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Abstract: This article aims to minimize cycle time for a simple assembly line balancing problem type
2 by presenting a variable neighborhood strategy adaptive search method (VaNSAS) in a case study
of the garment industry considering the number and types of machines used in each workstation in a
simple assembly line balancing problem type 2 (SALBP-2M). The variable neighborhood strategy
adaptive search method (VaNSAS) is a new method that includes five main steps, which are (1)
generate a set of tracks, (2) make all tracks operate in a specified black box, (3)operate the black box,
(4) update the track, and (5) repeat the second to fourth steps until the termination condition is met.
The proposed methods have been tested with two groups of test instances, which are datasets of (1)
SALBP-2 and (2) SALBP-2M. The computational results show that the proposed methods outperform
the best existing solution found by the LINGO modeling program. Therefore, the VaNSAS method
provides a better solution and features a much lower computational time.

Keywords: variable neighborhood strategy adaptive search; simple assembly line balancing problem
type 2; cycle time

1. Introduction

Open innovation drives a company’s success, aiding development in the technology 4.0 era,
including innovation in technology, methods and creativity, by combining external data with the
company in order to “open up” knowledge and plan to create technology, new methods, and innovations
for products, quickly providing quality products to the market and, most of all, helping to reduce
costs and generate revenue for the company. In this regard, the garment industry in particular, is
considered to be another important industry, because it is necessary for people, and, therefore, results
in the increased competition of production and the economy. However, with labor problems and the
adjustment of labor rates affecting the industry, this requires open innovation to aid in the production
process in order to increase production accuracy in addition to making good use of resources. The
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objective of this research is to develop an appropriate method for solving a simple assembly line
balancing problem type 2, presenting a case study of the garment industry.

Chesbrough [1] said that large organizations work together to drive innovation and create
sustainable growth by using the concept of open innovation, which is considered to be related to
industry that has adopted “technology, tools, or methods” for the industry in production systems, as
well as making products according to the various needs of consumers. However, the industry still has
to maintain production efficiency in order to meet the required quality. In addition, new technology,
tools, and methods must be also studied and selected to be suitable for the production system and the
current knowledge. Many industries still rely on human labor for production, especially the garment
industry. When a problem occurs, it will be solved immediately without applying technology or
any new methods to resolve it, which causes production efficiency to be at a low level. Therefore, to
increase the capacity of the production system, in order to compete with other industries, it is necessary
to use the concept of open innovation to help in production planning, reduce the time required for
industry operations, and increase production efficiency.

The assembly line balancing problem is a form of production planning used for task assignments [2]
or to assign work to each station to let each work station operate with the same average production
time and allow the process flow system to be flexible and eliminate delay or bottlenecks in order to
be able to produce products correctly and eliminate mistakes during production. The precedence
diagram or table of relationships determines the operation according to the workflow that is clearly
specified in the production process. There are different objectives for problem solving, such as reducing
production time, reducing the number of workstations, determining the efficiency of assembly line
balancing. Cycle time reduction is the main objective of the garment industry, in terms of controlling
production systems to make products according to a specified time and quantity and in order to meet
the customer’s requirements on time. In this study, we apply the method to solve the simple assembly
line balancing problem (SALBP), which aims to minimize the cycle time (SALBP-2).

The simple assembly line balancing problem type 2 (SALBP-2) is an extension of (SALBP) that
aims to minimize the cycle time (c) for a given number of workstations. In fact, the garment industry
or various industries have to use machines for production, but the work procedures are different and
so the machines used are different. The workers may not be able to work on many different machines
due to the workers’ capability. Therefore, the work procedures and the number of machines that
are assigned to the workstation need to be consistent because this may affect the production system,
production cycle and the efficiency of the assembly line.

Thus, this research aims to solve a special case of the simple assembly line balancing type 2 problem
(SALBP-2). The proposed problem aims to minimize the cycle time considering the number and types
of machines for each workstation (SALBP-2M), as shown in Figure 1. Akpýnar (2017) [3] has formerly
studied the simple assembly line balancing type 2 problem (SALBP-2). The paper presents type 2
datasets of the benchmark, the objective of which was a minimized cycle time. A large neighbor search
method was applied as the solution approach. Then, the computation performance was compared
with the type 2 datasets of the benchmark. In this paper, a mathematical model is formulated with the
objective function of cycle time minimization. The model was tested by LINGO, which is an exact
software method. A special constraint is considered by the number of machines assigned to each
workstation, which needs to be consistent. This turns the problem into one suitable for real world
operation. Moreover, we apply a new method, called the Variable Neighborhood Strategy Adaptive
Search (VaNSAS), which is based on the metaheuristic to solve SALBP-2M. This is a new metaheuristic
that aims to find solutions in a wider and more suitable area to obtain the best solution. Previously,
the case study had no methods for solving problems but only used experience to solve problems
appropriately. The main contributions of this paper are twofold. Firstly, the formulated problem is
from a real case study in the Ubon Ratchathani province of Thailand. The objective is to minimize the
cycle time and consider the number and types of machines for each workstation. Secondly, this paper



J. Open Innov. Technol. Mark. Complex. 2020, 6, 21 3 of 22

presents a new metaheuristic, VaNSAS, which does not appear in any paper published in the literature
for SALBP.

The method presented in this research consists of six sections, namely the introduction, literature
review, mathematical model formulation and problem definition, computational framework and
results, conclusions, and finally, future research.

2. Literature Review

In the early 1900s, Henry Ford studied and presented assembly line balancing. After that, in 1954,
1955, and 1956, assembly line balancing was extensively studied [4–6]. In 1995, Salveson was the first
person to name assembly line balance as the assembly line balance problem (ALBP). Since then, many
researchers have studied, developed, and presented various methods to solve assembly line balancing
problems in different forms [7].

The assembly line balancing problem, when solved, could help to increase process flow and allow
the average production time of each workstation to be equal, and not lead to idle periods and thus
increase the cycle time. Assembly line balancing problems can be classified by the type of problem [8,9],
as shown in Figure 1 [10,11].
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The simple assembly line balancing problem is an assembly line in the production of a single
product, as shown in Figure 1. This problem can be divided into four types, which are SALBP-1, to
minimize workstations (m), SALBP-2, to minimize cycle time (c), SALBP-E, for finding the optimum
efficiency of the assembly line, and SALBP-F, to make the assembly line of procedures in each
workstation balanced.

