 3.31 | 0.53 | 35 | 15 | 408 | 217 | 0 | 164 | 243 | 16 | 43 |
6-RRPS, T-v | 113 | 1.43 | 3.05 | 0.47 | 28 | 13 | 398 | 1097 | 0 | 231 | — | 1 | 39 |
6-UPS, T-V | 155 | 1.24 | 2.64 | 0.47 | 21 | 11 | 399 | 1219 | 0 | 212 | 226 | 1 | 13 |
6-RRPRRR, R-R | 50 | 1.10 | 1.30 | 0.85 | 15 | 18 | 408 | 1069 | 0 | 184 | 201 | 1 | 36 |
6-RRRPU var. 1, C-R | 55 | 1.27 | 2.69 | 0.47 | 32 | 16 | 406 | 154 | 72 | 185 | 274 | 3 | 35 |
6-RUPU var. 1, C-T | 74 | 1.27 | 2.47 | 0.51 | 28 | 13 | 615 | 186 | 111 | 181 | 308 | 1 | 23 |
6-URPU var. 1, V-R | 74 | 1.15 | 2.40 | 0.48 | 26 | 12 | 557 | 111 | 0 | 171 | 306 | 1 | 14 |
6-SPU, V-T | 84 | 1.15 | 2.31 | 0.50 | 23 | 8 | 651 | 130 | 0 | 175 | 301 | 1 | 13 |
6-RŔṔR, R-V | 64 | 1.39 | 3.01 | 0.46 | 25 | 17 | 700 | 219 | 0 | 176 | 273 | 7 | 31 |
6-RUPU var. 2, T-T | 76 | 1.29 | 2.77 | 0.46 | 23 | 11 | 725 | 225 | 0 | 188 | 292 | 1 | 32 |
6-RRRPU var. 2, C-t | 42 | 1.33 | 3.03 | 0.44 | 17 | 13 | 399 | 660 | 45 | 185 | — | 15 | 30 |
6-RRPR, C-R | 49 | 1.15 | 1.64 | 0.70 | 15 | 16 | 428 | 807 | 81 | 161 | 198 | 3 | 35 |
6-RRRPU var. 3, V-R | 29 | 1.27 | 2.35 | 0.54 | 27 | 14 | 454 | 240 | 0 | 167 | 344 | 5 | 24 |
6-RUPU var. 4, C-T | 45 | 1.06 | 2.38 | 0.45 | 19 | 12 | 658 | 177 | 114 | 176 | 310 | 7 | 31 |
6-URPU var. 3, R-T | 48 | 1.17 | 2.54 | 0.46 | 22 | 11 | 442 | 207 | 0 | 172 | 308 | 14 | 28 |
6-RRRPRR, C-c | 31 | 1.23 | 2.20 | 0.56 | 21 | 17 | 465 | 224 | 50 | 141 | — | 3 | 35 |
Eng. Sol. | 151 | 1.59 | 3.21 | 0.50 | 24 | 11 | 670 | 156 | 0 | 185 | 275 | 1 | 13 |
PR | Leg-Chain Kinematic Parameters | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mm | deg | mm | deg | mm | deg | mm | deg | mm | deg | mm | deg | mm | mm | mm | mm | mm | |
6-PRUU, C-R | act. | 2 | 0 | — | 0 | 79 | 55 | — | 167 | 90 | 0 | — | 0 | 982 | 195 | 0 | 0 |
6-PRRRU, V-R | act. | 18 | 0 | — | 0 | 68 | 123 | — | 217 | 90 | 123 | — | 246 | 837 | 23 | 0 | 0 |
6-PRRRRR, C-T | act. | 8 | 0 | — | 0 | 84 | 38 | — | 92 | 87 | 12 | — | 125 | 602 | 723 | 93 | 5 |
6-PRRS, V-V | act. | 58 | 0 | — | 0 | 76 | 36 | — | 168 | 51 | 649 | — | 455 | 0 | 0 | 0 | 0 |
6-PUS, V-V | act. | 86 | 0 | — | 0 | 90 | 0 | — | 0 | 90 | 1023 | — | 205 | 0 | 0 | 0 | 0 |
6-RPUU, R-R | 0 | 68 | 0 | 90 | act. | 4 | 0 | — | 0 | 90 | 0 | — | 0 | 748 | 10 | 0 | 0 |
6-RPRRU, C-R | 0 | 7 | 0 | 3 | act. | 49 | 0 | — | 0 | 90 | 422 | — | 79 | 866 | 83 | 0 | 0 |
6-RPRRRR, C-c | 0 | 0 | 0 | 59 | act. | 78 | 0 | — | 0 | 73 | 204 | — | 188 | 806 | 122 | 12 | 39 |
6-RPRS, C-V | 0 | 81 | 0 | 90 | act. | 41 | 0 | — | 0 | 3 | 512 | — | 275 | 0 | 0 | 0 | 0 |
6-RRPRU var. 1, T-T | 0 | 86 | 168 | — | 135 | 0 | 0 | 25 | act. | 90 | 0 | — | 0 | 535 | 192 | 0 | 0 |
6-UPRU var. 1, T-T | 0 | 90 | 0 | — | 0 | 0 | 0 | 80 | act. | 90 | 0 | — | 0 | 682 | 40 | 0 | 0 |
6-UPUR var. 1, R-T | 0 | 90 | 0 | — | 0 | 0 | 0 | 45 | act. | 90 | 0 | — | 0 | 0 | 0 | 535 | 1 |
6-UPUR var. 2, V-T | 0 | 90 | 0 | — | 0 | 90 | 0 | 0 | act. | 90 | 0 | — | 0 | 0 | 0 | 475 | 33 |
6-RRPUR, C-R | 0 | 90 | 373 | — | 4 | 90 | 0 | 0 | act. | 90 | 0 | — | 0 | 0 | 0 | 360 | 238 |
6-RRPRU var. 2, V-T | 0 | 85 | 290 | — | 123 | 90 | 0 | 90 | act. | 90 | 0 | — | 0 | 597 | 182 | 0 | 0 |
6-UPRU var. 3, C-T | 0 | 90 | 0 | — | 0 | 90 | 0 | 90 | act. | 90 | 0 | — | 0 | 617 | 131 | 0 | 0 |
6-RRPR, V-T | 0 | 72 | 305 | — | 174 | 90 | 0 | 90 | act. | 90 | 0 | — | 0 | 561 | 379 | 7 | 14 |
6-RRPS, T-v | 0 | 86 | 136 | — | 79 | 77 | 0 | 90 | act. | 75 | 0 | — | 0 | 0 | 0 | 0 | 0 |
6-UPS, T-V | 0 | 90 | 0 | — | 0 | 89 | 0 | 90 | act. | 82 | 0 | — | 0 | 0 | 0 | 0 | 0 |
6-RRPRRR, R-R | 0 | 82 | 97 | — | 161 | 55 | 0 | 82 | act. | 0 | 0 | — | 0 | 187 | 81 | 74 | 187 |
6-RRRPU var. 1, C-R | 0 | 79 | 283 | — | 122 | 73 | 30 | — | 318 | 0 | 0 | 46 | act. | 0 | 0 | 0 | 0 |
6-RUPU var. 1, C-T | 0 | 74 | 156 | — | 40 | 90 | 0 | — | 0 | 0 | 0 | 90 | act. | 0 | 0 | 0 | 0 |
6-URPU var. 1, V-R | 0 | 90 | 0 | — | 0 | 89 | 16 | — | 429 | 0 | 0 | 31 | act. | 0 | 0 | 0 | 0 |
6-SPU, V-T | 0 | 90 | 0 | — | 0 | 90 | 0 | — | 0 | 0 | 0 | 0 | act. | 0 | 0 | 0 | 0 |
6-RŔṔR, R-V | 0 | 65 | 182 | — | 237 | 58 | 275 | — | 201 | 0 | 0 | 27 | act. | 0 | 0 | 6 | 80 |
6-RUPU var. 2, T-T | 0 | 87 | 39 | — | 70 | 90 | 0 | — | 0 | 90 | 0 | 0 | act. | 0 | 0 | 0 | 0 |
6-RRRPU var. 2, C-t | 0 | 86 | 280 | — | 27 | 90 | 270 | — | 75 | 90 | 0 | 0 | act. | 0 | 0 | 0 | 0 |
6-RRPR, C-R | 0 | 73 | 180 | — | 169 | 90 | 173 | — | 54 | 90 | 0 | 0 | act. | 0 | 0 | 74 | 163 |
6-RRRPU var. 3, V-R | 0 | 73 | 101 | — | 29 | 87 | 85 | — | 113 | 90 | 0 | 90 | act. | 0 | 0 | 0 | 0 |
6-RUPU var. 4, C-T | 0 | 33 | 23 | — | 126 | 90 | 0 | — | 0 | 90 | 0 | 90 | act. | 0 | 0 | 0 | 0 |
6-URPU var. 3, R-T | 0 | 90 | 0 | — | 0 | 86 | 232 | — | 5 | 90 | 0 | 90 | act. | 0 | 0 | 0 | 0 |
