
Academic Editor: Dan Zhang

Received: 12 November 2024

Revised: 23 December 2024

Accepted: 25 December 2024

Published: 27 December 2024

Citation: Laryushkin, P.; Antonov, A.;

Fomin, A.; Fomina, O. Inverse and

Forward Kinematics and CAD-Based

Simulation of a 5-DOF Delta-Type

Parallel Robot with Actuation

Redundancy. Robotics 2025, 14, 1.

https://doi.org/10.3390/

robotics14010001

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

robotics

Article

Inverse and Forward Kinematics and CAD-Based Simulation of
a 5-DOF Delta-Type Parallel Robot with Actuation Redundancy
Pavel Laryushkin 1,* , Anton Antonov 2 , Alexey Fomin 2 and Oxana Fomina 2

1 Department of Fundamentals of Machine Design, Bauman Moscow State Technical University (BMSTU),
105005 Moscow, Russia

2 Mechanisms Theory and Machines Structure Laboratory, Mechanical Engineering Research Institute of the
Russian Academy of Sciences (IMASH RAN), 101000 Moscow, Russia; antonov.av@imash.ru (A.A.);
alexey-nvkz@mail.ru (A.F.); soa2@mail.ru (O.F.)

* Correspondence: pav.and.lar@bmstu.ru

Abstract: This article introduces a novel modification of a Delta-type parallel robot.
The robot has five degrees of freedom and provides its end-effector with a 3T2R mo-
tion pattern (three translational and two rotational degrees of freedom). The fifth degree
of freedom (rotation) is kinematically decoupled from the other four motions, and it is
controlled by two drives. Thus, the proposed robot has a redundant actuation. In this
article, we present an algorithm to solve the inverse kinematics of this robot and apply it to
a path modeling example of a spiral-like trajectory. Numerical simulations illustrate the
algorithm and show how the actuated coordinates change along the considered trajectory.
Forward kinematics follows next, and an approach is introduced to determine all end-
effector configurations for the specified displacements in the actuated joints. A numerical
example presents four assembly modes of the robot corresponding to four real solutions
of the forward kinematic problem. Finally, this article demonstrates a computer-aided
design and analysis of the proposed robot: we describe a procedure for analyzing inverse
kinematics and calculating actuation torques. This study forms the basis for the future
manufacturing and experimental analysis of a robot prototype.

Keywords: redundantly actuated parallel robot; Delta-type robot; 5-DOF manipulation;
3T2R motion pattern; inverse kinematics; forward kinematics; computer-aided design and
analysis; inverse dynamics

1. Introduction
The Delta robot, proposed by Clavel [1] in the 1980s, has become one of the most

commercially and technologically successful parallel robots. This robot can have either
rotational or linear drives. In the latter case, carriages, driven by a ball screw or belt
drive, move along linear guides, which usually have a horizontal, vertical, or inclined
orientation [2]. The inclined axes of the actuated joints were also used in Delta-type
robots with rotational drives. An example of such a robot is NUWAR [3]. The inclined
axes provided this robot with greater workspace dimensions compared with the original
model [1]. Papers [4,5] present other Delta-type robots with inclined axes.

With its simple design and high-performance capabilities, the Delta robot is attractive
to numerous researchers and has served as a prototype for various mechanisms and
devices, including Linapod [6], the H4 robot [7], Orthoglide [8], the I4 robot [9], the Eureka
robot [10], Delta Keops [2], the Par4 robot [11], the Heli4 robot [12], and Delthaptic [13].
Although the Delta robot was initially proposed for high-speed pick-and-place operations,
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mechanisms with identical or similar structures have found application in other industries,
such as machining [14], medicine [15], additive technologies [16], and high-precision
operations [17].

The Delta-type robots discussed above differ in terms of their design and degrees of
freedom (DOF), determined by their practical realization. Actuation redundancy is another
feature of Delta-type robots that can improve their performance. In this case, a robot has
extra actuated kinematic chains or extra actuators added to its passive joints [18]. In [19],
the authors examined the advantages of actuation redundancy in parallel mechanisms.
These advantages include the exclusion or avoidance of singular configurations, homo-
geneous and symmetric force output, stiffness improvement within the workspace, and
the opportunity to use low-powered drives. Additionally, redundantly actuated systems
remain controllable even if one or more actuators break down.

