Advances in Recycling Technologies of Critical Metals and Resources from Cathodes and Anodes in Spent Lithium-Ion Batteries
<p>(<b>a</b>) Applications of lithium-ion batteries; (<b>b</b>) The shape and components of some Li-ion battery configurations; (<b>c</b>) Flow-chart showing the typical recycling process; (<b>d</b>) Schematic diagram of the LIB working principle.</p> "> Figure 2
<p>Schematic diagrams of pyrometallurgy, hydrometallurgy, and direct recovery processes [<a href="#B48-separations-12-00004" class="html-bibr">48</a>].</p> "> Figure 3
<p>Characteristics of different pyrometallurgical technologies used to treat spent LIBs for the recovery of strategic metals.</p> ">
Abstract
:1. Introduction
2. Composition and Pretreatment of LIBs
2.1. Composition
2.2. Pretreatment
2.2.1. Discharge Process
2.2.2. Disassembly and Separation
3. Recycling of Anode Electrode Materials
4. Recycling of Cathode Electrode Materials
4.1. Hydrometallurgy
4.1.1. Leaching
4.1.2. Separation and Recovery of Valuable Elements from Leaching Solutions
Method | Condition | Result | Ref. |
---|---|---|---|
Solvent extraction | Separation factor of Co and Li(βCo/Li): 102.11 in 0.5 M HCl at 60 °C | 90.5% Co, 86.2% Li | [107] |
100 g/L D2EHPA, pH = 2.7 | 84% Mn | [108] | |
1%vol H2O2, D2EHPA, 90 °C, 25 g/L | 99.6% Co, 98.7% Ni, 95.4% Cu, 99.5% Mn | [109] | |
75 vol% D2EHPA 6h, 80 °C, 25 g/L | 70% Co, 90% Li | [110] | |
D2EHPA and Cyanex 272, 50 g/L, 80 °C, 4 h | 99.9% CoSO4·H2O | [111] | |
Chemical precipitation | Na2CO3 for precipitating Li at 95 °C | 95% Li | [112] |
Adjust pH to 5 to precipitate Mn Adjust pH to 13 to precipitate Li | 93.6% Mn, 96.9% Li | [113] | |
48 h, 3.5 V, 90 °C, 10g/L, different pH | Co and Li 100% | [114] | |
LiOH, pH = 13, 40 °C, 45 min | Ni > 98%, and Co, Mn > 91% | [115] | |
Oxidizing agent S2O82− and the precipitant OH−, different pH | 99% Mn, 97.06% Co, 96.62% Ni | [116] | |
Other methods | Ammonia leaching, sol-gel | Energy density of LA achieves 924.38 Wh·kg−1 | [105] |
D,L-malic acid and H2O2 leaching, sol-gel | Energy density achieves 602.73 Wh·kg−1 | [117] | |
Electrodeposited on nickel foam | Reaching 90% with excellent cycling stability after 10,000 cycles | [118] | |
Density of 40 mA/m, 70 °C and pH = 2.5 | 99.40% Ni, 91% Co, 90.68% Mn, 85.59% Li, 89.55% Cu | [106] |
4.2. Pyrometallurgy
4.3. Direct Recycling
4.4. Other New Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Wang, Z.P.; Shen, Z.J.M.; Sun, F.C. Assessment of battery utilization and energy consumption in the large-scale development of urban electric vehicles. Proc. Natl. Acad. Sci. USA 2021, 118, e2017318118. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Luo, S.; Zhang, L.; Liu, Q.; Wang, Y.; Lin, Y.; Xu, C.; Guo, J.; Cheali, P.; Xia, X. Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review. J. Energy Chem. 2024, 89, 144–171. [Google Scholar] [CrossRef]
- Shafique, M.; Rafiq, M.; Azam, A.; Luo, X. Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China. Resour. Conserv. Recycl. 2022, 178, 106061. [Google Scholar] [CrossRef]
- Melin, H.E.; Rajaeifar, M.A.; Ku, A.Y.; Kendall, A.; Harper, G.; Heidrich, O. Global implications of the EU battery regulation. Science 2021, 373, 384–387. [Google Scholar] [CrossRef]
- Hampton, S.; Fawcett, T.; Rosenow, J.; Michaelis, C.; Mayne, R. Evaluation in an Emergency: Assessing Transformative Energy Policy amidst the Climate Crisis Comment. Joule 2021, 5, 285–289. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, X.-W.; Liu, X.; Gu, Q.; Mu, J.; Luo, W.-B. Economical and Ecofriendly Lithium-Ion Battery Recycling: Material Flow and Energy Flow. ACS Sustain. Chem. Eng. 2024, 12, 2511–2530. [Google Scholar] [CrossRef]
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 12, 2102917. [Google Scholar] [CrossRef]
- Yu, L.Y.; Liu, X.B.; Feng, S.S.; Jia, S.Z.; Zhang, Y.; Zhu, J.X.; Tang, W.W.; Wang, J.K.; Gong, J.B. Recent progress on sustainable recycling of spent lithium-ion battery: Efficient and closed-loop regeneration strategies for high-capacity layered NCM cathode materials. Chem. Eng. J. 2023, 476, 146733. [Google Scholar] [CrossRef]
- Zhu, X.H.; Li, Y.J.; Gong, M.Q.; Mo, R.; Luo, S.Y.; Yan, X.; Yang, S. Recycling Valuable Metals from Spent Lithium-Ion Batteries Using Carbothermal Shock Method. Angew. Chem. Int. Ed. 2023, 62, e202300074. [Google Scholar] [CrossRef]
- Yi, C.; Zhou, L.; Wu, X.; Sun, W.; Yi, L.; Yang, Y. Technology for recycling and regenerating graphite from spent lithium-ion batteries. Chin. J. Chem. Eng. 2021, 39, 37–50. [Google Scholar] [CrossRef]
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Liu, N.N.; Hu, F.; Ye, L.G.; Xi, Y.; Yang, S.H. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag. 2018, 75, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Miranda, D.; Gören, A.; Costa, C.M.; Silva, M.M.; Almeida, A.M.; Lanceros-Méndez, S. Theoretical simulation of the optimal relation between active material, binder and conductive additive for lithium-ion battery cathodes. Energy 2019, 172, 68–78. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, G.; Liu, F.; Yue, X.; Chen, Z. Resolving the Compositional and Structural Defects of Degraded LiNixCoyMnzO2 Particles to Directly Regenerate High-Performance Lithium-Ion Battery Cathodes. ACS Energy Lett. 2018, 3, 1683–1692. [Google Scholar] [CrossRef]