6-RRRPRR, C-c | 0 | 90 | 181 | — | 139 | 90 | 105 | — | 151 | 90 | 0 | 90 | act. | 0 | 0 | 28 | 170 |
Eng. | 0 | 90 | 0 | — | 0 | 90 | 0 | 18 | act. | 88 | 0 | — | 0 | 0 | 0 | 0 | 0 |
Robot | Performance | Kinematic and Design Parameters | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
coll. | Power | Torque | velo. | cond. | |||||||||
mm | kW | Nm | deg/s | mm | mm | deg | mm | mm | mm | mm | |||
6-RURU, C-r | 59 | 1.60 | 927 | 99 | 17 | 15 | 401 | 457 | 66 | 236 | — | 10 | 40 |
6-RRRRU, t-R | 29 | 1.41 | 781 | 104 | 12 | 16 | 419 | — | 0 | 177 | 147 | 10 | 33 |
6-RUUR, C-t | 41 | 1.99 | 1170 | 97 | 26 | 15 | 399 | 560 | 131 | 173 | — | 10 | 40 |
6-RRRUR, r-T | 8 | 2.10 | 1022 | 118 | 12 | 16 | 408 | — | 0 | 114 | 164 | 13 | 33 |
6-RRUU, T-T | 47 | 1.42 | 998 | 81 | 28 | 16 | 403 | 234 | 0 | 177 | 282 | 7 | 39 |
6-RRRRU, T-R | 27 | 1.40 | 774 | 104 | 20 | 18 | 398 | 326 | 0 | 168 | 288 | 10 | 40 |
6-RRRS, C-v | 45 | 1.25 | 1331 | 54 | 36 | 17 | 537 | 661 | 77 | 229 | — | 10 | 40 |
6-RUS, T-V | 67 | 1.21 | 855 | 81 | 19 | 14 | 398 | 208 | 0 | 184 | 297 | 9 | 32 |
PR | Leg-Chain Kinematic Parameters | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mm | deg | mm | mm | deg | mm | mm | deg | mm | mm | mm | mm | mm | mm | |
6-RURU, C-r | 0 | 88 | 71 | 9 | 90 | 0 | 0 | 0 | 1080 | 256 | 375 | 13 | 0 | 0 |
6-RRRRU, t-R | 0 | 71 | 163 | 112 | 90 | 276 | 317 | 0 | 962 | 283 | 426 | 104 | 0 | 0 |
6-RUUR, C-t | 0 | 90 | 162 | 81 | 90 | 0 | 0 | 0 | 963 | 834 | 0 | 0 | 383 | 70 |
6-RRRUR, r-T | 0 | 86 | 105 | 12 | 90 | 0 | 158 | 0 | 913 | 553 | 0 | 0 | 545 | 89 |
6-RRUU, T-T | 0 | 77 | 149 | 68 | 85 | 234 | 2 | 90 | 0 | 0 | 1074 | 182 | 0 | 0 |
6-RRRRU, T-R | 0 | 90 | 18 | 243 | 60 | 9 | 434 | 90 | 204 | 99 | 803 | 115 | 0 | 0 |
6-RRRS, C-v | 0 | 60 | 346 | 62 | 34 | 585 | 146 | 3 | 801 | 554 | 0 | 0 | 0 | 0 |
6-RUS, T-V | 0 | 37 | 343 | 31 | 90 | 0 | 0 | 0 | 1129 | 431 | 0 | 0 | 0 | 0 |
Appendix B. Further Results for the Case Study of Section 5
Robot | Performance | Kinematic Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
coll. | inst.spc. | footprt. | Power | Force | velo. | cond. | ||||||
3T0R: | mm | m3 | m2 | W | N | m/s | mm | deg | mm | deg | ||
3-, c-m | 1 | 0.04 | 0.23 | 8.3 | 7.8 | 61 | 1.2 | 11 | 106 | 120 | 101 | 120 |
3-PRRU var. 1, c-t | 0 | 0.08 | 0.29 | 11.5 | 9.4 | 70 | 1.4 | 11 | 100 | 63 | 100 | 0 |
3-ŔŔ, v-t | 0 | 0.08 | 0.21 | 34.1 | 13.4 | 146 | 6.0 | 12 | 207 | 0 | 100 | 0 |
3-PRUR var. 1, v-r | 0 | 0.11 | 0.21 | 26.6 | 8.7 | 176 | 7.2 | 10 | 110 | 0 | 100 | 0 |
3-PŔŔ, t-v | 4 | 0.07 | 0.27 | 17.8 | 10.2 | 100 | 4.6 | 11 | 156 | 0 | 100 | 0 |
3-PRUR var. 2, v-v | 3 | 0.07 | 0.19 | 14.8 | 6.7 | 126 | 6.3 | 10 | 122 | 0 | 121 | 0 |
3-PR, c-c | 26 | 0.07 | 0.44 | 6.4 | 5.1 | 72 | 1.4 | 13 | 100 | 95 | 101 | 45 |
3-PURR, r-c | 5 | 0.06 | 0.39 | 8.2 | 6.0 | 78 | 1.0 | 10 | 100 | 0 | 101 | 36 |
3-ŔŔ, r-t | 1 | 0.05 | 0.30 | 14.9 | 10.0 | 86 | 2.6 | 11 | 103 | 0 | 100 | 0 |
3-PUU, t-r | 0 | 0.05 | 0.24 | 19.7 | 8.1 | 140 | 7.3 | 7 | 113 | 0 | 100 | 0 |
3-PRRU var. 2, c-t | 4 | 0.06 | 0.23 | 12.7 | 7.7 | 94 | 3.6 | 10 | 100 | 73 | 100 | 0 |
3-R, t-c | 42 | 0.08 | 0.31 | 5.3 | 6.4 | 47 | 2.0 | 11 | 108 | 0 | 100 | 55 |
3-RPRU var. 1, v-v | 42 | 0.06 | 0.12 | 16.7 | 11.3 | 85 | 3.4 | 8 | 136 | 0 | 100 | 0 |
3-ŔŔ, v-v | 28 | 0.09 | 0.15 | 23.6 | 13.6 | 99 | 5.6 | 10 | 236 | 0 | 100 | 0 |
3-RPUR, r-v | 49 | 0.05 | 0.24 | 12.8 | 10.5 | 70 | 3.9 | 7 | 100 | 0 | 100 | 0 |
3-PŔŔ, r-v | 1 | 0.06 | 0.21 | 12.8 | 10.9 | 68 | 5.6 | 9 | 104 | 0 | 100 | 0 |
3-RPRU var. 2, t-t | 8 | 0.06 | 0.16 | 11.5 | 10.7 | 62 | 3.3 | 8 | 330 | 0 | 111 | 0 |
3-ṔŔŔ, t-t | 6 | 0.08 | 0.32 | 11.2 | 8.7 | 74 | 1.6 | 10 | 500 | 0 | 102 | 0 |
3-RPRU var. 3, t-t | 70 | 0.08 | 0.17 | 12.2 | 12.3 | 56 | 6.6 | 7 | 347 | 0 | 100 | 0 |
3-PŔŔ, r-r | 6 | 0.07 | 0.12 | 20.6 | 14.0 | 84 | 4.8 | 9 | 184 | 0 | 103 | 0 |
3-ŔŔ, t-c | 6 | 0.06 | 0.46 | 22.4 | 12.1 | 106 | 3.4 | 11 | 127 | 0 | 102 | −60 |
3-ṔŔŔ, t-v | 0 | 0.07 | 0.14 | 25.6 | 12.6 | 117 | 4.5 | 10 | 224 | 0 | 110 | 0 |
3-UPU, v-v | 11 | 0.03 | 0.12 | 10.8 | 9.4 | 66 | 2.8 | 5 | 127 | 0 | 102 | 0 |
3-RRPU, v-v | 4 | 0.03 | 0.12 | 11.1 | 9.7 | 65 | 3.0 | 7 | 100 | 0 | 100 | 0 |
3-ŔPŔ, v-v | 1 | 0.04 | 0.12 | 10.3 | 8.9 | 66 | 2.5 | 9 | 172 | 0 | 100 | 0 |
3T1R: | ||||||||||||
4-PRUR, t-v | 6 | 0.19 | 0.73 | 16.1 | 12.1 | 77 | 4.4 | 9 | 327 | 0 | 282 | 0 |
4-RPUR, t-v | 32 | 0.20 | 0.44 | 17.3 | 12.3 | 80 | 31.2 | 7 | 223 | 0 | 171 | 0 |
4-PŔŔ, p-v | 1 | 0.18 | 0.42 | 15.3 | 10.2 | 86 | 28.5 | 9 | 202 | 0 | 169 | 0 |
4-RRPU, v-v | 10 | 0.27 | 0.61 | 15.4 | 14.3 | 62 | 73.1 | 7 | 483 | 0 | 101 | 0 |
4-ŔPŔ, v-v | 7 | 0.23 | 0.51 | 12.7 | 13.3 | 55 | 36.5 | 9 | 384 | 0 | 216 | 0 |
[123]: | From reference | |||||||||||