At the same time, few studies have considered the actuation redundancy in Delta-type
robots. One example is the Eureka robot [10] with three translational and two rotational
DOF (a 3T2R motion pattern) controlled by six drives. It could reach a ±90◦ rotation about
one axis and a complete rotation about another axis. In [20], the authors applied an optimal
redundancy coordination method to another redundantly actuated parallel mechanism.
It relied on a 3-DOF Delta robot coupled with an additional 1-DOF parallel mechanism,
where every kinematic chain was a slider-crank linkage. This system provided redundant
actuation to the vertical translation. Paper [21] used actuation redundancy to obtain high
accelerations in Delta-type robots with 3T and 3T1R motion patterns. High accelerations
are critical for rapid pick-and-place operations, the primary application of Delta-type
robots. In that study, actuation redundancy was achieved by adding similar actuated
kinematic chains. Paper [22] introduced a haptic device called DELTA-R (formerly known
as DELTA-4). Unlike the classical Delta robot [1], it included two kinematic chains, each
with two drives. Four drives controlled three DOF of the end-effector. Other redundantly
actuated 3-DOF Delta-type robots were studied in [23]. They had symmetric (Sym-RAL
DELTA) and asymmetric (Asym-RAL DELTA) structures with horizontal linear guides,
which supported four kinematic chains with driving carriages. These designs enlarged the
workspace by singularity-free mode changes. Paper [24] showed a 3-DOF robot, where
every kinematic chain had an additional actuated link. Six drives controlled three trans-
lational DOF of the end-effector. This structure provided the robot with reconfigurability
that enlarged its workspace. The authors of [25] considered a Delta-type robot with a 3T1R
motion pattern. It included six actuated kinematic chains with linear guides, where two
chains used parallelogram linkages. The robot end-effector rotated for more than 90◦.

The review above showed that redundantly actuated Delta-type robots generally had
three DOF (a 3T motion pattern) or four DOF (a 3T1R motion pattern). We have found only
one model with another mobility, equal to five (the Eureka robot). On the other hand, the
additional DOF can significantly extend the practical applications of such systems. In this
regard, we propose a new 5-DOF Delta-type robot with actuation redundancy. The major
contributions of this paper include developing the kinematic algorithms for this novel
robot, which provide closed-form solutions to both the inverse and forward kinematic
problems. In addition, we present a computer-aided design (CAD) model of the robot and
perform dynamic simulations using CAD tools.

The rest of this article has the following structure. Section 2 describes the design of the
proposed robot. Sections 3 and 4 consider its inverse and forward kinematics, respectively.
Section 5 presents a computer model of the robot and solves the inverse dynamic problem
using CAD software. Section 6 discusses the obtained results and proposed algorithms.
Section 7 recaps the paper and mentions directions for future studies.
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2. Robot Design
Figure 1 depicts the considered robot. It has four kinematic chains (branches) of two

different types. Let i = 1, . . . , 4 be an index number of a branch. Each branch connects
to the base with carriage Ai, which translates vertically. In branches 1 and 4, the carriage
is followed by parallelogram BiB∗

i C∗
i Ci with spherical joints in its vertices. One (shorter)

side of this parallelogram is rigidly connected to the carriage, while the opposite side is
connected to the moving plate. Branches 2 and 3 utilize single rod BiCi with two spherical
joints on their ends instead of a parallelogram. Branches 1 and 4 also include auxiliary
drives (motors) Mr and Ml , respectively. These motors are connected to the tilt axis of the
end-effector (tool) EF with pairs of universal joints U1r, U2r and U1l , U2l , respectively.

Figure 1. Schematic design of the considered robot.

The robot design provides its end-effector with five degrees of freedom: three transla-
tions and two rotations. This motion pattern can be verified by looking at the constraints
imposed by the branches. Branch 1 imposes two constraints on the moving plate, per-
mitting three translational motions and only one rotation around the axis parallel to the
shorter side of the parallelogram. Since branch 4 is placed directly opposite branch 1,
it provides the same constraints. Branches 2 and 3 do not constrain the motion of the
moving plate. Therefore, the moving plate of the robot has four DOFs (a more detailed and
formal explanation based on the screw theory can be found in paper [26]). The second rota-
tion (around the U2rU2l axis) is kinematically decoupled from the four above-mentioned
motions. Any external load (torque) corresponding to this DOF is resisted only by the
motor that performs this rotation. To compensate for this drawback and distribute the load
between two auxiliary branches, we use two motors—Mr and Ml—which simultaneously
control the rotation. Actuation redundancy also helps in situations in which one of the
auxiliary branches is in a singular configuration (as discussed at the end of Section 3.1).

In the proposed design, the end-effector is attached to the moving plate by a revolute
joint, and the plate forms a parallel mechanism with the base. Thus, the robot structure can
be classified as a hybrid one. There are several Delta-type robots with a similar structure,
for example, Eureka [10], Par4 [11], or Heli4 [12], where the end-effector also rotates relative
to the moving plate. In these works, the authors considered their robots to be parallel.
We follow the same convention and refer to the proposed robot as a parallel one.
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This design is motivated by the outstanding performance of Delta-type robots, whose
branches experience only the tensile loads. Therefore, expanding the capabilities of the
Delta robot by introducing new rotational DOF is an interesting and relevant scientific
problem. The proposed design can also be modified into a 6-DOF one by adding a central
driving rod, like in the original Delta robot [1]. However, certain applications (e.g., ma-
chining) do not need the sixth DOF because it is realized by the rotation of the tool or
the workpiece.