The general assembly line balancing problem (GALBP) is considered a problem that is not included
in the simple assembly line balancing problem (SALBP) [12]. This problem can be divided into 3
types, namely, MALBP, which concerns assembly lines with the production of a mixed product and
multiple models, the U-line assembly line balancing problem (UALBP), where the worker can work on
both sides of a U-shaped assembly line, where this problem is also divided into three types, such as
UALBP-1 to minimize workstations (m), UALBP-2 to minimize cycle time (c), and UALBP-E for finding
the optimum efficiency of the assembly line. Finally, the third type is an assembly line balancing
problem with a wide scope, which may be considered according to other conditions.

It has been said by Gutjahrand and Nemhauser [13] that the assembly line balancing problem can
be considered to be NP-hard, and is also complicated when considering multiple objectives at the same
time, taking a long time to find the optimal answer. Thus, some researchers have become interested
in studying and developing methods to find answers in this regard [10,14,15]. The present research
studies the minimization of cycle time in a simple assembly line balancing problem type 2, with limited
types of machines, carried out via a VaNSAS method. The simple assembly line balancing problem
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type 2 has not been widely studied compared with the field of assembly line balancing problem type 1.
Thus, researchers have been interested in studying and solving these problems.

In the simple assembly line balancing problem type 1, researchers have been interested in
studying and solving problems by presented heuristic methods. Grzechca (2014) [16] presented
Ranked Positional Weight (RPW) to reduce the number of workstations. The results showed that
the RPW could solve the problem well. Pape (2014) [17] presented the heuristics and lower bounds
for the problem. The results showed that the heuristics and lower bounds method could solve the
problem well and was the most effective in this regard. The work carried out by Kamarudin et al.
(2018) [18] presented a mathematical model with resource constraints. The study found that the
mathematical model could minimize the resources and decrease costs. In addition, the metaheuristics
methods presented by Ayazi et al. (2011) [19] presented the genetic algorithm (GA) for multi-objective
decision-making. The study found that the genetic algorithm could solve the problem well. Parawech
et al. (2014) [20] presented differential evolution (DE) in a case study on a garment factory. The study
found that DE couldreduce workstations and increase the efficiency of the assembly line. The work
carried out by Pitakaso (2015) [21] presented a DE method, finding that the method could resolve the
problem. Pitakaso and Sethanan (2015) [22] presents a modified-DE for assembly line balancing with a
limit on the number of machine types. The study found that the modified-DE was able to solve the
assembly line with a limit of the machine types, as well as minimize workstations. The work carried
out by Antoine et al. (2016) [23] presented an iterative local search (ILS) for a dynamic assembly line
rebalancing problem. The study found that the method could solve the problem well.

In the simple assembly line balancing problem type 2, researchers have been interested in studying
and solving problems by presenting heuristic methods. Kilincci (2010) [24] presented a Petri net-based
heuristic method for a simple assembly line balancing problem type 2, in which the objective was
to minimize the variations in workloads among the workstations, finding that the method could
solve the problem well. The work carried out by Umarani and Valase (2017) [25] presented lean
manufacturing techniques for simple assembly line balancing problem type 2, finding that it could
reduce the production time and that the productivity per hour was increased. The work carried out
by Zhang et al. (2018) [26] presented a heuristic algorithm by mathematical model for a two-sided
assembly line with multiple objectives. The study found that the designed heuristic algorithm could
resolve the problem well. In addition, the metaheuristics methods presented by Sikora et al. (2015) [27]
presented a genetic algorithm (GA), finding that the algorithm was effective in resolving the problem
and could find good answers. Lei and Guo (2016) [28] displayed a VNS method for the second type of
the two-sided assembly line. The study found that the method was effective for finding the optimal
answer. The work presented by Akpýnar (2017) [3] applies an LNS method. The study found that
the method was effective in seeking a good solution. The work carried out by Li et al. (2019) [29]
employed simulated annealing (SA) for an assembly line balancing problem with multiple operators.
The study found that the method could minimize the cycle time and assign a different number of
workers to workstations.

From the review of related studies, it has been found that the metaheuristics methods were
effective for solving this problem. Many researchers have been interested in studying the solution
of these problems by using many methods, such as GA, DE, VNS and LNS. Moreover, there are
studies and solutions that are similar to this paper, considering the number and types of machines
for each workstation, although these were for SALBP-1 using the DE method to solve the problem.
For the SALBP-2, there is no research that considers the number and types of machines for each
workstation. Therefore, this article has applied the DE method into a new VaNSAS method to solve
the SALPB-2problem, considering the number and machine type for each of workstations (SALBP-2M).
The VaNSAS method is shown in Section 4.
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3. Problem Definitions and Mathematical Model

This section presents the construction of the problem definitions and the mathematical model
formulation, which is applied to compute the simple assembly line balancing problem type 2 in a
garment industry case study, which is defined as shown in Sections 3.1 and 3.2.

3.1. Problem Definitions

This research attempts to solve the problem of a case study of the garment industry in Ubon
Ratchathani in Thailand. The research problem is the extended version of the simple assembly line
balancing problem type 2 (SALBP-2). We consider a restricted number and type of machines for
working operations due to the limitation of worker skill. The precedence diagram of the short-sleeved
clothes of the case study which comprises 36 workflow steps is shown in the Appendix A.

The assembly line balancing problem type 2 of the garment industry aims to minimize the cycle
time (c) by assigning the tasks to a given number of workstations (here, a set of 23 stations with cycle
time of 2 minutes is used). Table 1 shows the results of the assignment, where the workstations, number
of tasks, and maximum number of machines in each workstation (HG) are set to one.

Table 1. Result of the task assignments of the proposed problem in the case study.