3-CRR | 54 | 0.08 | 0.33 | 10.4 | 8.8 | 68 | 1.2 | 11 | 300 | 120 | 110 | 120 |
3-PUU | 315 | 0.17 | 0.71 | 13.5 | 7.6 | 101 | 2.8 | 8 | 250 | −85 | 230 | 0 |
3-CRU | 4 | 0.17 | 0.54 | 0.7 | 8.3 | 5 | 8.0 | 10 | 300 | 115 | 420 | 0 |
3-CUR | 158 | 0.51 | 0.78 | 33.4 | 12.6 | 152 | 4.6 | 11 | 200 | 120 | 150 | 0 |
3-UPU | 150 | 0.12 | 0.32 | 8.8 | 8.1 | 63 | 2.1 | 5 | 500 | 0 | 120 | 0 |
Robot | Leg-Chain Kinematic Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3T0R: | deg | mm | mm | deg | mm | mm | deg | mm | mm | mm | mm |
3-, c-m | 0 | 0 | 0 | 0 | 183 | 154 | 0 | 134 | 41 | — | — |
3-PRRU var. 1, c-t | 0 | 0 | 0 | 0 | 131 | 25 | 0 | 165 | 236 | 0 | 0 |
3-ŔŔ, v-t | 0 | 0 | 0 | 0 | 159 | 80 | 90 | 149 | 3 | 274 | 1 |
3-PRUR var. 1, v-r | 0 | 0 | 0 | 0 | 284 | 33 | 90 | 0 | 0 | 454 | 61 |
3-PŔŔ, t-v | 90 | 0 | 0 | 0 | 271 | 33 | 90 | 151 | 30 | 227 | 27 |
3-PRUR var. 2, v-v | 90 | 0 | 0 | 0 | 493 | 0 | 90 | 0 | 0 | 320 | 80 |
3-PR, c-c | 90 | 0 | 0 | 90 | 61 | 170 | 0 | 148 | 174 | 165 | 57 |
3-PURR, r-c | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 240 | 47 | 146 | 38 |
3-ŔŔ, r-t | 90 | 0 | 0 | 90 | 25 | 42 | 0 | 192 | 216 | 53 | 23 |
3-PU, t-r | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 299 | 135 | 0 | 0 |
3-PRRU var. 2, c-t | 90 | 0 | 0 | 90 | 84 | 134 | 0 | 153 | 128 | 0 | 0 |
3-R, t-c | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 213 | 177 | 210 | 114 |
3-RPRU var. 1, v-v | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 453 | 18 | 0 | 0 |
3-ŔŔ, v-v | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 301 | 25 | 149 | 58 |
3-RPUR, r-v | 90 | 0 | 0 | 90 | 0 | 0 | 90 | 0 | 0 | 281 | 2 |
3-PŔŔ, r-v | 90 | 0 | 0 | 90 | 0 | 0 | 90 | 3 | 44 | 274 | 4 |
3-RPRU var. 2, t-t | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 157 | 83 | 0 | 0 |
3-ṔŔŔ, t-t | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 161 | 45 | 3 | 0 |
3-RPRU var. 3, t-t | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 292 | 53 | 0 | 0 |
3-PŔŔ, r-r | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 391 | 6 | 21 | 73 |
3-ŔŔ, t-c | 0 | 201 | 275 | 0 | 0 | 0 | 90 | 0 | 0 | 299 | 63 |
3-ṔŔŔ, t-v | 0 | 294 | 95 | 90 | 0 | 0 | 0 | 0 | 0 | 190 | 61 |
3-UPU, v-v | 90 | 0 | 0 | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 0 |
3-RRPU, v-v | 90 | 22 | 35 | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 0 |
3-ŔPŔ, v-v | 90 | 21 | 37 | 90 | 0 | 0 | 90 | 0 | 0 | 20 | 8 |
3T1R: | |||||||||||
4-PRUR, t-v | 90 | 0 | 0 | 0 | 455 | 135 | 90 | 0 | 0 | 419 | 74 |
4-RPUR, t-v | 90 | 0 | 0 | 90 | 0 | 0 | 90 | 0 | 0 | 371 | 142 |
4-PŔŔ, p-v | 90 | 0 | 0 | 90 | 0 | 0 | 90 | 35 | 30 | 292 | 126 |
4-RRPU, v-v | 90 | 153 | 155 | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 0 |
4-ŔPŔ, v-v | 90 | 191 | 8 | 90 | 0 | 0 | 90 | 0 | 0 | 90 | 16 |
From [123]: | Kinematic parameters from reference | ||||||||||
3-CRR | 0 | 0 | 0 | 0 | 290 | 0 | 0 | 250 | 0 | — | — |
3-PUU | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 450 | 0 | 0 | 0 |
3-CRU | 90 | 0 | 0 | 90 | 100 | 0 | 0 | 420 | 0 | 0 | 0 |
3-CUR | 0 | 0 | 0 | 0 | 490 | 0 | 90 | 0 | 0 | 490 | 0 |
3-UPU | 90 | 0 | 0 | 90 | 0 | 0 | 90 | 0 | 0 | 0 | 0 |
Robot | Performance | Kinematic Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
coll. | inst.spc. | footprt. | Power | Torque | velo. | cond. | ||||||
3T0R: | mm | m3 | m2 | W | Nm | deg/s | mm | deg | mm | deg | ||
3-ŔŔ, c-t | 3 | 0.07 | 0.16 | 41.1 | 1.7 | 455 | 3.3 | 14 | 122 | 100 | 103 | 0 |
3-RRUR var. 1, r-t | 8 | 0.05 | 0.13 | 41.4 | 1.8 | 447 | 2.7 | 11 | 100 | 0 | 100 | 0 |
3-ŔŔŔ, t-c | 3 | 0.08 | 0.34 | 24.6 | 1.1 | 436 | 3.1 | 14 | 344 | 0 | 100 | 60 |
3-RURR, t-c | 16 | 0.06 | 0.30 | 23.2 | 1.0 | 430 | 2.6 | 12 | 299 | 0 | 100 | 55 |
3-ŔŔŔ, t-t | 17 | 0.05 | 0.16 | 57.7 | 2.5 | 439 | 4.1 | 13 | 119 | 0 | 100 | 0 |
3-RRRU var. 1, t-t | 2 | 0.04 | 0.14 | 56.9 | 2.5 | 433 | 4.2 | 11 | 117 | 0 | 100 | 0 |
3-ŔŔ, r-r | 0 | 0.05 | 0.18 | 43.9 | 1.8 | 454 | 3.8 | 13 | 104 | 0 | 100 | 0 |
3-RRUR var. 2, r-r | 7 | 0.04 | 0.17 | 45.6 | 2.0 | 439 | 4.2 | 11 | 100 | 0 | 100 | 0 |
3-ŔŔ, r-r | 18 | 0.04 | 0.15 | 40.7 | 1.7 | 456 | 3.7 | 13 | 126 | 0 | 103 | 0 |
3-RUU, r-r | 57 | 0.04 | 0.13 | 45.1 | 1.9 | 452 | 4.2 | 9 | 107 | 0 | 100 | 0 |
3-RRRU var. 2, r-r | 12 | 0.04 | 0.13 | 40.0 | 1.7 | 450 | 3.1 | 11 | 152 | 0 | 104 | 0 |
3T1R: | ||||||||||||
4-ŔŔ, r-v | 18 | 0.13 | 0.42 | 15.8 | 2.0 | 451 | 38.1 | 13 | 270 | 0 | 203 | 0 |
4-RRUR var. 1, t-v | 0 | 0.11 | 0.46 | 74.5 | 2.4 | 453 | 90.3 | 11 | 349 | 0 | 109 | 0 |
4-ŔŔ, v-v | 0 | 0.19 | 0.59 | 125.5 | 4.2 | 428 | 19.8 | 13 | 372 | 0 | 100 | 0 |
4-RRUR var. 2, v-v | 0 | 0.16 | 0.83 | 375.8 | 14.0 | 384 | 30.7 | 11 | 403 | 0 | 122 | 0 |