- Jin, S.; Mu, D.; Lu, Z.; Li, R.; Liu, Z.; Wang, Y.; Tian, S.; Dai, C. A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. J. Clean. Prod. 2022, 340, 130535. [Google Scholar] [CrossRef]
- Or, T.; Gourley, S.W.D.; Kaliyappan, K.; Yu, A.P.; Chen, Z.W. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy 2020, 2, 6–43. [Google Scholar] [CrossRef]
- Tian, H.; Graczyk-Zajac, M.; Kessler, A.; Weidenkaff, A.; Riedel, R. Recycling and Reusing of Graphite from Retired Lithium-ion Batteries: A Review. Adv. Mater. 2024, 36, 2308494. [Google Scholar] [CrossRef]
- Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886. [Google Scholar] [CrossRef]
- Costa, C.M.; Barbosa, J.C.; Gonçalves, R.; Castro, H.; Campo, F.J.D.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Xiao, J.F.; Guo, J.; Zhan, L.; Xu, Z.M. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. J. Clean. Prod. 2020, 255, 120064. [Google Scholar] [CrossRef]
- Zheng, R. The Resynthesis and Reuse from Materials of Spent Lithium Ion Batteries of Phosphate and Mixture. Ph.D. Dissertation, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Grandjean, T.R.B.; Groenewald, J.; Marco, J. The experimental evaluation of lithium ion batteries after flash cryogenic freezing. J. Energy Storage 2019, 21, 202–215. [Google Scholar] [CrossRef]
- Yao, L.P.; Zeng, Q.; Qi, T.; Li, J. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. J. Clean. Prod. 2020, 245, 118820. [Google Scholar] [CrossRef]
- Makuza, B.; Tian, Q.; Guo, X.; Chattopadhyay, K.; Yu, D. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources 2021, 491, 229622. [Google Scholar] [CrossRef]
- Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeong, J.; Kim, K.; Dong, P.; Kwon, K. A comprehensive review on the pretreatment process in lithium-ion battery recycling. J. Clean. Prod. 2021, 294, 126329. [Google Scholar] [CrossRef]
- Zhang, X.X.; Li, L.; Fan, E.S.; Xue, Q.; Bian, Y.F.; Wu, F.; Chen, R.J. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev. 2018, 47, 7239–7302. [Google Scholar] [CrossRef]
- Zhang, T.; He, Y.Q.; Ge, L.H.; Fu, R.S.; Zhang, X.; Huang, Y.J. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries. J. Power Sources 2013, 240, 766–771. [Google Scholar] [CrossRef]
- Diekmann, J.; Hanisch, C.; Froböse, L.; Schälicke, G.; Loellhoeffel, T.; Fölster, A.S.; Kwade, A. Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with Focus on Mechanical Processes. J. Electrochem. Soc. 2017, 164, A6184–A6191. [Google Scholar] [CrossRef]
- Zhou, L.F.; Yang, D.R.; Du, T.; Gong, H.; Luo, W.B. The Current Process for the Recycling of Spent Lithium Ion Batteries. Front. Chem. 2020, 8, 578044. [Google Scholar] [CrossRef]
- Silveira, A.V.M.; Santana, M.P.; Tanabe, E.H.; Bertuol, D.A. Recovery of valuable materials from spent lithium ion batteries using electrostatic separation. Int. J. Miner. Process. 2017, 169, 91–98. [Google Scholar] [CrossRef]
- Zhong, X.H.; Liu, W.; Han, J.W.; Jiao, F.; Zhu, H.L.; Qin, W.Q. Pneumatic separation for crushed spent lithium-ion batteries. Waste Manag. 2020, 118, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Vanderbruggen, A.; Hayagan, N.; Bachmann, K.; Ferreira, A.; Werner, D.; Horn, D.; Peuker, U.; Serna-Guerrero, R.; Rudolph, M. Lithium-Ion Battery Recycling-Influence of Recycling Processes on Component Liberation and Flotation Separation Efficiency. Acs Es&T Eng. 2022, 2130–2141. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.Y.; Lin, S.L.; Li, Z.Q.; Chen, Y.Q.; Wang, C.Y. Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review. Environ. Res. 2024, 247, 118216. [Google Scholar] [CrossRef]
- Yang, Y.; Song, S.L.; Lei, S.Y.; Sun, W.; Hou, H.S.; Jiang, F.; Ji, X.B.; Zhao, W.Q.; Hu, Y.H. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. Waste Manag. 2019, 85, 529–537. [Google Scholar] [CrossRef]
- Ma, X.T.; Chen, M.Y.; Chen, B.; Meng, Z.F.; Wang, Y. High-Performance Graphite Recovered from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 19732–19738. [Google Scholar] [CrossRef]
- Fan, W.W.; Zhang, J.L.; Ma, R.X.; Chen, Y.Q.; Wang, C.Y. Regeneration of graphite anode from spent lithium-ion batteries via microwave calcination. J. Electroanal. Chem. 2022, 908, 116087. [Google Scholar] [CrossRef]
- Cao, N.; Zhang, Y.L.; Chen, L.L.; Chu, W.; Huang, Y.G.; Jia, Y.; Wang, M. An innovative approach to recover anode from spent lithium-ion battery. J. Power Sources 2021, 483, 229163. [Google Scholar] [CrossRef]
- Li, P.; Luo, S.; Lin, Y.; Xiao, J.; Xia, X.; Liu, X.; Wang, L.; He, X. Fundamentals of the recycling of spent lithium-ion batteries. Chem. Soc. Rev. 2024, 53, 11967–12013. [Google Scholar] [CrossRef]