Workstations Task Task Time
(Minute)

Machine
Type Workstations Task Task Time

(Minute)
Machine

Type

1 1 1.05 Hand
work 13 21 0.22 SNA(2)

2 18, 12, 9 1.90 4OL 14 3 0.22 SNA(1)
3 13 0.65 FLA(1) 15 29, 16, 4 1.30 4OL
4 19 0.78 FLA(2) 16 17 0.38 FLA(2)
5 14 0.63 4OL 17 22, 11, 23 1.74 4OL
6 15 0.60 FLA(2) 18 24 0.67 SNA(2)
7 10 0.25 SNA(2) 19 32, 26 1.49 4OL
8 7, 2, 5, 6 1.41 SNA(1) 20 34 0.43 SNA(2)
9 27 0.68 SNA(2) 21 33, 35 1.13 SNA(1)

10 28, 20 0.72 4OL 22 30, 31 0.74 SNA(2)
11 25 0.42 SNA(2) 23 36 1.23 DNN
12 8 0.40 SNA(1)

To consider the number and types of machines for each workstation, the HG is set to one. This
has been done as a single worker has limited skill and cannot use more than a predefined maximum
number of machines in those workstations, as shown in Figure 2.
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3.2. Mathematical Model

Indices

n index of tasks n when n = 1, 2, . . . , N m index of task m when m = 1, 2, . . . , M
s index of workstations s when s = 1, 2, . . . , S
g index of machines g when g = 1, 2, . . . , G

Parameters

N Total number of tasks and N equals to M
S Total number of workstations
HG Highest number of machines in each station.
PTn Processing time of task n

Pnm =

{
1 i f task n is predecessor o f task m
0 otherwise

.

Wng =

{
1 i f task n uses machine g to produce
0 otherwise

.

Decision Variables

C Cycle time

Xns =

{
1 i f task n is assigned to workstation s
0 otherwise

Ysg =

{
1 i f machine g is operated on workstation s
0 otherwise

Os =

{
1 i f workstation s is opened
0 otherwise

Objective function
MinZ = C (1)

Subject to
S∑

s=1

Xns = 1 ∀n = 1, 2, . . . , N (2)

S∑
s=1

[(sXms) − (sXns)] ≥ 0 ∀n = 1, 2, . . . , N; m = 1, 2, . . . , M and Pnm = 1 (3)

N∑
n=1

PTnXns ≤ C ∀s = 1, 2, . . . , S (4)

Os ≤ Os−1 ∀s = 2, . . . , S (5)

N∑
n=1

WgnXns ≤ Ysg ∀s = 1, 2, . . . , S; ∀g = 1, 2, . . . , G (6)

G∑
g=1

Ysg ≤ OsHG ∀s = 1, 2, . . . , S (7)

Xns ∈ {0, 1}∀n, s (8)

Ysg ∈ {0, 1}∀s, g (9)

Os ∈ {0, 1}∀s (10)
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The mathematical model shown above for the simple assembly line balancing problem type 2,
when considering the number and type of machines used in each workstation, is present by Equation (1),
which presents an objective function to minimize cycle time (c). Equation (2) is the process that controls
the task that must be assigned to only one workstation. Equation (3) presents the condition for each
task step when assigned to the workstation, without contradiction with the precedence relationship
between tasks. Equation (4) controls the processing time of each task on a particular workstation,
which must not exceed the cycle time. Equation (5) is the opening of a new workstation, which shall
not open before the next workstation if the previous workstation was not functioning before. Equation
(6) is the equation to determine the assignment conditions of the task to the workstation when using
the machinery of that task assigned to such a workstation. Equation (7) is the equation specifying the
conditions to arrange the machinery to the workstation, whereby each machine can be assigned to the
workstation, which must not exceed the total number of machines allowed. Equations (8)–(10) are
binary variables.

4. Proposed Method

VaNSAS is a new metaheuristic method which aims to allow the algorithm to search in many
different areas in order to obtain the most optimal solution, which can gain more diversification or
intensification all the time, depending on the black box procedures. In general, the algorithm of
VaNSAS consists of five steps, as shown as Figure 3.
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Figure 3 shows the procedure of VaNSAS that comprises five steps, which are (1) generating a set
of tracks; (2) all tracks select the specified black box; (3) operating in the designed three black boxes;
(4) updating the track; and (5) repeating steps 2 to 4 until the termination condition is met. Due to
VaNSAS operating with the real number, the track transforming process will be used to transform the
real number into the solution for the problem. All steps of VaNSAS can be explained as follows.

The method of VaNSAS has been developed and applied to find the optimal solution for the
simple assembly line balancing problem type 2, concerning the garment industry case study. The
operation method of VaNSAS is to find the answer by generating a set of tracks and apply the black
box method to find the optimal solution of each track update. Then, the method compares the tracks to
select the best one.

Figure 4 shows the sequence of work steps before and after using circular symbols for connections
between parts of work processes and arrow symbols for determining the operating direction. In
Figure 3, the numbers inside the circles represent the sequence of work steps with the production cycle
not exceeding 5 min.
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4.1. Generate A Set of Tracks

This task is used to represent a set of tracks for the solution in terms of a random number. For
example, in Figure 3, the precedence diagram shows the previous sequence of simple assembly line
balancing. There are six tasks and three types of machinery to be assigned to a track. A track can
consist of 5 elements. Each element represents a specific task. The examples of random tasks are shown
in Table 2.

Table 2. The track and the element value.

Element Value 1 2 3 4 5

Track

1 0.26 0.51 0.11 0.08 0.40
2 0.03 0.38 0.09 0.54 0.33
3 0.65 0.30 0.23 0.11 0.59
4 0.12 0.83 0.42 0.14 0.33
5 0.34 0.15 0.38 0.70 0.63

Table 2 shows the initial answer generation process. After receiving the initial answer set of the
random numbers 0 to 1, the next answer set is chosen and entered into the process of transforming
the track.

Track Transforming Process (TTP)

The track transforming process of the random numbers, as shown in Table 1, is carried out in
order to solve the problem of simple assembly line balancing. The relevant information needs to be
informed of 3 explanations, as shown in Table 3.
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Table 3. Touring process of the simple assembly line balancing.

Random 0.26 0.51 0.11 0.08 0.40

Task 1 2 3 4 5
Task time 1 2 1 3 2
Machine A B B C C

(1) Rank the workflow by sorting the track element’s value. For example, for the first element’s
value, the first step uses the first track value, which is 0.26. Then, the second step uses the second track
value, which is 0.51, and the third step uses the third track value, which is 0.11, etc.

(2) Assign work steps to the workstation. These steps must not contradict the conditions of the
sequence of work relationships before and after, as well as not exceeding the production cycle time.

(3) Define the machine type of each step for the workstation, whereby only 1workstation can have
1 type of machine.