4-ŔŔ, v-v | 11 | 0.10 | 0.74 | 322.9 | 10.7 | 433 | 49.6 | 13 | 491 | 0 | 102 | 0 |
4-RUU, v-v | 15 | 0.14 | 0.69 | 110.6 | 3.6 | 436 | 27.9 | 9 | 453 | 0 | 126 | 0 |
4-RRRU, v-v | 7 | 0.12 | 0.62 | 400.4 | 12.7 | 451 | 46.7 | 11 | 468 | 0 | 147 | 0 |
Robot | Leg-Chain Kinematic Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3T0R: | deg | mm | mm | deg | mm | mm | deg | mm | mm | mm | mm |
3-ŔŔ, c-t | 0 | 184 | 44 | 0 | 174 | 13 | 90 | 17 | 48 | 276 | 66 |
3-RRUR var. 1, r-t | 0 | 197 | 44 | 0 | 225 | 45 | 90 | 0 | 0 | 204 | 47 |
3-ŔŔŔ, t-c | 0 | 166 | 165 | 90 | 20 | 117 | 0 | 206 | 89 | 196 | 16 |
3-RURR, t-c | 0 | 161 | 161 | 90 | 0 | 0 | 0 | 196 | 73 | 177 | 37 |
3-ŔŔŔ, t-t | 90 | 3 | 74 | 0 | 175 | 30 | 0 | 169 | 157 | 14 | 19 |
3-RRRU var. 1, t-t | 90 | 36 | 26 | 0 | 161 | 21 | 0 | 146 | 161 | 0 | 0 |
3-ŔŔ, r-r | 90 | 164 | 48 | 0 | 196 | 52 | 90 | 175 | 41 | 180 | 31 |
3-RRUR var. 2, r-r | 90 | 1 | 72 | 0 | 212 | 39 | 90 | 0 | 0 | 176 | 4 |
3-ŔŔ, r-r | 0 | 175 | 25 | 90 | 22 | 63 | 0 | 181 | 108 | 5 | 7 |
3-RUU, r-r | 0 | 173 | 0 | 90 | 0 | 0 | 0 | 235 | 126 | 0 | 0 |
3-RRRU var. 2, r-r | 0 | 175 | 53 | 90 | 50 | 158 | 0 | 170 | 35 | 0 | 0 |
3T1R: | |||||||||||
4-ŔŔ, r-v | 0 | 213 | 53 | 0 | 167 | 100 | 90 | 217 | 51 | 225 | 2 |
4-RRUR var. 1, t-v | 0 | 199 | 73 | 0 | 178 | 52 | 90 | 0 | 0 | 219 | 2 |
4-ŔŔ, v-v | 90 | 91 | 113 | 0 | 290 | 164 | 90 | 59 | 80 | 274 | 125 |
4-RRUR var. 2, v-v | 90 | 20 | 335 | 0 | 204 | 18 | 90 | 0 | 0 | 336 | 80 |
4-ŔŔ, v-v | 0 | 257 | 41 | 90 | 172 | 64 | 0 | 250 | 30 | 21 | 5 |
4-RUU, v-v | 0 | 274 | 45 | 90 | 0 | 0 | 0 | 384 | 131 | 0 | 0 |
4-RRRU, v-v | 0 | 265 | 74 | 90 | 69 | 167 | 0 | 237 | 47 | 0 | 0 |
References
- Merlet, J.P. Parallel Robots, 2nd ed.; Solid Mechanics and Its Applications; Springer Science & Business Media: Berlin, Germany, 2006; Volume 128. [Google Scholar] [CrossRef]
- Russo, M.; Zhang, D.; Liu, X.J.; Xie, Z. A review of parallel kinematic machine tools: Design, modeling, and applications. Int. J. Mach. Tools Manuf. 2024, 196, 104118. [Google Scholar] [CrossRef]
- Briot, S.; Burgner-Kahrs, J. New Frontiers in Parallel Robotics. Front. Robot. AI 2023, 10, 1282798. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, D.; Caro, S. New Frontiers in Parallel Robots. Machines 2023, 11, 386. [Google Scholar] [CrossRef]
- Sinha, A.; Malo, P.; Deb, K. A review on bilevel optimization: From classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 2017, 22, 276–295. [Google Scholar] [CrossRef]
- Kong, X.; Gosselin, C.M. Type Synthesis of Parallel Mechanisms; Springer Publishing Company, Incorporated: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Gogu, G. Structural Synthesis of Parallel Robots, Part 1: Methodology; Springer: Berlin/Heidelberg, Germany, 2008; Volume 866. [Google Scholar] [CrossRef]
- Frindt, M. Modulbasierte Synthese von Parallelstrukturen für Maschinen in der Produktionstechnik (Module-Based Synthesis of Parallel Structures for Machines in Production Technology). Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2001. [Google Scholar]
- Krefft, M. Aufgabenangepasste Optimierung von Parallelstrukturen für Maschinen in der Produktionstechnik (Task-Specific Optimization of Parallel Structures for Machines in Manufacturing Technology). Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2006. [Google Scholar]
- Kirchner, J. Mehrkriterielle Optimierung von Parallelkinematiken (Multi-Criterial Optimization of Parallel Kinematics). Ph.D. Thesis, Technische Universität Chemnitz, Zwickau, Germany, 2000. [Google Scholar]
- Stock, M.; Miller, K. Optimal kinematic design of spatial parallel manipulators: Application to linear Delta robot. J. Mech. Des. 2003, 125, 292–301. [Google Scholar] [CrossRef]
- Rao, A.B.K.; Rao, P.M.; Saha, S.K. Dimensional design of hexaslides for optimal workspace and dexterity. IEEE Trans. Robot. 2005, 21, 444–449. [Google Scholar] [CrossRef]
- Carbone, G.; Ottaviano, E.; Ceccarelli, M. An optimum design procedure for both serial and parallel manipulators. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2007, 221, 529–843. [Google Scholar] [CrossRef]
- Kelaiaia, R.; Company, O.; Zaatri, A. Multiobjective optimization of a linear Delta parallel robot. Mech. Mach. Theory 2012, 50, 159–178. [Google Scholar] [CrossRef]
- Miller, K. Optimal Design and Modeling of Spatial Parallel Manipulators. Int. J. Robot. Res. 2004, 23, 127–140. [Google Scholar] [CrossRef]
- Laribi, M.; Romdhane, L.; Zeghloul, S. Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace. Mech. Mach. Theory 2007, 42, 859–870. [Google Scholar] [CrossRef]