In the literature, we found only one similar Delta-type robot with redundant actuation.
This is the Eureka robot designed by Krut et al. [10]. Its end-effector also has five DOF
and a 3T2R motion pattern, but one rotational DOF differs from the robot we propose
here. In Eureka, the tool rotates about its own axis and cannot tilt relative to the moving
plate. As we discussed in the paragraph above, we often do not need this tool rotation
because it can be provided by other means. Our design also does not use any additional
transmission mechanisms, except for the two auxiliary branches—this is another advantage
of the proposed robot. In contrast, Eureka does not have a solid moving plate and uses a
rack and pinion transmission to achieve the end-effector rotation. This design increases
the weight of the moving elements and worsens the robot positioning accuracy because
of the inevitable backlash in the rack and pinion transmission. Thus, we believe the
proposed robot has some advantages over Eureka and meets the concept of the light-weight
Delta robot.

3. Inverse Kinematics
We start the kinematic analysis of the robot with its inverse kinematics. The inverse

kinematic problem aims to compute actuated coordinates for a given configuration of
the robot end-effector. This problem is essential for robot control because it allows the
desired end-effector trajectory to be converted into the controlled motion of the actua-
tors. In this section, we first present an algorithm to find a closed-from solution to the
inverse kinematics, and then, we consider an example of a trajectory simulation using the
proposed algorithm.

3.1. Solution Method

Let x, y, and z be the coordinates of the end-effector (point F) in stationary reference
frame Oxyz, and φt and φp be the tilt angles of the tool and the moving plate, respectively.
The goal of the inverse kinematics is to calculate position hi of each carriage and rotation
angles θr and θl of both the right and left auxiliary drives (Figure 2).

Figure 2. Rotation angles in the auxiliary legs and tilt angles of the moving plate and end-effector.
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Denoting a distance between points E and F as lEF and a distance between points D
and E as lDE, we first find coordinates xD, yD, and zD of point D:

xD = x + lEF cos(φt) sin(φp),

yD = y − lEF sin(φt) + lDE,

zD = z + lEF cos(φt) cos(φp).

(1)

Then, we compute coordinates xCi, yCi, and zCi of point Ci:xCi

yCi

zCi

 =

xD

yD

zD

+

 cos(φp) 0 sin(φp)

0 1 0
− sin(φp) 0 cos(φp)


x′Ci

y′Ci
z′Ci,

, (2)

where x′Ci, y′Ci, and z′Ci are the coordinates of point Ci in moving reference frame Dx′y′z′.
A distance between points Bi and Ci remains constant, therefore:

l2
BiCi = (xCi − xBi)

2 + (yCi − yBi)
2 + (zCi − zBi)

2, (3)

where lBiCi is the length of rod BiCi; xBi, yBi, and zBi are the coordinates of point Bi.
One can see that hi = zBi and parameters xBi and yBi depend only on the robot

geometry. Thus, the value of hi can be calculated as follows:

hi = ±
√

l2
BiCi − (xCi − xBi)2 − (yCi − yBi)2 + zCi. (4)

The next step is to find the rotation angles of the auxiliary drives. It is well-known
that a single universal joint cannot maintain a constant angular speed of its output shaft
if it is not collinear with the input shaft. Let α be an angle between the axes of the input
and output shafts. Depending on the initial configuration of the universal joint, the relation
between input rotation angle γ1 and output rotation angle γ2 can be expressed by the
following equations [27] (ch. 1):

tan(γ1) = cos(α) tan(γ2), (5)

if the yoke input shaft is in the plane spanned by the input and output shafts, or

tan(γ1) =
tan(γ2)

cos(α)
, (6)

if the yoke input shaft is orthogonal to this plane (Figure 3).

(a) (b)1

2

1

2

Figure 3. Two different initial configurations of the universal joint: (a) the yoke input shaft lies in the
plane spanned by the input and output shafts; (b) the yoke input shaft is orthogonal to this plane.

When two consecutive universal joints are used to transmit a rotational motion via the
intermediate shaft, the so-called “phasing” is used. Two universal joints are phased if the
output shaft of the first yoke is coplanar with the input shaft of the second yoke (Figure 4).
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1

2

1

2
3

Figure 4. An example of two universal joints used consecutively.