4.2. Make All Tracks Select in The Specified Black Box

Operating in the black box means choosing the answer search method designed for finding the
answer to each problem in order to obtain the optimal answer. In this research, we have designed the
algorithm to be used in 3 black boxes, i.e., a differential evolution algorithm (DEA), iterated local search
(ILS) method, and a swap method (Swap). The track selects a black box, individually performing the
black box searching process by using the following formula:

Pbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1∑n

bt=1 Wbt
(11)

Pbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1 + MR∑n

bt=1 Wbt
(12)

where Pbt is the probability for selection black box b in iteration t; Nbt−1 is the number of tracks that
have selected black box b in the previous t iteration; Abt−1 is the average objective value of all tracks
that selected black box b in the previous iteration; Ibt−1 is a reward value, where it is incremented by
1 if a black box finds the best solution in the last iteration, but it is set to zero if this is not the case.
Additionally, Wbt is the weight of black box b, F is the scaling factor (F = 0.1197), K is the parameter
factor (K = 0.5564), M is the parameter factor (M = 0.1), and R is the random number which has a value
of 0 to 1.

4.3. Black Box Operation

In this research, we have designed the algorithm to use aforementioned three black boxes. As
the first calculation is not required for use in the formula when selecting the operating black box, this
work uses a method of calculating the selection of black box b from random numbers (0–1) in order to
select the operation of each black box b by specifying the probability of selecting the black box to be
equal to 0.33, then calculating to find the cumulative probability of each black box b as follows:

(a) Differential evolution algorithm (DEA): There is a cumulative probability range between 0.01–0.33.
(b) Iterated local search (ILS): There is a cumulative probability range between 0.34–0.67.
(c) Swap method: There is a cumulative probability range between 0.68–1.00.

Then, a number between 0–1 is randomly selected for each track, as shown in Table 4, in order to
select the operation of the black box
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Table 4. Operate the black box.

Track Random Black Box

1 0.26 0.51 0.11 0.08 0.40 0.05 DEA
2 0.03 0.38 0.09 0.54 0.33 0.93 Swap
3 0.65 0.30 0.23 0.11 0.59 0.49 ILS
4 0.12 0.83 0.42 0.14 0.33 0.38 ILS
5 0.34 0.15 0.38 0.70 0.63 0.27 DEA

Table 4 shows the results of the black box selection when entering the black box workflow. Tracks
1 and 5 select the black box DEA method, due to the random number which is in the range between
0.01–0.33. Track 2 selects swap method, which has a random number range between 0.68–1.00. Tracks 3
and 4 select the ILS method, which has a random number range between 0.34–0.67. When the selection
of the black box for all tracks has finished, we move on to the next step.

The black box workflow is the process of applying all 3methods for finding the answer, which is
how the black box works, which is explained as follows.

4.3.1. Differential Evolution Algorithm (DEA)

This is a method that has a similar evolution to the genetic algorithm (GA), but the DEA has a
non-complex structure that can use real numbers for calculation, which is different from Gas in terms of
getting the right value without the need to convert decision variables into binary numbers. Differential
evolution is more effective in finding answers than other methods, such as those first used by Storn and
Price (1997) [30] for solving the complex problem. Therefore, this method is suitable for development
and application. There are 5 steps of differential evolution (DE), which are shown as follows:

Step 1: Initial population.
This step consists of creating the initial population of the differential evolution algorithm to be

used the initialization of step 1, which generates a set of tracks from Table 4 by selecting track 1, as
shown in Table 5.

Table 5. Initialization carried out in order to generate a set of a tracks for simple assembly line balancing.

Target Vector (Xi,G + 1) 0.26 0.51 0.11 0.08 0.40

Task 1 2 3 4 5
Task time 1 2 1 3 2
Machine A B B C C

In Table 5, the random number data of the target vector are sorted from small to large. Then, we
choose the work step from the smallest value that is put into the workstation first, which must not go
against the condition of the relationships of the precedence diagram, as well as not exceeding the cycle
time (cycle time = 5), as shown in Table 5.

Table 6 shows the task assignment of a workstation with a cycle time of 5 minutes, in which there
are 5 workstations.

Table 6. Task assignment at a workstation (cycle time = 5).

Workstation 1 2 3

Target vector (Xi,G + 1) 0.26 0.51 0.08 0.11 0.40
Task 1 2 4 3 5

Task time 1 2 3 1 2
Machine A B C B C

Cycle Time 3 4 2
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Step 2: Mutation.
The purpose of the mutation process is to change the values into coordinates referred to as a

weighting factor (F), to create a result of anew answer that is different from the initial answer of the
initial vector. In this regard, Gamperleet al. (2002) [31] has said that a value of 0.6 for F is a good initial
choice of starting value for finding appropriate answers. This is used to calculate the mutant vector
from Equation (13), as shown in Table 7.

Vi, G+1 = Xri
1, G + F

(
Xri

2, G −Xri
3, G

)
(13)

Table 7. Mutation (Vi,G + 1) (F = 0.6).

Task 1 2 3 4 5

Target vector (Xi,G + 1) 0.26 0.51 0.11 0.08 0.40
Mutant vector (Vi,G + 1) 0.32 0.49 0.33 0.20 0.17

Table 7 shows the calculation of the mutant vector from three randomly selected target vectors
from Table 4 by substituting the values into Equation (10). For example, task 1 is 0.51 + (0.6× (0.08
− 0.40)) = 0.32, whereby the selected target vector must not be the same as the target vector that has
already been selected. Then, this result is entered into the coordinate recombination process.

Step 3: Recombination.
The recombination process can increase the diversity of answers, and this step provides the

trial vector. The method of recombination used was binomial crossover, as shown in Equation (14),
producing answers as shown in Table 8. Then, the new answers have been brought to be organized
into the workstation, as displayed in Table 9. A crossover rate value of 0.3 should be chosen, which is a
good initial starting value for finding optimal solutions Gamperleet al. (2002) [31]. Here, we calculate
the recombination vector (Ui,G) via Equation (11), as shown in Table 8.

Ui, G =

 V j
i,G, i f (rand( j) ≤ CR)

X j
i,G, i f (rand( j) ≥ CR)

(14)

Table 8. Recombination (Ui,G) (CR = 0.3).

Task 1 2 3 4 5

Target vector random 0.17 0.28 0.64 0.02 0.71
Target vector (Xi,G + 1 ) 0.26 0.51 0.11 0.08 0.40

Mutant vector (Vi,G + 1 ) 0.32 0.49 0.33 0.20 0.17
Trial vector (Ui,G) 0.32 0.49 0.11 0.20 0.40

Table 9. Task assignment at a workstation (cycle time = 5).