- Yang, J.B.; Fan, E.S.; Lin, J.; Arshad, F.; Zhang, X.D.; Wang, H.Y.; Wu, F.; Chen, R.J.; Li, L. Recovery and Reuse of Anode Graphite from Spent Lithium-Ion Batteries via Citric Acid Leaching. ACS Appl. Energy Mater. 2021, 4, 6261–6268. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, C.Y.; Zhang, J.L.; Jing, Q.K.; Ma, B.Z.; Chen, Y.Q.; Zhang, W.J. Graphite Recycling from the Spent Lithium-Ion Batteries by Sulfuric Acid Curing-Leaching Combined with High-Temperature Calcination. Acs Sustain. Chem. Eng. 2020, 8, 9447–9455. [Google Scholar] [CrossRef]
- Ruan, D.S.; Wang, F.M.; Wu, L.; Du, K.; Zhang, Z.H.; Zou, K.; Wu, X.F.; Hu, G.R. A high-performance regenerated graphite extracted from discarded lithium-ion batteries. New J. Chem. 2021, 45, 1535–1540. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.L.; Jin, H.; Liang, G.Q.; Ma, L.N.; Chen, Y.Q.; Wang, C.Y. Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment. Carbon 2022, 189, 493–502. [Google Scholar] [CrossRef]
- Hou, D.H.; Guo, Z.Z.; Wang, Y.; Hou, X.H.; Yi, S.S.; Zhang, Z.T.; Hao, S.J.; Chen, D.L. Microwave-assisted reconstruction of spent graphite and its enhanced energy-storage performance as LIB anodes. Surf. Interfaces 2021, 24, 101098. [Google Scholar] [CrossRef]
- Yang, K.; Gong, P.Y.; Tian, Z.L.; Lai, Y.Q.; Li, J. Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes. J. Clean. Prod. 2020, 261. [Google Scholar] [CrossRef]
- Bai, X.; Sun, Y.; Li, X.; He, R.; Liu, Z.; Pan, J.; Zhang, J. A Deep Dive into Spent Lithium-Ion Batteries: From Degradation Diagnostics to Sustainable Material Recovery. Electrochem. Energy Rev. 2024, 7, 33. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, J.-l.; Zhou, X.-y.; Guo, R.; Yu, Y.-f.; Hu, Z.; Zhao, H.-y.; Yang, S.-g.; Wu, Y.-w. Evaluation of optimal waste lithium-ion battery recycling technology driven by multiple factors. J. Energy Storage 2024, 86, 111229. [Google Scholar] [CrossRef]
- Jia, K.; Yang, G.R.; He, Y.J.; Cao, Z.J.; Gao, J.T.; Zhao, H.Y.; Piao, Z.H.; Wang, J.X.; Abdelkader, A.M.; Liang, Z.; et al. Degradation Mechanisms of Electrodes Promotes Direct Regeneration of Spent Li-Ion Batteries: A Review. Adv. Mater. 2024, 36, e2313273. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, G.Y.; Xu, S.M.; He, Y.H.; Liu, X. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 2016, 165, 390–396. [Google Scholar] [CrossRef]
- Chen, M.Y.; Ma, X.T.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Chan, K.H.; Malik, M.; Anawati, J.; Azimi, G. Recycling of End-of-Life Lithium-Ion Battery of Electric Vehicles. In Proceedings of the Symposium on Rare Metal Extraction and Processing Held During the 149th TMS Annual Meeting and Exhibition / Magnesium Technology Symposium Held During the 149th TMS Annual Meeting and Exhibition, San Diego, CA, USA, 23–27 February 2020; pp. 23–32. [Google Scholar]
- Cerrillo-Gonzalez, M.D.; Villen-Guzman, M.; Vereda-Alonso, C.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Towards Sustainable Lithium-Ion Battery Recycling: Advancements in Circular Hydrometallurgy. Processes 2024, 12, 1485. [Google Scholar] [CrossRef]
- Urbańska, W. Recovery of Co, Li, and Ni from Spent Li-Ion Batteries by the Inorganic and/or Organic Reducer Assisted Leaching Method. Minerals 2020, 10, 555. [Google Scholar] [CrossRef]
- Chen, X.P.; Guo, C.X.; Ma, H.R.; Li, J.Z.; Zhou, T.; Cao, L.; Kang, D.Z. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Waste Manag. 2018, 75, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Drajlin, D.S.; Suarez, D.S.; Toro, N.; Gálvez, E.D.; Pinna, E.G.; Rodriguez, M.H. Comparative Study of the Dissolution of LCO in HCl Medium with and without H2O2. Metals 2022, 12, 727. [Google Scholar] [CrossRef]
- Tang, X.; Tang, W.; Duan, J.D.; Yang, W.P.; Wang, R.; Tang, M.Q.; Li, J. Recovery of valuable metals and modification of cathode materials from spent lithium-ion batteries. J. Alloys Compd. 2021, 874, 159853. [Google Scholar] [CrossRef]
- Liu, K.; Yang, S.L.; Lai, F.Y.; Li, Q.Y.; Wang, H.Q.; Tao, T.; Xiang, D.H.; Zhang, X.H. Application of H4P2O7 as leaching acid in one-step selective recovery for metals from spent LiFePO4 batteries. Ionics 2021, 27, 5127–5135. [Google Scholar] [CrossRef]
- Punt, T.; Akdogan, G.; Bradshaw, S.; van Wyk, P. Development of a novel solvent extraction process using citric acid for lithium-ion battery recycling. Miner. Eng. 2021, 173, 107204. [Google Scholar] [CrossRef]
- Kumar, J.; Shen, X.; Li, B.; Liu, H.Z.; Zhao, J.M. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag. 2020, 113, 32–40. [Google Scholar] [CrossRef]
- Islam, A.; Roy, S.; Khan, M.A.; Mondal, P.; Teo, S.H.; Taufiq-Yap, Y.H.; Ahmed, M.T.; Choudhury, T.R.; Abdulkreem-Alsultan, G.; Khandaker, S.; et al. Improving valuable metal ions capturing from spent Li-ion batteries with novel materials and approaches. J. Mol. Liq. 2021, 338, 116703. [Google Scholar] [CrossRef]
- Sun, C.H.; Xu, L.P.; Chen, X.P.; Qiu, T.Y.; Zhou, T. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect. Waste Manag. Res. 2018, 36, 113–120. [Google Scholar] [CrossRef]