In the arrangement shown in Figure 4, we can obtain the relation between input
angle γ1 and output angle γ3 using Equations (5) and (6):

tan(γ1) = tan(γ3)
cos(α1)

cos(α2)
. (7)

This arrangement is widely used because it compensates for angular speed fluctuations
when the input and the output shafts are parallel. Indeed, Equation (7) shows that α1 = α2

in this case, and γ1 = γ3.
The discussed robot has two auxiliary branches, each with two consecutive universal

joints. In general, the input and output shafts of these branches will not be parallel.
Equation (7) will not be convenient in this case because of the ambiguity that arises if
cos(α2) = 0. Therefore, we will use non-phased joints in the auxiliary branches, for which
the output shaft of the first yoke is orthogonal to the input shaft of the second yoke. Using
the notations introduced in Figure 2 and applying Equation (5) twice, we can write:

tan(θr) = tan(φt) cos(β1r) cos(β2r), tan(θl) = tan(φt) cos(β1l) cos(β2l), (8)

from where

θr = tan−1(tan(φt) cos(β1r) cos(β2r)), θl = tan−1(tan(φt) cos(β1l) cos(β2l)), (9)

where β1r, β1l , β2r, and β2l are the angles between the shafts according to Figure 2.
Assuming that each rod of the auxiliary branches remains parallel to corresponding

rod BiCi and the tilt axis of the tool remains parallel to C1C4, we can compute angles β1r,
β1l , β2r, and β2l as follows:

β1r = cos−1(|ŝx · ŝB1C1|), β2r = cos−1(|ŝC1C4 · ŝB1C1|),
β1l = cos−1(|ŝx · ŝB4C4|), β2l = cos−1(|ŝC1C4 · ŝB4C4|),

(10)

where ŝx is a unit vector parallel to the Ox axis and ŝB1C1, ŝB4C4, and ŝC1C4 are unit vectors
along the lines that connect the corresponding points.

We have found displacements in all the actuated joints for the given configuration
of the end-effector. Although we resolved the ambiguity of Equation (7) by using the
non-phased joints, a universal joint cannot transmit the rotation if the angle between the
input and output shafts is equal to 90◦. Therefore, if at least one of angles β1r, β1l , β2r, and
β2l is equal to 90◦, the corresponding auxiliary branch will be in a singular configuration.
The actuation redundancy preserves the controllability of the fifth DOF in this case. Even if
one auxiliary branch is in the singular configuration, we can still transmit the rotation to
the end-effector using the second branch. The fifth DOF will be uncontrollable only when
both auxiliary chains are singular, which is not possible in the proposed design.

This concludes the inverse kinematic analysis. The next subsection considers an
example of the inverse kinematics solution for a desired end-effector trajectory.
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3.2. Numerical Example

As an example, we suppose the end-effector has to follow a conical spiral path defined
by the following equations:

x = x0 − qδ cos(δ),

y = y0 − qδ sin(δ),

z = z0 − rδ,

(11)

where x0, y0, and z0 are the coordinates of the starting point; q is a coefficient that regulates
the expansion rate of the spiral; r is a coefficient that regulates the rate of a tool descent
along the path; δ is a varying parameter that defines a point on the trajectory.

We consider the trajectory with the following parameters:

x0 = 0, y0 = −0.045 m, z0 = −0.550 m,

r = (80π)−1 m rad−1, q = 6 × 10−4 m rad−1, 0 ≤ δ ≤ 12π rad.
(12)

With the parameters in Equation (12), the end-effector makes six full turns before
reaching the endpoint at a height of −0.7 m. In addition, at any point of the spiral trajectory,
the end-effector directs to the point with coordinates [0 −0.045 −0.800]T m (Figure 5).

0.2

0.1
 y / m

0.0–0.8

 x / m

–0.1–0.2 –0.1 0.0

–0.6

0.1 0.2

–0.4

–0.2

0.0

 z
 / 

m

–0.8

–0.6

–0.4

–0.2

Figure 5. Simulated trajectory.

The robot dimensions are as follows (in meters):

• length of the links: lA1B1 = . . . = lA4B4 = 0.048, lB1C1 = . . . = lB4C4 = 0.380,
lDE = 0.110, lEF = 0.050; for the parallelograms, lB1B2 = lC1C2 = 0.100;

• coordinates of points Ai and Bi in Oxyz: xA1 = 0.250, yA1 = 0, xB1 = 0.202, yB1 = 0,
xA2 = 0.050, yA2 = 0.250, xB2 = 0.050, yB2 = 0.202, xA3 = −0.050, yA3 = 0.250,
xB3 = −0.050, yB3 = 0.202, xA4 = −0.250, yA4 = 0, xB4 = −0.202, yB4 = 0;