- Liu, S.; Huang, T.; Mei, J.; Zhao, X.; Wang, P.; Chetwynd, D.G. Optimal Design of a 4-DOF SCARA Type Parallel Robot Using Dynamic Performance Indices and Angular Constraints. J. Mech. Robot. 2012, 4, 031005. [Google Scholar] [CrossRef]
- von Daake, A. Beitrag zur Kalibrierung und Anforderungsbasierten Arbeitsraumoptimierung Parallelkinematischer Manipulatoren in Hexapodbauweise. Ph.D. Thesis, Technische Universität Clausthal, Clausthal, Germany, 2012. [Google Scholar]
- Jamwal, P.K.; Hussain, S.; Xie, S.Q. Three-Stage Design Analysis and Multicriteria Optimization of a Parallel Ankle Rehabilitation Robot Using Genetic Algorithm. IEEE Trans. Autom. Sci. Eng. 2015, 12, 1433–1446. [Google Scholar] [CrossRef]
- Prause, I. Task-Based Comparison of Parallel Translational Kinematic Structures. Ph.D Thesis, RWTH Aachen, Aachen, Germany, 2016. [Google Scholar] [CrossRef]
- Sciavicco, L.; Siciliano, B.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Advanced Textbooks in Control and Signal Processing; Springer: Berlin, Germany, 2009. [Google Scholar] [CrossRef]
- Schappler, M.; Tappe, S.; Ortmaier, T. Modeling Parallel Robot Kinematics for 3T2R and 3T3R Tasks Using Reciprocal Sets of Euler Angles. Robotics 2019, 8, 68. [Google Scholar] [CrossRef]
- Agarwal, A.; Nasa, C.; Bandyopadhyay, S. Dynamic singularity avoidance for parallel manipulators using a task-priority based control scheme. Mech. Mach. Theory 2016, 96, 107–126. [Google Scholar] [CrossRef]
- Merlet, J.P.; Perng, M.W.; Daney, D. Optimal trajectory planning of a 5-axis machine-tool based on a 6-axis parallel manipulator. In Advances in Robot Kinematics; Springer: Berlin/Heidelberg, Germany, 2000; pp. 315–322. [Google Scholar] [CrossRef]
- Oen, K.T.; Wang, L.C.T. Optimal dynamic trajectory planning for linearly actuated platform type parallel manipulators having task space redundant degree of freedom. Mech. Mach. Theory 2007, 42, 727–750. [Google Scholar] [CrossRef]
- Corinaldi, D.; Angeles, J.; Callegari, M. Posture optimization of a functionally redundant parallel robot. In Advances in Robot Kinematics 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 101–108. [Google Scholar] [CrossRef]
- Santos, J.C.; da Silva, M.M. Redundancy Resolution of Kinematically Redundant Parallel Manipulators via Differential Dynamic Programing. J. Mech. Robot. 2017, 9, 041016. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, K.; Gao, H.; Xiao, P.; Wang, L. Small-angle perturbation method for moving platform orientation to avoid singularity of asymmetrical 3-RRR planner [sic!] parallel manipulator. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 538. [Google Scholar] [CrossRef]
- Schappler, M. Pose Optimization of Task-Redundant Robots in Second-Order Rest-to-Rest Motion with Cascaded Dynamic Programming and Nullspace Projection. In Proceedings of the Informatics in Control, Automation and Robotics; Gusikhin, O., Madani, K., Nijmeijer, H., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 106–131. [Google Scholar] [CrossRef]
- Ramirez, D.A. Automatic Generation of Task-Specific Serial Mechanisms Using Combined Structural and Dimensional Synthesis. Ph.D. Thesis, Leibniz University Hannover, Hanover, Germany, 2018. [Google Scholar] [CrossRef]
- Conkur, E.S.; Buckingham, R. Clarifying the definition of redundancy as used in robotics. Robotica 1997, 15, 583–586. [Google Scholar] [CrossRef]
- Huo, L.; Baron, L. The joint-limits and singularity avoidance in robotic welding. Ind. Robot. Int. J. 2008, 35, 456–464. [Google Scholar] [CrossRef]
- Léger, J.; Angeles, J. Off-line programming of six-axis robots for optimum five-dimensional tasks. Mech. Mach. Theory 2016, 100, 155–169. [Google Scholar] [CrossRef]
- Luces, M.; Mills, J.K.; Benhabib, B. A Review of Redundant Parallel Kinematic Mechanisms. J. Intell. Robot. Syst. 2017, 86, 175–198. [Google Scholar] [CrossRef]
- Gosselin, C.; Schreiber, L.T. Redundancy in Parallel Mechanisms: A Review. Appl. Mech. Rev. 2018, 70, 010802. [Google Scholar] [CrossRef]
- Alba-Gomez, O.; Wenger, P.; Pamanes, A. Consistent kinetostatic indices for planar 3-DOF parallel manipulators, application to the optimal kinematic inversion. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Brooklyn, NY, USA, 3–6 August 2008; Volume 47446, pp. 765–774. [Google Scholar] [CrossRef]
- Kotlarski, J.; Do Thanh, T.; Heimann, B.; Ortmaier, T. Optimization strategies for additional actuators of kinematically redundant parallel kinematic machines. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 656–661. [Google Scholar]
- Briot, S.; Khalil, W. Dynamics of Parallel Robots; Mechanisms and Machine Science; Springer: Cham, Switzerland, 2015; Volume 35. [Google Scholar] [CrossRef]
- VDI 2206:2021; Development of Mechatronic and Cyber-Physical Systems. Beuth Verlag: Berlin, Germany, 2021.