Workstation 1 2 3

Target vector (Xi,G + 1) 0.32 0.49 0.11 0.20 0.40
Task 1 2 3 4 5

Task time 1 2 1 3 2
Machine A B B C C

Cycle Time 3 4 2

Table 8 presents the results of recombination by binomial crossover, which considers and compares
the coordinate exchanges as in Equation (14). If the target vector random value is less than or equal
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to the CR value, the value of the mutant vector is selected; however, if the target vector random is
greater than CR, the target vector value is selected. For example, task 1 has a target vector random of
0.17, which is less than the CR of 0.3, so choose the value of the mutant vector equal to 0.32. If task 3
has a target vector random of 0.64, which is greater than the value of 0.3, the value of target vector is
chosen, etc. Then, the trial vector that goes into the workstation, as assigned by the task procedures for
workstations, considering the smallest trial vector value, which is assigned to workstations first. The
details of this are shown in Table 9.

Table 9 shows the task assignment of the workstations with a cycle time of 5 minutes, where there
are 3 workstations. The next process is the selection.

Step 4: Selection.
The selection process is chosen only for the optimal answer by comparing the trial vector with the

target vector. In the case where the value of the trial vector is larger than the target vector, it shall be
replaced by the trial vector, as in Equation (15), which shall obtain the next version in order to find the
best answer.

Xi, G+1 =

{
Ui, G+1, i f

∫
(Ui, G+1) ≤ (Xi, G)

Xi, G, Otherwise
(15)

Step 5: Here, steps two to four are repeated, which shall be iteratively executed until the predefined
number of iterations has been executed. The next black box procedure used in our method is the
iterated local search (ILS) method.

4.3.2. Iterated Local Search (ILS)

ILS is a metaheuristic method developed from basic local search (BLS), which was first provided
by Lourenço et al. [32]. Namely, the method searches for the specific answer that disturbs the old
answer to obtain a new area to find the answer, then repeats continuously until reaching the designated
stop condition. The general concept of ILS is composed of 6 steps, detailed as follows:

Step 1: Generate the initial solution. This step is selected from the track conversion process, as shown
in Table 3, and selects the initial answer from the random selection of black boxes, which is track 3, to
operate in the ILS method.
Step 2: Swap between steps until all positions are exchanged (Figure 5).
Step 3: Perturbation by randomly selecting the 2 consecutive positions. Then, choose the random
insertion position.
Step 4: Insert 2 positions in step 3 into the track, then obtain a new solution (Figure 6).
Step 5: To employ the new solution to organize work steps into the workstation, which must not
contradict the conditions of the sequence of the tasks and machine types.
Step 6: Repeat steps 2 through to 5 until the stopping criteria are reached.
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4.3.3. Swap Method (Swap)

The swap method is a well-known local search method that is capable of improving an answer to
gain a better answer. Specific answer improvements can be made in many ways, depending on the
type of problem to be solved. The popular methods of improvement for specific topical solutions are
Swap, 2-Opt, and customer-exchange, etc. The swap method is a popular method that researchers
have studied and applied to solve problems, for instance, in Srisuwandee and Pitakaso (2012) [33], the
method is applied to find solutions to the vehicle routing problem when using ant colony optimization,
concerning a Jiaranai Drinking Water Company case study, using alternate methods to improve the
quality of answers. Besides, Chantarasmai and Sindhuchao (2012) [34] has employed the improvement
of vehicle routing with the iterated local search method in a case study of Tongnamkeang shop, taking
the position swap method to enhance the quality of the answer, etc. The swap method is composed of
5 steps, detailed as follows:

Step 1: Generate the initial solution. This step is selected from the track conversion process shown in
Table 3, which is track 2whenoperating with the Swap method.
Step 2: Randomly select a track position, where swapping is carried out by randomly choosing position
1 or track 1, then randomly choosing a position, which is randomly picking position 3 or track 3, to
swap with track 1.
Step 3: Randomly swap position, then obtain a new solution (Figure 7).
Step 4: Give the new task solutions to organize the steps for the workstations, which must not
contradict the conditions of the sequence of tasks, the before–after working relationship, and the type
of machinery in each workstation.
Step 5: Redo steps 2 to 4 until the stopping criteria are reached.
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An example of swapping is shown in Figure 6.

4.4. Update The Track

Update the track and all information using the formula as in Equations (16) and (17).

Zi jt+1 = Zi jt + α
(
Zpb

i jt −Zi jt

)
+ (1− α)

(
Zgb

i jt −Zi jt

)
(16)

Zi jt+1 = Zi jt + α
(
Z2 jt −Zi jt

)
+ (1− α)

(
Z3 jt −Zi jt

)
(17)
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where Zi jt+1 denotes the value of track i, element j, and iteration t + 1, respectively. Additionally, α is

the predefined parameter (α equal to 0.1), Zi jt is the randomly selected track, Zpb
i jt is the personal best

track, and Zgb
i jt is the global best solution.

4.5. Repeat Steps 2 to 4.

Repeat steps 2 to 4 until the termination condition is met. The stopping criteria here is the
maximum number of iterations, which is set to 500 iterations (resulting from the preliminary test).

5. Computational Framework and Result

The proposed algorithm has been coded and simulated in Visual Studio C# using a PC with an
Intel Core™ i3-4010U 1.70 GHz CPU and 5 GB of RAM, which has been compared with the solutions
obtained from the LINGO version 11 software. The best objective was compared in case the optimal
solution was not obtained within a limited time. The algorithms were tested for five runs, then the
best solution among the five runs was reported. Each method was set to have 500 iterations as the
stopping criterion. The VaNSAS method has been tested with 5.1 datasets of SALBP-2 and SALBP-2M,
for three groups of the test instances, i.e., (1) small-sized instances containing 8 tasks, (2) medium-sized
instances containing 29 tasks, and (3) large-sized instances contain 111 tasks, including the case study
problems. The computational framework is shown in Table 10.

Table 10. Details of the test instances.