- Yadav, P.; Jie, C.J.; Tan, S.; Srinivasan, M. Recycling of cathode from spent lithium iron phosphate batteries. J. Hazard. Mater. 2020, 399, 123068. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.B.; Li, B.S.; Yuan, C.F.; Ni, S.N.; Li, L.F. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching. Waste Manag. 2019, 93, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.H.; Gao, W.F.; Zhang, X.; He, M.M.; Lin, X.; Cao, H.B.; Zhang, Y.; Sun, Z. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manag. 2017, 60, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.; Prasetyo, E.; Bandyopadhyay, S. Selective lithium recovery from pyrolyzed black mass through optimized caustic leaching. J. Environ. Chem. Eng. 2024, 12, 113787. [Google Scholar] [CrossRef]
- Roy, J.J.; Srinivasan, M.; Cao, B. Bioleaching as an Eco-Friendly Approach for Metal Recovery from Spent NMC-Based Lithium-Ion Batteries at a High Pulp Density. ACS Sustain. Chem. Eng. 2021, 9, 3060–3069. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Zhou, X.Y.; Tang, J.J.; Liu, X.J.; Gan, H.X.; Yang, J. Reaction mechanism of antibiotic bacteria residues as a green reductant for highly efficient recycling of spent lithium-ion batteries. J. Hazard. Mater. 2021, 417, 126032. [Google Scholar] [CrossRef]
- Do, M.P.; Roy, J.J.; Cao, B.; Srinivasan, M. Green Closed-Loop Cathode Regeneration from Spent NMC-Based Lithium-Ion Batteries through Bioleaching. Acs Sustain. Chem. Eng. 2022, 10, 2634–2644. [Google Scholar] [CrossRef]
- Xuan, W.; Otsuki, A.; Chagnes, A. Investigation of the leaching mechanism of NMC 811 (LiNi0.8Mn0.1Co0.1O2) by hydrochloric acid for recycling lithium ion battery cathodes. RSC Adv. 2019, 9, 38612–38618. [Google Scholar] [CrossRef]
- Barik, S.P.; Prabaharan, G.; Kumar, L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. J. Clean. Prod. 2017, 147, 37–43. [Google Scholar] [CrossRef]
- Fan, X.; Song, C.; Lu, X.; Shi, Y.; Yang, S.; Zheng, F.; Huang, Y.; Liu, K.; Wang, H.; Li, Q. Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2. J. Alloys Compd. 2021, 863, 158775. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Fu, Y.; Huang, H.; Zhong, Z.; Wang, Y. Recovery of Fe, Mn, Ni and Co in sulfuric acid leaching liquor of spent lithium ion batteries for synthesis of lithium ion-sieve and NixCoyMn1-x-y(OH)2. Hydrometallurgy 2019, 190, 105190. [Google Scholar] [CrossRef]
- Cognet, M.; Condomines, J.; Cambedouzou, J.; Madhavi, S.; Carboni, M.; Meyer, D. An original recycling method for Li-ion batteries through large scale production of Metal Organic Frameworks. J. Hazard. Mater. 2020, 385, 121603. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Li, J.Z.; Kang, D.Z.; Zhou, T.; Ma, H.R. A novel closed-loop process for the simultaneous recovery of valuable metals and iron from a mixed type of spent lithium-ion batteries. Green Chem. 2019, 21, 6342–6352. [Google Scholar] [CrossRef]
- Refly, S.; Floweri, O.; Mayangsari, T.R.; Aimon, A.H.; Iskandar, F. Green recycle processing of cathode active material from LiNi1/3Co1/3Mn1/3O2 (NCM 111) battery waste through citric acid leaching and oxalate co-precipitation process. In Proceedings of the 7th International Conference of Advanced Materials Science and Technology (ICAMST), Bandung, Indonesia, 25–26 September 2019; pp. 3378–3380. [Google Scholar]
- Refly, S.; Floweri, O.; Mayangsari, T.R.; Sumboja, A.; Santosa, S.P.; Ogi, T.; Iskandar, F. Regeneration of LiNi1/3Co1/3Mn1/3O2 Cathode Active Materials from End-of-Life Lithium-Ion Batteries through Ascorbic Acid Leaching and Oxalic Acid Coprecipitation Processes. ACS Sustain. Chem. Eng. 2020, 8, 16104–16114. [Google Scholar] [CrossRef]
- Zeng, X.L.; Li, J.H.; Shen, B.Y. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J. Hazard. Mater. 2015, 295, 112–118. [Google Scholar] [CrossRef]
- Li, L.; Fan, E.S.; Guan, Y.B.A.; Zhang, X.X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R.J. Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustain. Chem. Eng. 2017, 5, 5224–5233. [Google Scholar] [CrossRef]
- Gao, W.F.; Zhang, X.H.; Zheng, X.H.; Lin, X.; Cao, H.B.; Zhi, Y.; Sun, Z. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process. Environ. Sci. Technol. 2017, 51, 1662–1669. [Google Scholar] [CrossRef]
- Yao, Y.L.; Zhu, M.Y.; Zhao, Z.; Tong, B.H.; Fan, Y.Q.; Hua, Z.S. Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review. ACS Sustain. Chem. Eng. 2018, 6, 13611–13627. [Google Scholar] [CrossRef]
- Gao, W.F.; Liu, C.M.; Cao, H.B.; Zheng, X.H.; Lin, X.; Wang, H.J.; Zhang, Y.; Sun, Z. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Waste Manag. 2018, 75, 477–485. [Google Scholar] [CrossRef]
- Sun, L.; Qiu, K.Q. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag. 2012, 32, 1575–1582. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.B.; Yan, F.; Zhang, Z.; Shen, X.H.; Zhang, Z.T. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manag. 2020, 114, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Heydarian, A.; Mousavi, S.M.; Vakilchap, F.; Baniasadi, M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sources 2018, 378, 19–30. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: A review. Front. Microbiol. 2023, 14, 1197081. [Google Scholar] [CrossRef]