• coordinates of points Ci in Ex′y′z′: x′C1 = 0.080, y′C1 = 0, x′C2 = 0.050, y′C2 = 0.080,
x′C3 = −0.050, y′C3 = 0.080, x′C4 = −0.080, y′C4 = 0, z′C1 = . . . = z′C4 = 0.
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We simulated the trajectory by changing the value of δ with a step of 1◦. For each
trajectory point, we solved the inverse kinematic problem according to the proposed
algorithm. Figures 6 and 7 show the change of the end-effector coordinates and the
actuated coordinates along the simulated path. We can see how the values of h1, . . . , h4

decrease as the moving plate goes down. During this motion, the spiral radius increases,
and the amplitudes of the oscillating movements along the Ox and Oy axes increase too.
This results in similar oscillations in all the actuated coordinates. Thus, the plots in Figure 7
match the end-effector trajectory, so we consider the proposed algorithm to be correct.
In Section 5, we will use this trajectory in the CAD simulations.

0 2: 4: 6: 8: 10: 12:
/ / rad

–0.03
–0.02
–0.01
0.00
0.01
0.02
0.03

 x
 / 

m

0 2: 4: 6: 8: 10: 12:
/ / rad
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–0.06
–0.05
–0.04
–0.03
–0.02
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 / 

m

0 2: 4: 6: 8: 10: 12:
/ / rad

–0.70

–0.65

–0.60

–0.55

 z
 / 

m

0 2: 4: 6: 8: 10: 12:
/ / rad

–15
–10
–5

0
5

10
15

φ t / 
°

0 2: 4: 6: 8: 10: 12:
/ / rad

–15
–10
–5

0
5

10
15

φ p / 
°

Figure 6. The change of the end-effector coordinates along the simulated path.
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Figure 7. The change of the actuated coordinates along the simulated path.
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4. Forward Kinematics
The task of the forward kinematics is to determine the configuration of the end-

effector for the given displacements in the actuated joints. This can be important for the
estimation problem: we can evaluate the end-effector location and orientation from the
sensors, which are generally placed in the actuated joints. For parallel robots, the forward
kinematic problem usually has multiple solutions, the determination of which requires
solving several coupled nonlinear equations. In this section, we first present an approach
that allows us to find all the solutions, and then we study a numerical example.

4.1. Solution Method

For the considered robot, the goal of the forward kinematics is to find parameters x, y,
z, φp, and φt for the known values of hi, i = 1, . . . , 4, θl , and θr. In Section 2, we showed
that the motion of the auxiliary branches did not affect the motion of the moving plate.
Therefore, we first look at the forward kinematics for the moving plate given the values
of hi.

We consider Equation (3) for all i = 1, . . . , 4. It represents a system of four nonlinear
and coupled equations with respect to four variables: xD, yD, zD, and φp. Without loss
of generality, we can use point C4 as a reference point instead of point D and select its
coordinates as variables instead of coordinates of point D: this allows simplifying the
subsequent calculations. We can rewrite Equation (3) as follows:

x2
C4 + y2

C4 + z2
C4 + aixC4 + biyC4 + cizC4 + di = 0, (13)

where coefficients ai, ci, and di for i = 1, 2, 3 are linearly dependent on cos(φp) and sin(φp);
coefficients a4, c4, and d4 are constant and do not depend on φp; coefficients bi are constant
for all i = 1, . . . , 4.

Next, we subtract Equation (13) for i = 4 from the three remaining equations and
obtain a system of three linear equations with respect to variables xC4, yC4, and zC4. We can
represent this linear system in a matrix form:a1 − a4 b1 − b4 c1 − c4

a2 − a4 b2 − b4 c2 − c4

a3 − a4 b2 − b4 c3 − c4


xC4

yC4

zC4

 =

d4 − d1

d4 − d2

d4 − d3

 or Ax = b. (14)

Let Ai, i = 1, 2, 3, designate matrix A whose i-th column is replaced with vector b.
Given this notation, we solve the linear system using Cramer’s rule [28] (ch. 5):

xC4 = F1/F0, yC4 = F2/F0, zC4 = F3/F0, (15)

F0 = det(A) = ∑
j,k=0,1,2
j+k≤2

f0jkcj
φsk

φ, F1 = det(A1) = ∑
j,k=0,1,2
j+k≤2

f1jkcj
φsk

φ,

F2 = det(A2) = ∑
j,k=0,...,3

j+k≤3

f2jkcj
φsk

φ, F3 = det(A3) = ∑
j,k=0,1,2
j+k≤2

f3jkcj
φsk

φ.
(16)

In the expressions above, coefficients f0jk, f1jk, f2jk, and f3jk have known and constant
values; cφ and sφ are shorthands for cos(φp) and sin(φp), respectively. Note that F0, F1,
and F3 are quadratic in cφ and sφ, while F2 is cubic because the second column of matrix A
has constant elements, and two other columns depend linearly on cφ and sφ.