- Maier, J.R.; Ezhilan, T.; Fadel, G.M.; Summers, J.D.; Mocko, G.M. A hierarchical requirements modeling scheme to support engineering innovation. In Proceedings of the DS 42: Proceedings of ICED 2007, the 16th International Conference on Engineering Design, Paris, France, 28–31 July 2007; pp. 839–840. [Google Scholar]
- Stechert, C.; Franke, H.J. Managing requirements as the core of multi-disciplinary product development. CIRP J. Manuf. Sci. Technol. 2009, 1, 153–158. [Google Scholar] [CrossRef]
- Stechert, C.; Franke, H.J.; Vietor, T. Knowledge-Based Design Principles and Tools for Parallel Robots. In Robotic Systems for Handling and Assembly; Springer: Berlin/Heidelberg, Germany, 2010; pp. 59–75. [Google Scholar] [CrossRef]
- Neugebauer, R. (Ed.) Parallelkinematische Maschinen: Entwurf, Konstruktion, Anwendung; VDI-Buch, Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Censi, A. A mathematical theory of co-design. arXiv 2015, arXiv:1512.08055. [Google Scholar] [CrossRef]
- Baumgärtner, J.; Kanagalingam, G.; Fleischer, A.P.J. One Problem, One Solution: Unifying Robot and Environment Design Optimization. arXiv 2023, arXiv:2310.05520. [Google Scholar] [CrossRef]
- Ding, H.; Cao, W.; Cai, C.; Kecskeméthy, A. Computer-aided structural synthesis of 5-DOF parallel mechanisms and the establishment of kinematic structure databases. Robotica 2015, 83, 14–30. [Google Scholar] [CrossRef]
- Mayer, M.; Külz, J.; Althoff, M. CoBRA: A Composable Benchmark for Robotics Applications. arXiv 2022, arXiv:2203.09337. [Google Scholar] [CrossRef]
- Salunkhe, D.H.; Michel, G.; Kumar, S.; Sanguineti, M.; Chablat, D. An efficient combined local and global search strategy for optimization of parallel kinematic mechanisms with joint limits and collision constraints. Mech. Mach. Theory 2022, 173, 104796. [Google Scholar] [CrossRef]
- Su, Y.; Duan, B.; Zheng, C. Genetic design of kinematically optimal fine tuning Stewart platform for large spherical radio telescope. Mechatronics 2001, 11, 821–835. [Google Scholar] [CrossRef]
- Zhang, D. Parallel Robotic Machine Tools; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Ben Hamida, I.; Laribi, M.A.; Mlika, A.; Romdhane, L.; Zeghloul, S. Dimensional Synthesis and Performance Evaluation of Four Translational Parallel Manipulators. Robotica 2021, 39, 233–249. [Google Scholar] [CrossRef]
- Tarkian, M.; Persson, J.; Ölvander, J.; Feng, X. Multidisciplinary design optimization of modular industrial robots. In Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, Washington, DC, USA, 28–31 August 2011. [Google Scholar] [CrossRef]
- Zhou, L.; Bai, S. A new approach to design of a lightweight anthropomorphic arm for service applications. J. Mech. Robot. 2015, 7, 031001. [Google Scholar] [CrossRef]
- Tan, S.; Liang, F.; Fan, J.; Zhang, Y.; Lin, Z. Optimization Design for Structure Parameters of Six Degree-of-Freedom (DOF) Positioner of Secondary Mirror in a Space Optical Remote Sensor Based on ADAMS. In Proceedings of the Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 7201–7205. [Google Scholar] [CrossRef]
- VDI 2221:2019; Design of Technical Products and Systems—Model of Product Design. Beuth Verlag: Berlin, Germany, 2019.
- Singla, E.; Tripathi, S.; Rakesh, V.; Dasgupta, B. Dimensional synthesis of kinematically redundant serial manipulators for cluttered environments. Robot. Auton. Syst. 2010, 58, 585–595. [Google Scholar] [CrossRef]
- Kivelä, T.; Mattila, J.; Puura, J. A generic method to optimize a redundant serial robotic manipulator’s structure. Autom. Constr. 2017, 81, 172–179. [Google Scholar] [CrossRef]
- Romiti, E.; Iacobelli, F.; Ruzzon, M.; Kashiri, N.; Malzahn, J.; Tsagarakis, N. An Optimization Study on Modular Reconfigurable Robots: Finding the Task-Optimal Design. In Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 26–30 August 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Shiller, Z.; Sundar, S. Design of robotic manipulators for optimal dynamic performance. In Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; pp. 334–339. [Google Scholar] [CrossRef]
- Chedmail, P.; Gautier, M. Optimum choice of robot actuators. J. Eng. Ind. 1990, 112, 361–367. [Google Scholar] [CrossRef]
- Pettersson, M.; Ölvander, J. Drive train optimization for industrial robots. IEEE Trans. Robot. 2009, 25, 1419–1424. [Google Scholar] [CrossRef]
- Zhou, L.; Bai, S.; Hansen, M.R. Design optimization on the drive train of a light-weight robotic arm. Mechatronics 2011, 21, 560–569. [Google Scholar] [CrossRef]
- Pettersson, M.; Andersson, J.; Krus, P. Methods for discrete design optimization. In Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, 24–28 September 2005; American Society of Mechanical Engineers: New York, NY, USA, 2005; pp. 295–303. [Google Scholar]
- Padilla-García, E.A.; Cruz-Villar, C.A.; Rodriguez-Angeles, A. Multi-Objective Design/Control Optimization on the Power Train of Robot Manipulators using a Genetic Algorithm. In Proceedings of the 14th IFToMM World Congress, Taipei, Tajwan, 25–30 October 2015. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, G.; Huang, S. Parameter optimization of heavy-load parallel manipulator by introducing stiffness distribution evaluation index. Mech. Mach. Theory 2017, 108, 244–259. [Google Scholar] [CrossRef]
- Pastor, R.; Bobovský, Z.; Huczala, D.; Grushko, S. Genetic Optimization of a Manipulator: Comparison between Straight, Rounded, and Curved Mechanism Links. Appl. Sci. 2021, 11, 2471. [Google Scholar] [CrossRef]
- Otremba, R. Systematische Entwicklung von Gelenken für Parallelroboter. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig, Germany, 2005. [Google Scholar]
- Sterneck, T.; Fettin, J.; Schappler, M. Task-Specific Synthesis and Design of a Mobile Six-DoF Hexa Parallel Robot for Weed Control. In Proceedings of the 2nd IFToMM for Sustainable Development Goals Workshop (I4SDG Workshop 2023), Bilbao, Spain, 22–23 June 2023; Petuya, V., Quaglia, G., Parikyan, T., Carbone, G., Eds.; Springer: Cham, Switzerland, 2023; pp. 105–114. [Google Scholar] [CrossRef]
- Vulliez, M.; Zeghloul, S.; Khatib, O. Design strategy and issues of the Delthaptic, a new 6-DOF parallel haptic device. Mech. Mach. Theory 2018, 128, 395–411. [Google Scholar] [CrossRef]
- Brandstötter, M. Adaptable Serial Manipulators in Modular Design. Ph.D. Thesis, Tyrolean Private University UMIT, Institute of Automation and Control Engineering, Hall in Tirol, Austria, 2016. [Google Scholar] [CrossRef]
- Whitman, J.; Choset, H. Task-specific manipulator design and trajectory synthesis. IEEE Robot. Autom. Lett. 2018, 4, 301–308. [Google Scholar] [CrossRef]
- Ginnante, A.; Simetti, E.; Caro, S.; Leborne, F. Task priority based design optimization of a kinematic redundant robot. Mech. Mach. Theory 2023, 187, 105374. [Google Scholar] [CrossRef]
- Maaroof, O.W.; Dede, M.I.C.; Aydin, L. A Robot Arm Design Optimization Method by Using a Kinematic Redundancy Resolution Technique. Robotics 2022, 11, 1. [Google Scholar] [CrossRef]
- Russo, M.; Raimondi, L.; Dong, X.; Axinte, D.; Kell, J. Task-oriented optimal dimensional synthesis of robotic manipulators with limited mobility. Robot. Comput.-Integr. Manuf. 2021, 69, 102096. [Google Scholar] [CrossRef]
- Patel, S.; Sobh, T. Task based synthesis of serial manipulators. J. Adv. Res. 2015, 6, 479–492. [Google Scholar] [CrossRef]
- Wan, J.; Ding, L.; Yao, J.; Wu, H. A hybrid CHAOS-PSO algorithm for dimensional synthesis of a redundant manipulator based on tracking trajectories without or with singularities. Prod. Eng. 2018, 12, 579–587. [Google Scholar] [CrossRef]
- Dinev, T.C. Concurrent Design and Motion Planning in Robotics Using Differentiable Optimal Control. Ph.D. Thesis, University of Edinburgh, School of Informatics, Edinburgh, UK, 2023. [Google Scholar] [CrossRef]
- Spielberg, A.; Araki, B.; Sung, C.; Tedrake, R.; Rus, D. Functional co-optimization of articulated robots. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5035–5042. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Y. Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization. Robotica 2009, 27, 67–78. [Google Scholar] [CrossRef]
- Yun, Y.; Li, Y. Optimal design of a 3-PUPU parallel robot with compliant hinges for micromanipulation in a cubic workspace. Robot. Comput.-Integr. Manuf. 2011, 27, 977–985. [Google Scholar] [CrossRef]
- Lara-Molina, F.; Rosario, J.; Dumur, D. Multi-objective design of parallel manipulator using global indices. Open Mech. Eng. J. 2010, 4, 37–47. [Google Scholar] [CrossRef]
- MathWorks (The MathWorks, Inc.). Global Optimization Toolbox. Available online: https://mathworks.com/help/gads (accessed on 31 October 2024).