- Nayl, A.A.; Hamed, M.M.; Rizk, S.E. Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries. J. Taiwan Inst. Chem. Eng. 2015, 55, 119–125. [Google Scholar] [CrossRef]
- Ordoñez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2016, 60, 195–205. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, J.; Su, M.; Xu, J.; Shih, K. Design and Optimization of an Economically Viable and Highly Efficient Strategy for Li Recycling from Spent LiFePO4 Batteries. ACS Sustain. Chem. Eng. 2023, 11, 16124–16132. [Google Scholar] [CrossRef]
- Remeteiová, D.; Ružičková, S.; Mičková, V.; Heželová, M.; Pikna, Ľ. Treatment of strong alkaline wastewater from neutral leaching of EAF dust by precipitation and ion exchange. Appl. Water Sci. 2023, 13, 138. [Google Scholar] [CrossRef]
- Yang, Z.; Uhrynowski, W.; Jakusz, G.; Retka, J.; Karczewska-Golec, J.; Debiec-Andrzejewska, K.; Rogulski, Z.; Drewniak, L. Biochemical treatment of leachates from hydrometallurgical recycling of spent alkaline batteries. Hydrometallurgy 2020, 191, 105223. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, S.M.; He, Y.H. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag. 2017, 64, 219–227. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Moscardini, E.; Altimari, P.; Atia, T.A.; Toro, L. Cobalt products from real waste fractions of end of life lithium ion batteries. Waste Manag. 2016, 51, 214–221. [Google Scholar] [CrossRef]
- Virolainen, S.; Fini, M.F.; Laitinen, A.; Sainio, T. Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co. Sep. Purif. Technol. 2017, 179, 274–282. [Google Scholar] [CrossRef]
- Li, Y.H.; Zeng, L.; Du, J.W.; Zhang, G.Q.; Cao, Z.Y.; Wu, S.X. Improving Extraction Performance of D2EHPA for ImpuritiesRemoval from Spent Lithium-Ion Batteries Leaching Solution byTPC 4. ACS Sustain. Chem. Eng. 2022, 10, 4312–4322. [Google Scholar] [CrossRef]
- Zhao, J.M.; Shen, X.Y.; Deng, F.L.; Wang, F.C.; Wu, Y.; Liu, H.Z. Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A. Sep. Purif. Technol. 2011, 78, 345–351. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Babakhani, A.; Noori, M.; Azizitorghabeh, A.; Rashchi, F. Synergistic Extraction and Separation of Cobalt and Lithium Using D2EHPA and CYANEX 272. Min. Metall. Explor. 2022, 39, 777–792. [Google Scholar] [CrossRef]
- Ilyas, S.; Srivastava, R.R.; Singh, K.V.; Chi, R.; Kim, H. Recovery of critical metals from spent Li-ion batteries: Sequential leaching, precipitation, and cobalt-nickel separation using Cyphos IL104. Waste Manag. 2022, 154, 175–186. [Google Scholar] [CrossRef]
- Zhang, K.F.; Liang, H.L.; Zhong, X.C.; Cao, H.Y.; Wang, R.X.; Liu, Z.Q. Recovery of metals from sulfate leach solutions of spent ternary lithium-ion batteries by precipitation with phosphate and solvent extraction with P507. Hydrometallurgy 2022, 210, 105861. [Google Scholar] [CrossRef]
- Li, C.Y.; Dai, G.F.; Liu, R.Y.; Wang, C.; Wang, S.; Ju, Y.; Jiang, H.S.; Jiao, S.J.; Duan, C.L. Separation and recovery of nickel cobalt manganese lithium from waste ternary lithium-ion batteries. Sep. Purif. Technol. 2023, 306, 122559. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Tang, S.J.; Huo, X.T.; Zhang, M.; Guo, M. A novel green deep eutectic solvent for one-step selective separation of valuable metals from spent lithium batteries: Bifunctional effect and mechanism. Environ. Res. 2023, 233, 116337. [Google Scholar] [CrossRef]
- Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 2016, 18, 3879–3890. [Google Scholar] [CrossRef]
- Amusa, H.K.; Sadiq, M.; Alam, G.; Alam, R.; Siefan, A.; Ibrahim, H.; Raza, A.; Yildiz, B. Electric vehicle batteries waste management and recycling challenges: A comprehensive review of green technologies and future prospects. J. Mater. Cycles Waste Manag. 2024, 26, 1959–1978. [Google Scholar] [CrossRef]
- Tran, M.K.; Rodrigues, M.T.F.; Kato, K.; Babu, G.; Ajayan, P.M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 2019, 4, 339–345. [Google Scholar] [CrossRef]
- Jafari, M.; Shafaie, S.Z.; Abdollahi, H.; Entezari-Zarandi, A. Green recycling of spent Li-ion batteries by deep eutectic solvents (DESs): Leaching mechanism and effect of ternary DES. J. Environ. Chem. Eng. 2022, 10, 109014. [Google Scholar] [CrossRef]
- Li, D.M.; Zhang, B.; Ye, L.; Xiao, Z.M.; Ming, L.; Ou, X. Regeneration of high-performance Li1.2Mn0.54Ni0.13Co0.13O2cathode material from mixed spent lithium-ion batteries through selective ammonia leaching. J. Clean. Prod. 2022, 349, 131373. [Google Scholar] [CrossRef]
- Pei, S.Z.; Yan, S.X.; Chen, X.P.; Li, J.; Xu, J.H. Novel electrochemical process for recycling of valuable metals from spent lithium-ion batteries. Waste Manag. 2024, 188, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, C.; Fu, M.L. Separation of cobalt and lithium from spent lithium-ion battery leach liquors by ionic liquid extraction using Cyphos IL-101. Hydrometallurgy 2020, 197, 105439. [Google Scholar] [CrossRef]