Now, we substitute Equation (15) into Equation (13) for i = 4. Suppose F0 ̸= 0 (we
will examine the case F0 = 0 in Section 6). The equation transforms into the following one:
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F2
1 + F2

2 + F2
3 + a4F1F0 + b4F2F0 + c4F3F0 + d4F2

0 = 0, (17)

which, if we substitute Equation (16), is equivalent to:

∑
j,k=0,...,6

j+k≤6

gjkcj
φsk

φ = 0, (18)

where coefficients gjk have known and constant values.
Equation (18) is a sextic polynomial equation with respect to cφ and sφ. We can

transform it to an equation with respect to single variable t by applying the tangent
half-angle substitution: cφ = (1 − t2)/(1 + t2), sφ = 2t/(1 + t2), where t = tan(φy/2).
Substituting these expressions into Equation (18) and using MATLAB symbolic toolbox,
we find a factorized polynomial equation:

(
t2 + 1

)2 8

∑
j=0

k jtj = 0, (19)

where coefficients k j have known and constant values.
Considering the second factor of Equation (19), we see it is an eighth-degree poly-

nomial equation, the solutions of which provide up to eight different values of angle φp.
Having found φp, we calculate F0, . . . , F3, determine variables xC4, yC4, and zC4 from Equa-
tion (15), and compute coordinates xD, yD, and zD of point D using Equation (2) for i = 4.
Thus, we have solved the forward kinematic problem for the moving plate.

To find coordinates x, y, and z of end-effector point F, we can apply Equation (1). This
equation requires a value of φt, which we find from any expression of Equation (8). Thus,
we have found all the coordinates that define the end-effector configuration. This concludes
the forward kinematics for the considered robot. In the following subsection, we consider
an example of solving the forward kinematic problem.

4.2. Numerical Example

To verify the proposed algorithm, we consider an example of forward kinematic
analysis for the same geometrical parameters of the robot as in Section 3.2. First, we
solved the inverse kinematics for the following values of the parameters that define the
end-effector configuration:

x = −0.0188 m, y = −0.0447 m, z = −0.6749 m,

φp = −8.5647◦, φt = −0.1506◦.
(20)

The values above correspond to the robot configuration depicted in Figure 5. Using
the algorithm presented in Section 3.1, we computed the following displacements in the
actuated joints (accurate to ten-thousandths):

h1 = −0.2703 m, h2 = −0.2432 m, h3 = −0.2580 m, h4 = −0.2758 m,

θr = −0.0309◦, θl = −0.0042◦.
(21)

Next, we solved the forward kinematics for the values above. Applying the algorithm
from Section 4.1, we found four different real solutions of Equation (19) that related to four
different assembly modes. Figure 8 shows these assembly modes, and Table 1 enumerates the
corresponding solutions. We see solution #4 is identical to the values in Equation (20)—this
verifies the correctness of the proposed algorithm. Solutions #1 and #2 show the plate inverted,
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and solution #3 corresponds to the moving plate position above the carriages. In practice,
these three assembly modes will probably be unreachable because of the robot design.

#1 #2

#3 #4

Figure 8. Four assembly modes of the robot that correspond to four solutions of the forward
kinematics (Table 1).

Table 1. Solutions to the forward kinematics.

Solution # 1 2 3 4

x/m 0.0015 0.0325 0.0338 −0.0188
y/m −0.2957 −0.3438 −0.1740 −0.0447
z/m −0.4024 −0.1129 0.0303 −0.6749
φp/deg −164.8200 −156.1800 −8.5710 −8.5647
φt/deg −0.1506 −0.1506 −0.1506 −0.1506

5. CAD Simulation
This section simulates the inverse kinematics and dynamics of the robot by applying

CAD tools. The latter allows for the calculation of the motor torques for the prescribed
end-effector trajectory. Using the obtained results, we can confirm the selection of the
drives or choose the other ones. The advantages of this CAD simulation are its quickness,
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simplicity, and accuracy, because we consider both the material properties and the complex
shape of robot elements.

Figure 9 illustrates a computer model of the robot designed in SolidWorks software [29].
The motion range of the robot end-effector along the Ox, Oy, and Oz axes is 0.297 m, 0.324 m,
and 0.424 m, respectively. The moving plate can tilt for ±36◦, and the end-effector rotation
range relative to this plate is 345◦. The base plate, top plate, moving plate, and carriages
are made of aluminum alloy. Four vertical columns represent an extruded profile, and each
column includes two linear rails attached to the carriage. We use a preliminary chosen
Nema 23 stepper motor with a ball screw transmission to actuate each carriage. Similar
motors, installed on the side carriages, control the end-effector rotation via two rods with
universal joints. All rods are made of carbon fiber.