- Wang, R.; Zhang, X. Optimal design of a planar parallel 3-DOF nanopositioner with multi-objective. Mech. Mach. Theory 2017, 112, 61–83. [Google Scholar] [CrossRef]
- Sun, T.; Lian, B. Stiffness and mass optimization of parallel kinematic machine. Mech. Mach. Theory 2018, 120, 73–88. [Google Scholar] [CrossRef]
- Qi, Y.; Sun, T.; Song, Y. Multi-Objective Optimization of Parallel Tracking Mechanism Considering Parameter Uncertainty. J. Mech. Robot. 2018, 10, 041006. [Google Scholar] [CrossRef]
- Lian, B.; Wang, X.V.; Wang, L. Static and dynamic optimization of a pose adjusting mechanism considering parameter changes during construction. Robot. Comput.-Integr. Manuf. 2019, 59, 267–277. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, Y.; Huang, R.; Chen, X.; Li, Z. Optimization algorithms for kinematically optimal design of parallel manipulators. IEEE Trans. Autom. Sci. Eng. 2013, 11, 574–584. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Lanni, C. A multi-objective optimum design of general 3R manipulators for prescribed workspace limits. Mech. Mach. Theory 2004, 39, 119–132. [Google Scholar] [CrossRef]
- Yang, C.; Ye, W.; Li, Q. Review of the performance optimization of parallel manipulators. Mech. Mach. Theory 2022, 170, 104725. [Google Scholar] [CrossRef]
- Hassan, R.; Cohanim, B.; De Weck, O.; Venter, G. A comparison of particle swarm optimization and the genetic algorithm. In Proceedings of the 46th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics and Materials Conference, Austin, TX, USA, 18–21 April 2005; p. 1897. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Coello, C.A.C. Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm Evol. Comput. 2011, 1, 173–194. [Google Scholar] [CrossRef]
- Jordehi, A.R. A review on constraint handling strategies in particle swarm optimisation. Neural Comput. Appl. 2015, 26, 1265–1275. [Google Scholar] [CrossRef]
- Petuya, V.; Macho, E.; Altuzarra, O.; Pinto, C.; Hernandez, A. Educational software tools for the kinematic analysis of mechanisms. Comput. Appl. Eng. Educ. 2014, 22, 72–86. [Google Scholar] [CrossRef]
- Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi—A software framework for nonlinear optimization and optimal control. Math. Program. Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
- Moritz Schappler. Matlab Toolbox for Structural and Dimensional Robot Synthesis. Available online: https://github.com/SchapplM/robsynth-structdimsynth (accessed on 21 February 2025).
- Schappler, M.; Jahn, P.; Raatz, A.; Ortmaier, T. Combined Structural and Dimensional Synthesis of a Parallel Robot for Cryogenic Handling Tasks. In Proceedings of the Annals of Scientific Society for Assembly, Handling and Industrial Robotics; Schüppstuhl, T., Tracht, K., Henrich, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Mohammad, A.; Seel, T.; Schappler, M. Towards Optimized Parallel Robots for Human-Robot Collaboration by Combined Structural and Dimensional Synthesis. In Proceedings of the 2024 VDI-Mechatronik-Konferenz, Dresden, Germany, 14–15 March 2024. [Google Scholar] [CrossRef]
- Schappler, M.; Ortmaier, T. Dimensional Synthesis of Parallel Robots: Unified Kinematics and Dynamics using Full Kinematic Constraints. In Proceedings of the 6. IFToMM D-A-CH Konferenz 2020, Lienz, Austria, 27–28 February 2020. [Google Scholar] [CrossRef]
- Schappler, M.; Tappe, S.; Ortmaier, T. Exploiting Dynamics Parameter Linearity for Design Optimization in Combined Structural and Dimensional Robot Synthesis. In Proceedings of the 15th IFToMM World Congress, Krakow, Poland, 30 June–4 July 2019. [Google Scholar] [CrossRef]
- Schappler, M. Inverse Kinematics for Task Redundancy of Symmetric 3T1R Parallel Manipulators using Tait-Bryan-Angle Kinematic Constraints. In Proceedings of the International Symposium on Advances in Robot Kinematics; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Martínez, V. Matlab Implementation of the Multi-Objective Particle-SWARM Optimization from Mezura-Montes and Coello (2011). Available online: https://mathworks.com/matlabcentral/fileexchange/62074-multi-objective-particle-swarm-optimization-mopso (accessed on 21 February 2025).
- Frindt, M.; Krefft, M.; Hesselbach, J. Structure and type synthesis of parallel manipulators. In Robotic Systems for Handling and Assembly; Springer: Berlin/Heidelberg, Germany, 2010; pp. 17–37. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Q.; Ding, H. Theory of Parallel Mechanisms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 6. [Google Scholar] [CrossRef]
- Stechert, C.; Franke, H.J. Requirement-oriented Configuration of Parallel Robotic Systems. In Proceedings of the Future of Product Development; Krause, F.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 259–268. [Google Scholar] [CrossRef]
- Schütz, D.; Budde, C.; Raatz, A.; Hesselbach, J. Parallel Kinematic Structures of the SFB 562. In Proceedings of the Robotic Systems for Handling and Assembly; Schütz, D., Wahl, F.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 109–124. [Google Scholar] [CrossRef]
- Khalil, W.; Dombre, E. Modeling, Identification and Control of Robots; Hermes Penton Science: Stanmore, UK, 2002. [Google Scholar] [CrossRef]
- Merlet, J.P. Jacobian, manipulability, condition number, and accuracy of parallel robots. J. Mech. Des. 2006, 128, 199–206. [Google Scholar] [CrossRef]
- MathWorks (The MathWorks, Inc.). Alpha Shape Algorithm. Available online: https://mathworks.com/help/matlab/ref/alphashape.html (accessed on 31 October 2024).