Instance Workstations Task Instance Workstations Task

Small (S1) 3 8 Medium (M5) 11 29
Small (S2) 4 8 Medium (M6) 12 29
Small (S3) 5 8 Medium (M7) 13 29
Small (S4) 6 8 Large (L1) 13 111
Small (S5) 7 8 Large (L2) 14 111
Small (S6) 8 8 Large (L3) 15 111
Small (S7) 9 8 Large (L4) 16 111

Medium (M1) 7 29 Large (L5) 17 111
Medium (M2) 8 29 Large (L6) 18 111
Medium (M3) 9 29 Large (L7) 19 111
Medium (M4) 10 29 Case study 23 36

The proposed algorithms consisted of two methods of black box selection and updating the track.
The combinations of the proposed algorithms were named VaNSAS.1 to VaNSAS.4. Details of these
algorithms as shown in Table 11.

Table 11. Definition of the proposed algorithms.

Algorithms Definition of the Proposed Algorithm

VaNSAS.1 Using operate the black box, Equation (11) + update the track, Equation (16)
VaNSAS.2 Using operate the black box, Equation (11) + update the track, Equation (17)
VaNSAS.3 Using operate the black box, Equation (12) + update the track, Equation (16)
VaNSAS.4 Using operate the black box, Equation (12) + update the track, Equation (17)

Datasets of SALBP-2 and SALBP-2M

Datasets for SALBP-2 and SALBP-2M have been tested and the results are shown in Tables 12–19.
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Table 12. Computational results of the instance of SALBP-2.

Instance Workstations Task
Cycle Time (Minute)

SALBP-2 LINGO VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

S1 2 8 1.77 1.77 Opt 1.77 1.77 1.77 1.77
S2 3 8 1.28 1.28 Opt 1.28 1.28 1.28 1.28
S3 4 8 1.05 1.05 Opt 1.05 1.05 1.05 1.05
S4 5 8 1.05 1.05 Opt 1.05 1.05 1.05 1.05
S5 6 8 1.05 1.05 Opt 1.05 1.05 1.05 1.05
S6 7 8 1.05 1.05 Opt 1.05 1.05 1.05 1.05
S7 8 8 1.05 1.05 Opt 1.05 1.05 1.05 1.05
M1 7 29 0.68 0.68 Opt 0.68 0.68 0.68 0.68
M2 8 29 0.62 0.62 Opt 0.62 0.62 0.62 0.62
M3 9 29 0.57 0.57 Opt 0.57 0.57 0.57 0.57
M4 10 29 0.53 0.53 Opt 0.53 0.53 0.53 0.53
M5 11 29 0.47 0.47 Opt 0.47 0.47 0.47 0.47
M6 12 29 0.45 0.45 Opt 0.45 0.45 0.45 0.45
M7 13 29 0.42 0.42 Opt 0.42 0.42 0.42 0.42
L1 13 111 192.83 192.93 Obj 192.83 192.87 192.83 192.92
L2 14 111 179.82 179.32 Obj 179.13 179.21 179.15 179.20
L3 15 111 167.98 167.83 Obj 167.32 167.35 167.35 167.35
L4 16 111 157.27 157.06 Obj 156.90 156.90 156.90 156.97
L5 17 111 147.67 147.90 Obj 147.73 148.18 147.73 148.20
L6 18 111 139.62 141.40 Obj 139.62 139.65 139.65 139.67
L7 19 111 133.17 132.35 Obj 132.47 132.73 132.73 132.73

Note: Opt is the optimal solution found by LINGO and Obj is the best objective found within 7200 minutes.

Table 13. Statistical test results of the results shown in Table 12.

VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

LINGO 0.142 0.326 0.199 0.361
VaNSAS.1 - 0.093 0.206 0.060
VaNSAS.2 - - 0.236 0.101
VaNSAS.3 - - - 0.155

Table 14. Computational results of the instance of SALBP-2M.

Instance Workstations Task Randomly
Machine

Cycle Time (Minute)

SALBP-2 LINGO VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

S1 2 8 3 1.77 1.77 Opt 1.77 1.77 1.77 1.77
S2 3 8 2 1.28 1.28 Opt 1.28 1.28 1.28 1.28
S3 4 8 1 1.05 1.05 Opt 1.05 1.05 1.05 1.05
S4 5 8 2 1.05 1.05 Opt 1.05 1.05 1.05 1.05
S5 6 8 3 1.05 1.05 Opt 1.05 1.05 1.05 1.05
S6 7 8 3 1.05 1.05 Opt 1.05 1.05 1.05 1.05
S7 8 8 2 1.05 1.05 Opt 1.05 1.05 1.05 1.05
M1 7 29 2 0.68 0.68 Opt 0.68 0.68 0.68 0.68
M2 8 29 3 0.62 0.62 Opt 0.62 0.62 0.62 0.62
M3 9 29 1 0.57 0.57 Opt 0.57 0.57 0.57 0.57
M4 10 29 1 0.53 0.53 Opt 0.53 0.53 0.53 0.53
M5 11 29 2 0.47 0.47 Opt 0.47 0.47 0.47 0.47
M6 12 29 1 0.45 0.45 Opt 0.45 0.45 0.45 0.45
M7 13 29 3 0.42 0.42 Opt 0.42 0.42 0.42 0.42
L1 13 111 3 192.83 234.70 Obj 228.03 228.22 228.18 228.22
L2 14 111 2 179.13 216.48 Obj 208.23 208.35 208.50 208.50
L3 15 111 1 167.32 200.30 Obj 194.85 194.62 194.67 194.85
L4 16 111 3 156.90 166.85 Obj 164.78 164.82 164.78 164.86
L5 17 111 1 147.73 163.07 Obj 157.18 157.32 157.32 157.32
L6 18 111 2 139.62 155.70 Obj 146.72 147.00 147.23 147.18
L7 19 111 1 132.47 150.03 Obj 145.77 145.86 145.86 145.97

Case study 23 36 1 2.00 1.23 Opt 1.23 1.23 1.23 1.23

Note: Opt is the optimal solution found by LINGO and Obj is the best objective found within 7200 minutes.
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Table 15. Statistical test results of the results shown in Table 14.

VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

LINGO 0.009 0.009 0.009 0.009
VaNSAS.1 - 0.176 0.131 0.027
VaNSAS.2 - - 0.227 0.038
VaNSAS.3 - - - 0.127

Table 16. Different ratios (%diff) the instances of SALBP-2M.