(a) (b) (c)

Figure 9. Computer model of the proposed 5-DOF Delta-type parallel robot with actuation redun-
dancy: (a) isometric view with end-effector trajectory; (b) front view; (c) top view.

The first step is to simulate the inverse kinematics of the mechanism. We suppose
the end-effector moves at a constant speed of 0.046 m/s along the trajectory analyzed
in Section 3.2 and illustrated in Figure 9a. This speed value is selected to achieve a
simulation time equal to 10 s. The results of the kinematic simulation are the values of the
angular displacement, speed, and acceleration of the motors. The simulation, performed
in SolidWorks, shows that the angular displacements are very close to the analytical
computations: the average deviation is less than 1%. This deviation is due to the slight
discrepancies between the analytical trajectory and the one drawn using CAD tools. These
discrepancies are caused by import limitations and different approaches for the linear
approximation of the trajectory in the SolidWorks and MATLAB software.

Since the angular displacements are identical for analytical and CAD simulations,
we use CAD tools instead of the Jacobian analysis to compute angular speeds ω1, . . . , ω5

and accelerations ε1, . . . , ε5 of the motors, which are shown in Figure 10. Note that the
redundant actuation prevents setting two input motions for the drives that control the
end-effector rotation relative to the moving plate. To overcome this issue, only drive Ml

(Figure 1), installed on the left carriage, is considered actuated in this and subsequent
dynamic analyses.
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Figure 10. Computed angular speeds (solid lines) and accelerations (dashed lines) of the motors.

The next step is to simulate inverse dynamics. Table 2 shows the inertial parameters of
the robot movable links, which are used in dynamic computations. The inertia parameters
are defined with respect to the axes and reference frames depicted in Figure 11, where
point s indicates the center of mass of each link. The links shown in Figure 11a,b perform
the translational motion, and Table 2 ignores their moments of inertia. The links shown
in Figure 11c,d,g rotate about the sy, sx, and sz axes, respectively, and Table 2 specifies
the inertia moments about these axes. The remaining links shown in Figure 11e,f,h,i
perform spatial rotations, and Table 2 specifies the inertia matrices about the depicted
reference frames.

(a) (b) (c)

(d) (e) (f) (g) (h) (i)

Figure 11. Robot links and their reference frames and axes for computing inertia parameters: (a) side
carriage; (b) back carriage; (c) moving plate; (d) U-shaped link; (e) yoke; (f) end-effector; (g) screw;
(h) U-rod; (i) S-rod.
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Table 2. Inertial parameters of the movable links of the 5-DOF Delta-type parallel robot.

Link/Group of Links Material Inertia Moment/Matrix/(kg·mm2) Mass/kg

Side carriage with motor (Figure 11a) Aluminum alloy, steel – 3.325

Back carriage with nut and sliders
(Figure 11b) Aluminum alloy, steel – 1.243

Moving plate with joints (Figure 11c) Aluminum alloy, steel 1384.698 0.488

U-shaped link (Figure 11d) ABS plastic 1.485 0.006

Yoke (Figure 11e) Steel

6.711 0 0
0 3.633 0
0 0 3.633


0.043

End-effector (Figure 11f) ABS plastic

2.703 0 0
0 46.717 −0.011
0 −0.011 48.330


0.012

Screw (Figure 11g) Steel 61.061 1.340

U-rod (Figure 11h) Carbon fiber, ABS plastic

396.966 0 0
0 396.966 0
0 0 2.449


0.021

S-rod (Figure 11i) Carbon fiber, steel

1049.613 0 0
0 1049.978 0
0 0 0.698


0.041

After solving the inverse kinematic problem using the SolidWorks software, we import
the obtained results to Autodesk Inventor, where they are used as the input motion for
solving the inverse dynamic problem. As we mentioned before, only the left auxiliary
motor (Ml) is active because of the CAD limitations. We assume that it fully supports any
load applied to the end-effector, while the second drive (Mr) remains passive. As a result,
the computed torque will be higher compared with the redundantly actuated case. Because
the considered end-effector rotation is decoupled from its other motions, we expect the
motor torque will be twice lower in that case.

Figure 12 presents the results of the inverse dynamic simulation. The torque oscilla-
tions in this figure match the end-effector motion along the spiral-like trajectory. Torques τ1

and τ4 in the motors translating the side carriages are higher than torques τ2 and τ3 in
the motors translating the back carriages. This increase is because the side carriages are
equipped with the motors (Figure 11a), and they have higher mass according to Table 2.
The minimum value of each of these torques agrees with the force value required to support
the carriage weight (we consider the screws with a pitch of 5 mm). Torque τl of motor Ml ,
which rotates the end-effector relative to the moving plate, is greater than torques τ1, . . . , τ4,
because this motor operates without a ball screw transmission or any other reducer. In prac-
tice, we expect to obtain the lower values of torque τl because of the redundant actuation,
as discussed in the preceding paragraph. However, even with these high torque values, the
preliminary chosen stepper motors (Nema 23) are suitable for the considered robot.