- Reveles R., D.; Pamanes G., J.A.; Wenger, P. Trajectory planning of kinematically redundant parallel manipulators by using multiple working modes. Mech. Mach. Theory 2016, 98, 216–230. [Google Scholar] [CrossRef]
- Schappler, M.; Ortmaier, T. Singularity-Avoidance of Task-Redundant Robots in Pointing Tasks: On Nullspace Projection and Cardan Angles as Orientation Coordinates. In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Paris, France, 6–8 July 2021. [Google Scholar] [CrossRef]
- Hansen, C.; Öltjen, J.; Meike, D.; Ortmaier, T. Enhanced Approach for Energy-Efficient Trajectory Generation of Industrial Robots. In Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering (CASE 2012), Seoul, Republic of Korea, 20–24 August 2012. [Google Scholar] [CrossRef]
- Fettin, J. Entwurf und Konstruktion Einer Parallelkinematischen Maschine für Meerestechnische Anwendungen (Design and Construction of a Parallel Kinematic Machine for Applications in Ocean Engineering). Master’s Thesis, Leibniz University Hannover, Hanover, Germany, 2023. [Google Scholar] [CrossRef]
- Giberti, H.; Ferrari, D. A novel hardware-in-the-loop device for floating offshore wind turbines and sailing boats. Mech. Mach. Theory 2015, 85, 82–105. [Google Scholar] [CrossRef]
- Loeser, T.; Bergmann, A. Capabilities of Deployment Tests at DNW-NWB. In Fluid Dynamics of Personnel and Equipment; Precision Delivery from Military Platforms; Meeting Proceedings RTO-MP-AVT-133, Paper 10; RTO: Neuilly-sur-Seine, France, 2006; pp. 10-1–10-12. [Google Scholar]
- Fiore, E.; Giberti, H. Optimization and comparison between two 6-DoF parallel kinematic machines for HIL simulations in wind tunnel. In Proceedings of the MATEC Web of Conferences. EDP Sciences, Amsterdam, The Netherlands, 23–25 March 2016; Volume 45, p. 04012. [Google Scholar] [CrossRef]
- Giberti, H.; La Mura, F.; Resmini, G.; Parmeggiani, M. Fully mechatronical design of an HIL system for floating devices. Robotics 2018, 7, 39. [Google Scholar] [CrossRef]
- Arino, X.; de Wilde, J.; Russo, M.; Grytøyr, G.; Tognarelli, M. Forced oscillation model tests for determination of hydrodynamic coefficients of large subsea blowout preventers. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2015; Volume 1: Offshore Technology; Offshore Geotechnics. [Google Scholar] [CrossRef]
- Symétrie. Motion Hexapods—Notus. Available online: https://symetrie.fr/en/hexapods/notus/ (accessed on 31 October 2024).
- LUIS (Leibniz Universität IT Services). Hardware Specifications of Cluster Compute Nodes. Available online: https://docs.cluster.uni-hannover.de/doku.php?id=resources:computing_hardware (accessed on 31 October 2024).
- Tartari Filho, S.C.; Cabral, E.L.L. Kinematics and workspace analysis of a parallel architecture robot: The Hexa. In Proceedings of the 18th International Congress of Mechanical Engineering, Orlando, FL, USA, 5–11 November 2005. [Google Scholar]
- Gharahsofloo, A.; Rahmani, A. An efficient algorithm for workspace generation of Delta robot. In Proceedings of the International Journal of Robotics; K.N. Toosi University of Technology: Teheran, Iran, 2015. [Google Scholar]
- Prause, I.; Charaf Eddine, S.; Corves, B. Comparison of parallel kinematic machines with three translational degrees of freedom and linear actuation. Chin. J. Mech. Eng. 2015, 28, 841–850. [Google Scholar] [CrossRef]
- Heidenhein (Dr. Johannes Heidenhain GmbH). Angle Encoder Modules, MRP Series. Available online: https://www.heidenhain.com/products/angle-encoders/modules/mrp (accessed on 31 October 2024).
Task DoFs → | 3T0R | 3T0*R | 3T1R | 3T2R | 3T3R |
---|---|---|---|---|---|
Robot DoFs ↓ | (Rot. Fix.) | (Rot. Arbitr.) | (Rot. Def.) | (Pointing) | (Free) |
3T0R (3) | × | × | × | ||
3T0*R (3) | × | × | × | × | |
3T1R (4) | × | × | |||
3T2R (5) | × | ||||
3T3R (6) | ; |
Position | Symmetric on Circle Circumference | Pairwise | ||||||
---|---|---|---|---|---|---|---|---|
Direction | v | t | r | c | V | T | R | C |
Parameters | , | , | , | , | , , | |||
Figure | 8a | 8b | 8c | 8d | 9a | 9b | 9c | 9d |
# | Constraint | Section 3.2.2 | Value |
---|---|---|---|
1 | installation space (see Figure 13) | no. 15 | max. width m, height m |
2 | base diameter | no. 2 | 800–1500 mm |
3 | platform diameter | no. 2 | 200–800 mm |
4 | Jacobian condition number | no. 26 | max. 500 (mixed units) |
5 | material stress | no. 28 | max. 100% (of yield strength) |
Parameter | Section 3.2.1 | Value | |
6 | vertical base position in | no. 10 | 1.1–2.5 m |
7 | base position in x-y-plane | no. 10 | 0 (no optimization) |
8 | base rotation | no. 11 | and |
9 | end-effector translation | no. 12 | [0, 0, 200] (schematic in Figure 13) |
10 | end-effector rotation | no. 13 | and |
Load | Value | ||
11 | payload mass (ship hull) | kg | |
12 | payload inertia | [0.4, 8.3, 8.3] | |
13 | maximal external forces | = [34, 451, 659] | |
14 | maximal external moments | = [67, 608, 162] |
# | Constraint | Section 3.2.2 | Value |
---|---|---|---|
1 | installation space (depending on joint index in the chain) | no. 15 | joints 1–3 not above lower workspace limit, joints 4–5 not above upper workspace limit |
2 | prismatic joint stroke length | no. 10 | max. 400 |
3 | length of a leg chain | no. 10 | max. 1000 |
4 | base diameter | no. 2 | 200–1000 mm |
5 | platform diameter | no. 2 | 200–1000 mm, smaller than base |
6 | precision (position error) | no. 29 | max. (for objective 1 in Section 3.2.3) |
7 | Jacobian condition number | no. 8 | max. (IK and manipulator Jacobian) |
Parameter | Section 3.2.1 | Value | |
8 | vertical base position in | no. 10 | 1–0.1 m below the task |
9 | base position in x-y-plane | no. 10 | 0 (no optimization) |
10 | base rotation | no. 11 | and |
11 | base-joint inclination | no. 1 | (for conic alignment) |
12 | end-effector translation | no. 12 | [0, 0, 0] (no optimization) |
13 | end-effector orientation | no. 13 | (no opt.) |
Load | Value | ||
14 | maximal external forces | = [2, 2, −10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schappler, M. Dimensional Synthesis of Parallel Robots Using Bilevel Optimization for Design Optimization and Resolution of Functional Redundancy. Robotics 2025, 14, 29. https://doi.org/10.3390/robotics14030029
Schappler M. Dimensional Synthesis of Parallel Robots Using Bilevel Optimization for Design Optimization and Resolution of Functional Redundancy. Robotics. 2025; 14(3):29. https://doi.org/10.3390/robotics14030029
Chicago/Turabian StyleSchappler, Moritz. 2025. "Dimensional Synthesis of Parallel Robots Using Bilevel Optimization for Design Optimization and Resolution of Functional Redundancy" Robotics 14, no. 3: 29. https://doi.org/10.3390/robotics14030029
APA StyleSchappler, M. (2025). Dimensional Synthesis of Parallel Robots Using Bilevel Optimization for Design Optimization and Resolution of Functional Redundancy. Robotics, 14(3), 29. https://doi.org/10.3390/robotics14030029