Instance Workstations Task Randomly
Machine

%diff

LINGO VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

S1 2 8 3 0.00 0.00 0.00 0.00 0.00
S2 3 8 2 0.00 0.00 0.00 0.00 0.00
S3 4 8 1 0.00 0.00 0.00 0.00 0.00
S4 5 8 2 0.00 0.00 0.00 0.00 0.00
S5 6 8 3 0.00 0.00 0.00 0.00 0.00
S6 7 8 3 0.00 0.00 0.00 0.00 0.00
S7 8 8 2 0.00 0.00 0.00 0.00 0.00
M1 7 29 2 0.00 0.00 0.00 0.00 0.00
M2 8 29 3 0.00 0.00 0.00 0.00 0.00
M3 9 29 1 0.00 0.00 0.00 0.00 0.00
M4 10 29 1 0.00 0.00 0.00 0.00 0.00
M5 11 29 2 0.00 0.00 0.00 0.00 0.00
M6 12 29 1 0.00 0.00 0.00 0.00 0.00
M7 13 29 3 0.00 0.00 0.00 0.00 0.00
L1 13 111 3 21.71 18.25 18.35 18.33 18.35
L2 14 111 2 20.85 16.25 16.31 16.40 16.40
L3 15 111 1 19.71 16.45 16.32 16.35 16.45
L4 16 111 3 6.34 5.02 5.05 5.02 5.07
L5 17 111 1 10.38 6.40 6.49 6.49 6.49
L6 18 111 2 11.52 5.09 5.29 5.45 5.41
L7 19 111 1 13.26 10.04 10.11 10.11 10.19

Case study 23 36 1 −38.50 −38.50 −38.50 −38.50 −38.50

Average 2.97 1.77 1.79 1.80 1.81

Table 17. Statistical test results of the results shown in Table 16.

VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

LINGO 0.010 0.010 0.009 0.010
VaNSAS.1 - 0.164 0.137 0.033
VaNSAS.2 - - 0.230 0.037
VaNSAS.3 - - - 0.137
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Table 18. Computational time results of instances of SALBP-2M.

Instance Workstations Task Randomly
Machine

Computational Time (Minute)

LINGO VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

S1 2 8 3 0.0003 0.001 0.001 0.001 0.001
S2 3 8 2 0.0003 0.002 0.003 0.002 0.002
S3 4 8 1 0.0003 0.0037 0.0038 0.0033 0.0040
S4 5 8 2 0.0003 0.0067 0.0070 0.0058 0.0038
S5 6 8 3 0.0003 0.0070 0.0088 0.0058 0.0030
S6 7 8 3 0.0003 0.0053 0.0078 0.0125 0.0072
S7 8 8 2 0.0003 0.0062 0.0063 0.0058 0.0047
M1 7 29 2 0.0012 0.0002 0.0015 0.0008 0.0008
M2 8 29 3 1.0013 0.0010 0.0015 0.0005 0.0007
M3 9 29 1 0.5500 0.0008 0.0008 0.0005 0.0005
M4 10 29 1 9.1667 0.0007 0.0010 0.0007 0.0002
M5 11 29 2 1.2833 0.0008 0.0012 0.0005 0.0002
M6 12 29 1 26.90 0.0010 0.0008 0.0005 0.0002
M7 13 29 3 0.0002 0.0007 0.0007 0.0005 0.0003
L1 13 111 3 7200 2.3833 3.6200 2.7167 2.2583
L2 14 111 2 7200 5.4928 6.9667 5.2217 5.4373
L3 15 111 1 7200 2.6220 3.0918 2.8353 2.9405
L4 16 111 3 7200 6.5668 6.1255 8.0582 5.0395
L5 17 111 1 7200 1.8217 2.9365 2.5732 1.5185
L6 18 111 2 7200 2.6708 3.5578 2.6708 2.2237
L7 19 111 1 7200 4.2725 5.7000 4.2725 4.5575

Case study 23 36 1 1979.72 1.16 1.37 1.18 1.21

Average 2382.66 1.23 1.52 1.34 1.15

Table 19. Statistical test results of the results shown in Table 18.

VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

LINGO 0.003 0.003 0.003 0.003
VaNSAS.1 - 0.022 0.147 0.291
VaNSAS.2 - - 0.248 0.008
VaNSAS.3 - - - 0.191

From Table 12, it can be seen that LINGO could find the optimal solution in the small-and
medium-sized instances, but for the large-sized instance, LINGO could find only the best objective,
respectively. On the other hand, all proposed methods could find the optimal solution.

The results were analyzed using statistical methods for performance comparison, shown in
Table 13. The results show that all proposed methods were non-significantly different when compared
to the solution from LINGO. Moreover, all proposed methods were also insignificantly different when
compared to each other.

The results given in Table 13 show that LINGO and VaNSAS.1 to VaNSAS.4 were non-significantly
different from each other.

As shown in Table 14, LINGO could find the optimal solution in the small- and medium-sized
instances included in the case study. However, for the large-sized instance, LINGO could only find
the best objective, respectively. On the other hand, we can see that, when considering the number of
machines to be added into the constraint of the task assignment in each workstation, the cycle time
increased forSALBP-2.The results were analyzed using the statistical methods shown in Table 15 and a
different ratio (%diff) of the cycle time of SALBP-2M (Equation (18)) was found, as shown in Table 16.

The results were analyzed using statistical methods for performance comparison in Table 15. The
results show that LINGO and VaNSAS.1 to VaNSAS.4 were significantly different from each other.

Table 16 presents the %diff of the cycle time of SALBP-2M by each algorithm when compared to
the result from the original SALBP-2. Here, %diff was calculated using Equation (18):

%di f f =
(Ctnew

−Ctoid)

Ctoid
× 100% (18)
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where Ctnew is the cycle time of the proposed algorithm generated by solving SALBP-2M and Ctold is
the cycle time of the proposed method of SALBP-2.

From Table 16, SALBP-2M had the limitation of the maximum number of machines, where the
cycle time would increase from the SALBP-2 version. This meant that it was harder to solve than that
of SALBP-2.

Figure 8 shows the percentage differences (%diff) of the instances of SALBP-2M. The computational
results show VaNSAS.1has the lowest percentage difference when compared with other methods: the
percentage difference is 1.77. The VaNSAS.2–VaNSAS.4 methods have average differences of 1.79, 1.80
and 1.81, respectively. All proposed VaNSAS results are less than the result from LINGO, which is 2.97.
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Finally, the statistical test was tested with the result given in Table 16. If each method performed
differently while solving a given instance, which was the modified version of SALBP-2 when using a
paired t-test, the result was recorded. This is shown in Table 17.