- Keller, A.; Hlawitschka, M.W.; Bart, H.J. Manganese recycling of spent lithium-ion batteries via solvent extraction. Sep. Purif. Technol. 2021, 275, 119166. [Google Scholar] [CrossRef]
- Shih, Y.J.; Chien, S.K.; Jhang, S.R.; Lin, Y.C. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries. J. Taiwan Inst. Chem. Eng. 2019, 100, 151–159. [Google Scholar] [CrossRef]
- Peeters, N.; Binnemans, K.; Riaño, S. Recovery of cobalt from lithium-ion battery cathode material by combining solvoleaching and solvent extraction. Green Chem. 2022, 24, 2839–2852. [Google Scholar] [CrossRef]
- Meshram, P.; Virolainen, S.; Abhilash; Sainio, T. Solvent Extraction for Separation of 99.9% Pure Cobalt and Recovery of Li, Ni, Fe, Cu, Al from Spent LIBs. Metals 2022, 12, 1056. [Google Scholar] [CrossRef]
- Peng, C.; Liu, F.P.; Wang, Z.L.; Wilson, B.P.; Lundström, M. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J. Power Sources 2019, 415, 179–188. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Wang, W.Q.; Hu, J.H.; Zhang, T.; Xu, S.M. Stepwise Recovery of Valuable Metals from Spent Lithium Ion Batteries by Controllable Reduction and Selective Leaching and Precipitation. Acs Sustain. Chem. Eng. 2020, 8, 15496–15506. [Google Scholar] [CrossRef]
- Ni, J.H.; Zhou, J.Y.; Bing, J.H.; Guan, X.F. Recycling the cathode materials of spent Li-ion batteries in a H-Shaped neutral water electrolysis cell. Sep. Purif. Technol. 2022, 278, 119485. [Google Scholar] [CrossRef]
- Tawonezvi, T.; Zide, D.; Nomnqa, M.; Madondo, M.; Petrik, L.; Bladergroen, B.J. Recovery of NixMnyCoz(OH)2 and Li2CO3 from spent Li-ionB cathode leachates using non-Na precipitant-based chemical precipitation for sustainable recycling. Chem. Eng. J. Adv. 2024, 17, 100582. [Google Scholar] [CrossRef]
- Ma, W.; Liang, Z.; Liu, Y.; Zhang, X.; Zhao, Q. High-selective separation recovery of Ni, Co, and Mn from the spent LIBs via acid dissolution and multistage oxidation precipitation. ChemSusChem 2024, e202400672, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Yu, M.; Yang, B.; Jin, C.Z.; Guo, G.H.; Qiu, J.H. Regeneration of of Al-doped LiNi1/3Co1/3Mn1/3O2 cathode material via a sustainable method from spent Li-ion batteries. Mater. Res. Bull. 2020, 126, 110855. [Google Scholar] [CrossRef]
- Mesbah, Y.I.; Ahmed, N.; Ali, B.A.; Allam, N.K. Recycling of Li-Ni-Mn-Co Hydroxide from Spent Batteries to Produce High-Performance Supercapacitors with Exceptional Stability. Chemelectrochem 2020, 7, 975–982. [Google Scholar] [CrossRef]
- Liu, C.; Lin, J.; Cao, H.; Zhang, Y.; Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Clean. Prod. 2019, 228, 801–813. [Google Scholar] [CrossRef]
- Yun, L.; Linh, D.; Shui, L.; Peng, X.; Garg, A.; Le, M.L.P.; Asghari, S.; Sandoval, J. Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour. Conserv. Recycl. 2018, 136, 198–208. [Google Scholar] [CrossRef]
- Chang, D.; Chen, Y.M.; Xi, Y.; Chang, C.; Jie, Y.F.; Hu, F. Selective Recovery of Lithium from Ternary Spent Lithium-Ion Batteries Using Sulfate Roasting-Water Leaching Process. In Proceedings of the Symposium on Recycling of Secondary, Byproduct Materials and Energy Held at TMS 149th Annual Meeting and Exhibition, San Diego, CA, USA, 23–27 February 2020; pp. 387–395. [Google Scholar]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Chen, X.P.; Wang, Y.; Yuan, L.; Wang, S.B.; Yan, S.X.; Liu, H.B.; Xu, J.H. Microthermal catalytic aerogenesis of renewable biomass waste using cathode materials from spent lithium-ion batteries towards reversed regulated conversion and recycling of valuable metals. Green Chem. 2023, 25, 1559–1570. [Google Scholar] [CrossRef]
- Dang, H.; Wang, B.; Chang, Z.; Wu, X.; Feng, J.; Zhou, H.; Li, W.; Sun, C. Recycled Lithium from Simulated Pyrometallurgical Slag by Chlorination Roasting. ACS Sustain. Chem. Eng. 2018, 6, 13160–13167. [Google Scholar] [CrossRef]
- Lin, J.; Liu, C.W.; Cao, H.B.; Chen, R.J.; Yang, Y.X.; Li, L.; Sun, Z. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting. Green Chem. 2019, 21, 5904–5913. [Google Scholar] [CrossRef]
- Cao, Y.; Li, J.; Ji, H.; Wei, X.; Zhou, G.; Cheng, H.-M. A review of direct recycling methods for spent lithium-ion batteries. Energy Storage Mater. 2024, 70, 103475. [Google Scholar] [CrossRef]
- Huang, B.; Pan, Z.; Su, X.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286. [Google Scholar] [CrossRef]
- Fan, M.; Chang, X.; Guo, Y.-J.; Chen, W.-P.; Yin, Y.-X.; Yang, X.; Meng, Q.; Wan, L.-J.; Guo, Y.-G. Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy Environ. Sci. 2021, 14, 1461–1468. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Zhuang, Z.; Liang, Z.; Jia, K.; Ji, G.; Zhou, G.; Cheng, H.M. Toward Direct Regeneration of Spent Lithium-Ion Batteries: A Next-Generation Recycling Method. Chem Rev 2024, 124, 2839–2887. [Google Scholar] [CrossRef]