Robotics 2025, 14, 1 15 of 18

0 1 2 3 4 5 6 7 8 9 10
time / s

25

30

35

40

45

= 1 / 
(N
"m

m
)

0 1 2 3 4 5 6 7 8 9 10
time / s

5
10
15
20
25
30

= 2 / 
(N
"m

m
)

0 1 2 3 4 5 6 7 8 9 10
time / s

5
10
15
20
25
30

= 3 / 
(N
"m

m
)

0 1 2 3 4 5 6 7 8 9 10
time / s

25

30

35

40

45

= 4 / 
(N
"m

m
)

0 1 2 3 4 5 6 7 8 9 10
time / s

110
112
114
116
118
120

= 5 / 
(N
"m

m
)

Figure 12. Computed motor torques.

6. Discussion
Most of the current research has considered the kinematic analysis of a novel 5-DOF

Delta-type robot, and here, we discuss some issues of this analysis. The algorithm for
solving the inverse kinematic problem is straightforward: we should only check that the
considered configuration of the robot belongs to its workspace to avoid complex solutions
of Equation (4). The forward kinematics is more challenging to solve. The method we
used to address this problem resembles familiar elimination approaches [30–32], applied to
Delta-type robots as well [12,33,34]. Unlike most of these works, we do not need to compute
a resultant of polynomial equations to obtain the final Equation (19), which simplifies the
elimination procedure. At the same time, the forward kinematics has several caveats.

When we derived Equation (18), we assumed F0 ̸= 0. In this case, we compute
different values of angle φp following the developed algorithm. Parameter F0 depends on
this angle, and we cannot certify that all the obtained solutions do not make it equal to
zero. If F0 = 0 for some angle φp, we cannot use Equation (14) to find xC4, yC4, and zC4,
because matrix A degenerates. To solve the forward kinematics, we should consider two
independent linear equations of Equation (14) and quadratic Equation (13): we can get one
quadratic equation with respect to a single variable by eliminating two others using the
linear equations. In this case, we get two different moving plate configurations for a single
value of angle φp. For example, with the “symmetrical” geometry considered in Section 3.2
and with h1 = . . . = h4, we have solution φp = 0 (the moving plate is horizontal), which
makes F0 = 0. Using the procedure above, we obtain two configurations of the moving
plate for this angle: when it is above or below the carriages. If the rank of matrix A drops
by two, there are no three independent equations to find xC4, yC4, and zC4. As a result, the
forward kinematic problem has an infinite number of solutions, and the robot is probably
in a singular configuration—this analysis is beyond the current article. However, we note
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that the robot singularities only depend on the configuration of its 4-DOF part. This is
because the fifth DOF (the end-effector rotation) is decoupled from other motions, and
configurations of the two auxiliary branches do not affect the 4-DOF part of the robot and
its singularities, which were studied in [26].

Finally, we also cannot guarantee that the eighth-degree polynomial Equation (19)
has eight real solutions corresponding to eight different assembly modes of the robot.
Furthermore, even if we obtain eight real solutions of this equation, we cannot assert that
F0 ̸= 0 for all the solutions. These problems are beyond the scope of this article, and we
will consider them in the future.

7. Conclusions
This article has studied a novel 5-DOF redundantly actuated Delta-type parallel robot.

The robot end-effector has three translational and two rotational DOFs, and one rotation is
controlled by two drives. This redundant actuation makes the robot design symmetrical
and helps distribute the load between the drives more evenly.

First, we have developed the algorithm to solve the inverse kinematic problem. The al-
gorithm provides us with a closed-form solution to this problem, which was illustrated
with the trajectory simulation example. Next, we have considered the forward kinematics
of the robot. We have proposed a procedure that reduces this problem to solving the
eighth-degree polynomial equation. Its roots correspond to various assembly modes of
the robot. The numerical example has presented a case with four real solutions and four
assembly modes. Determining the maximum possible number of these modes is an open
issue that we will solve in the future.

Finally, we have used SolidWorks and Autodesk Inventor to design a computer model
of the robot and perform inverse kinematic and dynamic simulations. The CAD tools
simplify dynamic computations and allow us to consider complex shapes and inertial
parameters of the robot links as accurately as possible. As an example, we have solved the
inverse dynamic problem and computed the motor torques required to follow the spatial
trajectory analyzed in the inverse kinematics.

The proposed kinematic algorithms represent the basis for workspace analysis and
singularity determination of the robot, which will be performed in future studies. These
techniques can be adapted to other parallel robots as well. We will also use the results of
CAD simulations to create a physical prototype of the discussed robot.
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