The results were analyzed using statistical methods for performance comparison in Table 17, with
different %diff values in different instances of SALBP-2M. The results show that all proposed methods
were significantly different from each other when compared to the solution found by LINGO. Moreover,
all of the proposed methods were also insignificantly different. This means that the proposed methods
are high-performance metaheuristic methods, capable of finding the near-optimal solution.

From the computational results shown in Table 18 and Figure 9, all of the proposed methods can
be seen to find a better solution than that of the best solution obtained by LINGO version 11, which
required an average of 2382.66 min, while the proposed methods used only 1.23 min, 1.52 min, 1.34
min, and 1.15 min, respectively, to find such a good solution.

According to Table 19, the results of the response processing time found that the method presented
to VaNSAS.1 to VaNSAS.4 gave different results from the best solution provided by LINGO, which
means that the proposed method is effective and able to find a good answer to the proposed problems.

The case study here included the 36 tasks and the aim was to minimize the cycle time of the system.
The problems assigned these tasks into 22 workstations with 2-minute cycle times. The precedent
diagram for the case study is shown in the Appendix A. The type of machine in each workstation did
not exceed one.

The computational results of the case study when using VaNSAS (example result from VaNSAS.1)
are shown in Table 20.
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Table 20. Task assignment for workstations after adjustment.

Workstation Task Time (Minute) Idle Time (Minute) Machine

1 1 1.05 0.18 Hand work
2 6, 8, 3 0.95 0.28 SNA(1)
3 4, 12 1.15 0.08 4OL
4 13 0.65 0.58 FLA(1)
5 14 0.63 0.60 4OL
6 15 0.60 0.63 FLA(2)
7 18 0.85 0.38 4OL
8 19 0.78 0.45 FLA(2)
9 5, 2, 7 1.08 0.15 SNA(1)

10 9, 20 0.59 0.64 4OL
11 10, 21, 27 1.15 0.08 SNA(2)
12 28, 16 0.88 0.35 4OL
13 17 0.38 0.85 FLA(2)
14 22, 23 1.22 0.01 4OL
15 11 0.52 0.71 4OL
16 24, 25 1.09 0.14 SNA(2)
17 29, 26 1.17 0.06 4OL
18 32 0.77 0.46 4OL
19 34 0.43 0.80 SNA(2)
20 35, 33 1.13 0.10 SNA(1)
21 30, 31 0.74 0.49 SNA(2)
22 36 1.23 0.00 DNN

Total 19.04 8.02

Table 20 shows the cycle time, which reduced to 1.23 minutes. The results of the simple assembly
line balancing problem type 2 of the case study, before and after adjustment, are shown in Table 21, as
obtained by the VaNSAS method. The results of testing all of the proposed methods are shown, along
with those found by LINGO version 11 when solving the problems in the case study. We ran LINGO
version 11 for 1979.72 minutes and the best objective was found during the simulation run, which is
reported in Table 21.
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Table 21. Computational results of the case study.

No. Consideration LINGO VaNSAS.1 VaNSAS.2 VaNSAS.3 VaNSAS.4

1 Workstations 22 22 22 22 22
2 Cycle time (minute) 1.23 1.23 1.23 1.23 1.23
3 Assembly line efficiency (percent) 70.36 70.36 70.36 70.36 70.36
4 Computational time (minute) 1979.72 1.16 1.37 1.18 1.21

Table 21 presents the results of the VaNSAS method when applied to the simple assembly line
balancing problem type 2 of the case study. The results show that the VaNSAS method can reduce the
cycle time from 2.00 minutes to 1.23 minutes. The effectiveness of the assembly line increased here
from 41.49% to 70.36%. The VaNSAS method was able to solve the assembly line balancing problem
type 2 and could find the optimal solution as well. Therefore, the VaNSAS method is efficient for
application in solving the assembly line balance problem and has a much lower computational time.

6. Conclusions and Future Research

This research has focused on solving the minimization of cycle time for a simple assembly line
balancing problem type 2, considering a garment industry case study (SALBP-2M). We have presented
a variable neighborhood strategy adaptive search algorithm (VaNSAS), composed of five steps, i.e.,
generating a set of tracks, making all tracks operate in the specified black box, operating the black
box via the three black-box methods, which have been modified from the original version of them,
and, therefore, effective neighborhood strategies have been created for use as improvement tools of
VaNSAS. The neighborhood strategies used in this article include a differential evolution algorithm
(DEA), iterated local search (ILS) method, and a swap method (Swap). The fourth step consists of
updating the track and repeating steps two to four until the termination condition is met. We have
divided the proposed VaNSAS method into four algorithms, i.e., VaNSAS.1, VaNSAS.2, VaNSAS.3,
and VaNSAS.4, respectively, in order to evaluate the performance of the various black box selections
and update the tracks.

The computational results show that VaNSAS.1outperformed the other proposed algorithms of
black box selection (Equation (11)) and the other track update formulas (Equation (16)) due to VaNSAS.1
providing a better answer and taking less time to process the answer than the other methods. The
VaNSAS concept was derived from the combination of all three methods in the black box, with random
problems choosing the black box method to solve the problem. Moreover, it depended on the idea that
the track be made more intense, because it was the weight calculation of the best objective obtained
by choosing the black box for the given operation. A further objective was to improve the track by
choosing only the track from the best objective, and the good objectives received for improvement were
used in the next round. Therefore, the black box method generated the best answer and the best track
updates were more likely to be repeatedly chosen, which is effective in regard to resolving problems.

The VaNSAS method outperformed the best-known heuristic methods (LINGO version 11),
finding the optimal solution of SALBP-2 and SALBP-2M datasets. The case study results show that the
proposed VaNSAS method has reduced the cycle time to 1.23 minutes and increased the assembly line
effectiveness to 70.36%, indicating that the proposed VaNSAS method could be applied to effectively
solve the assembly line balance problem.

The researchers recommend considering other additional factors in future research, for instance,
the study of employee skills and performance, and the study of the capability of each type of machine
used in the production process, applying the principles of open innovation. This may be in the form of
software or applications to collect data, or the exchange of information between organizations using
production planning, or solutions to various problems that occur.

Author Contributions: Conceptualization, G.J. and R.P.; methodology, R.P.; validation, K.S. and S.K.;
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