- Roy, J.J.; Rarotra, S.; Krikstolaityte, V.; Zhuoran, K.W.; Cindy, Y.D.I.; Tan, X.Y.; Carboni, M.; Meyer, D.; Yan, Q.Y.; Srinivasan, M. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability. Adv. Mater. 2022, 34, 2103346. [Google Scholar] [CrossRef]
- Li, R.Q.; Li, Y.J.; Dong, L.P.; Yang, Q.; Tian, S.C.; Ren, Z.Q.; Zhou, Z.Y. Study on selective recovery of lithium ions from lithium iron phosphate powder by electrochemical method. Sep. Purif. Technol. 2023, 310, 123133. [Google Scholar] [CrossRef]
- Yang, L.M.; Gao, Z.; Liu, T.; Huang, M.T.; Liu, G.Z.; Feng, Y.F.; Shao, P.H.; Luo, X.B. Direct Electrochemical Leaching Method for High-Purity Lithium Recovery from Spent Lithium Batteries. Environ. Sci. Technol. 2023, 57, 4591–4597. [Google Scholar] [CrossRef]
- Jiang, S.Q.; Nie, C.C.; Li, X.G.; Shi, S.X.; Gao, Q.; Wang, Y.S.; Zhu, X.N.; Wang, Z. Review on comprehensive recycling of spent lithium-ion batteries: A full component utilization process for green and sustainable production. Sep. Purif. Technol. 2023, 315, 123684. [Google Scholar] [CrossRef]
- Yu, W.H.; Guo, Y.; Xu, S.M.; Yang, Y.; Zhao, Y.F.; Zhang, J.J. Comprehensive recycling of lithium-ion batteries: Fundamentals, pretreatment, and perspectives. Energy Storage Mater. 2023, 54, 172–220. [Google Scholar] [CrossRef]
- Li, X.H.; Liu, S.W.; Yang, J.C.; He, Z.J.; Zheng, J.C.; Li, Y.J. Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Mater. 2023, 55, 606–630. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Li, J.; Xie, H.Q.; Chen, Y.P. Direct recovery of LiCoO2 from the recycled lithium-ion batteries via structure restoration. J. Alloys Compd. 2020, 845, 156234. [Google Scholar] [CrossRef]
Charge–Discharge Process | ||
---|---|---|
Charging reaction | Cathode | LiCoO2 = Li1−xCoO2 + xLi+ + xe− |
Anode | 6C + xLi+ + xe− = LixC6 | |
Discharging reaction | Cathode | Li1−xCoO2 + xLi+ + xe− = LiCoO2 |
Anode | LixC6 = 6C + xLi+ + xe− |
Cell Components | Chemical Composition | wt., % | Hazards | |
---|---|---|---|---|
Cathode | Metal oxide | 85% metal oxide powders (LiNiO2, LiMn2O4, LiCoO2, etc.) and 10% binder | Reacts with acidic and ammoniacal organic | |
Aluminum | Al(Current collector foil) | 5–8 | ||
Binder | Usually PVDF | 1–2 | ||
Anode | Copper | Cu (Current collector foil) | 8–10 | Reaction with oxidizers produces carbon oxides, contributing to the greenhouse effect |
Binder | Usually PVDF | 1–2 | ||
Graphite | - | 15–17 | ||
Electrolyte | Li salts | LiPF6, LiAsF6, LiClO4, LiBF4 | 10–15 | Both LiBF4 and LiBF6 are highly corrosive, decomposing to release fluoride pollutants. Their corrosive and volatile nature poses risks to the respiratory system and other parts of the body. |
Organic solvents | DMC-EC, PC-DME, BL-THF | |||
Casing | Fe–Ni alloy | 20–26 | - | |
Al | 10 | |||
Other | Positive and negative electrode leads, center pin, insulating materials, safety valve, PTC (Positive Temperature Coefficient terminal) | 18–20 | - |
Cathode Types | LCO | LMO | LFP | NCA | NCM |
---|---|---|---|---|---|
Chemical formula | LiCoO2 | LiMn2O4 | LiFePO4 | LiNixCoyAlzO2 | LiNixCoyMnzO2 |
Structure | |||||
Market share | Dumped | Small | Growing | Steady | Main force |
Comments | Low safety, high cost, medium performance | Medium safety, low cost, medium energy density, low lifetime | Good safety, low cost, high thermal stability, medium energy density | Medium safety, medium cost, high energy density | Medium safety, medium cost, high energy density, high lifetime |
Approach | Discharge Medium | Advantage | Disadvantage | Ref. |
---|---|---|---|---|
Salt solution discharge | Salt solution (including NaCl, KCl, FeSO4, MnSO4 and ZnSO4 solution, etc.) | Cheap, easy to obtain, controllable | Low discharge speed; metals and electrolytes leak into the solution; gaseous pollutants | [21] |
Cryogenic freezing | Liquid nitrogen | Environmentally friendly | High capital and equipment requirements | [23] |
Solid electrical conductors | Cu powder or graphite | Fast discharge speed, no aqueous pollution | Unsafe, potential dust pollution, unstable | [24] |
Thermal deactivation | None | Elimination of the potential gaseous pollutants | High-temperature requirements | [25] |
Sample | Method | Performance | Ref. | |
---|---|---|---|---|
Waste graphite | Chemical | Citric acid leaching | Initial charge capacity and retention rate are 468.3 mA h/g at 0.5 C and 68.3% | [40] |
Physico-chemical | H2SO4 curing anaerobic calcination | Initial charge capacity and retention rate are 349 mA h/g at 0.1 C and 98.8% | [41] | |
H2SO4 leaching– calcination at 3000 °C—pitch coating | Specific capacity of 344 mA h/g at 0.2 C | [42] | ||
Sulfuric acid curing–leaching combined with high-temperature calcination | Initial charge capacity and retention rate are 349 mA h/g and 99.4% after 100 cycles at 0.1 C | [41] | ||
H2SO4 leaching–heat- treated at 900 °C for 2 h | Initial specific capacity (358.1 mA h/g at 0.1 C) and cycle stability of 98.8% after 100 cycles | [43] | ||
5 mol/L H2SO4, 35.0 w/w% H2O2, and NaOH at 500 °C | Initial charge capacity and retention rate are 431.9 mA h/g and 84.6% after 100 cycles at 0.2 C | [36] | ||
Sulfuric acid curing–leaching and microwave-assisted calcination | Initial charge capacity and retention rate are 424.8 mA h/g and 98.3% after 60 cycles at 0.1 C | [37] | ||
Two-stage calcination and HCl solution | Initial charge capacity and retention rate are 591 mA h/g and 97.9% after 100 cycles at 1.0 C | [35] | ||
Physical | Electrochemical method | First discharge and charge specific capacities at a rate of 0.1 C are 427.81 mA h/g and 350.47 mA h/g | [38] | |
Microwave-irradiation time of 15 s | Reversible capacity of ≥400 mA h/g at 0.1 mA h/g and an initial coulombic efficiency of 84% | [44] | ||
Roasting at 1600 °C for 1 h | Reversible capacity of 235 mA h/g at 1 C after 500 cycles | [45] |
Type | Reagents | Target Metals | Conditions | Efficiency | Ref. |
---|---|---|---|---|---|
Inorganicacid | H2SO4 with H2O2 and glutaric acid | Co, Li, Ni | 50–90 °C, 500 rpm for 120 min | 87.85% Co, 99.91% Li, and 91.46% Ni were recovered | [53] |
H2SO4 and sucrose | Co, Li | 95 °C, 120 min, 25 g/L | 100% Li and Co 96% | [54] | |
HCl and H2O2 | Co, Li | 75 °C, 30 min, 5 g/L | 93% Li and Co | [55] | |
Na2SO3 | Co, Ni, Mn | 120 °C, 480 min, 2 g/L | 93.1% Ni, 92.84% Co, and 90.2% Mn | [56] | |
H4P2O7 | Fe, Li | 25 °C, 300 min, 100 g/L | 100% Fe and 97.98% Li | [57] | |
Organic acid | Citric acid and H2O2 | Co, Li, Ni, Al, Mn | 95 °C, 20 min, 20 g/L | 93% Al, 90% Co, 96% Li, 94% Mn, and 94% Ni | [58] |
Lemon juice and H2O2 | Li, Cu, Al | 20 °C, 90 min, 67 g/L | 94.8% Li, 96.9% Cu, and 47.2% Al | [59] | |
Citric acid and H2O2 | Co, Li, Ni, Mn | 95 °C, 120 min | 96% Li, 87% Co, 93.5% Ni, and 90.5% Mn | [60] | |
DL-malic acid and H2O2 | Co, Li, Ni, Mn | 90 °C, 30 min, 40 g/L | 98.9% Li, 94.3% Co, 95.1% Ni, and 96.4% Mn | [61] | |
CH3SO3H | Li, Fe | 90 min, 80 g/L | 94% Li and 95% Fe | [62] | |
Alkali Leaching | (NH4)2SO3 NH3 and NH4HCO3 | Li, Co, Ni | 60 °C, 180 min, 20 g/L | 60.53% Li, 80.99% Co, and 96.32% Ni | [63] |
(NH4)2SO4, NH3 and Na2SO4 | Li, Co | 80 °C, 300 min, 40 g/L | 96% Li and 81% Co | [64] | |
NaOH | Li, Al, Co | 85 °C,150 min, 30 g/L | 80.76% Li, 100% Al, and 93% Co | [65] | |
Bio-leaching | Acidithiobacillus ferrooxidans | Ni, Mn, Co, Li | 72 h, 100 g/L | 90% Ni; 92% Mn; 82% Co; 89% Li. | [66] |
H2SO4 and antibiotic bacteria residues (mainly CaC2O4 hydrates) | Ni, Mn Co, Li | 30 mL/g, 363 K for 2.5 h | 99.9% Li, 98.5% Co, 99.0% Mn, and 99.6% Ni | [67] | |
Acidithiobacillus ferrooxidans | Ni, Mn, Co, Li | 100 g/L, 30 °C 360 min, pH = 6 | 89.9% Li, 90.4% Co, 91.8% Mn, and 85.5% Ni | [68] |
Process | Advantages | Disadvantages |
---|---|---|
Hydrometallurgy | It achieves high-purity metal recovery and effective separation, boasts a high recovery rate for multi-metal batteries, and operates at lower temperatures, leading to reduced energy consumption. | The process is complex, relies on large amounts of acids and bases, generates pollutants, incurs high waste treatment costs, and is slow and intricate. |
Pyrometallurgy | The process is simple and suitable for large-scale processing, requires minimal waste pre-treatment for direct combustion, and operates quickly with high production efficiency. | High energy consumption; Difficult separation of complex multi-element mixtures; Emission of harmful gases, increasing environmental control costs |
Direct recycling | Eco-friendly and low-pollution, it avoids chemical reagents, offers a simple operation and short processing time, consumes little energy, and retains the electrode structure for easier reuse. | Limited applicability, mainly suited to structurally simple batteries; Recovered materials may be lower in purity, with variable quality |
Ref. | [130,133,134] | [135,136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Lai, Y.; Yang, J.; Zhao, J.; Zhang, Y.; Chen, M.; Tang, J.; Xu, J.; Su, M. Advances in Recycling Technologies of Critical Metals and Resources from Cathodes and Anodes in Spent Lithium-Ion Batteries. Separations 2025, 12, 4. https://doi.org/10.3390/separations12010004
Wang S, Lai Y, Yang J, Zhao J, Zhang Y, Chen M, Tang J, Xu J, Su M. Advances in Recycling Technologies of Critical Metals and Resources from Cathodes and Anodes in Spent Lithium-Ion Batteries. Separations. 2025; 12(1):4. https://doi.org/10.3390/separations12010004
Chicago/Turabian StyleWang, Shuwen, Yanrong Lai, Jingran Yang, Jiaxue Zhao, Yushan Zhang, Miaoling Chen, Jinfeng Tang, Junhua Xu, and Minhua Su. 2025. "Advances in Recycling Technologies of Critical Metals and Resources from Cathodes and Anodes in Spent Lithium-Ion Batteries" Separations 12, no. 1: 4. https://doi.org/10.3390/separations12010004
APA StyleWang, S., Lai, Y., Yang, J., Zhao, J., Zhang, Y., Chen, M., Tang, J., Xu, J., & Su, M. (2025). Advances in Recycling Technologies of Critical Metals and Resources from Cathodes and Anodes in Spent Lithium-Ion Batteries. Separations, 12(1), 4. https://doi.org/10.3390/separations12010004