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Abstract: Addressing the consequences of exposure to endocrine-disrupting chemicals
(EDCs) demands thorough research and elucidation of the mechanism by which EDCs
negatively impact women and lead to breast cancer (BC). Endocrine disruptors can affect
major pathways through various means, including histone modifications, the erroneous
expression of microRNA (miRNA), DNA methylation, and epigenetic modifications. How-
ever, it is still uncertain if the epigenetic modifications triggered by EDCs can help predict
negative outcomes. Consequently, it is important to understand how different endocrine
disrupters or signals interact with epigenetic modifications and regulate signalling mech-
anisms. This study proposes that the epigenome may be negatively impacted by several
EDCs, such as cadmium, arsenic, lead, bisphenol A, phthalates, polychlorinated biphenyls
and parabens, organochlorine, and dioxins. Further, this study also examines the impact of
EDCs on lifestyle variables. In breast cancer research, it is essential to consider the potential
impacts of EDC exposure and comprehend how EDCs function in tissues.
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1. Introduction
Breast cancer is a significant public health issue worldwide. According to recent World

Health Organization (WHO) data, breast cancer caused 670,000 deaths globally in 2022 [1].
Roughly half of all breast cancers occur in women with no specific risk factors other than
sex and age. In 2022, breast cancer was the most common cancer in women in 157 out of
185 countries. Breast cancer occurs in every country in the world [1]. Approximately 0.5–1%
of breast cancers occur in men, highlighting the importance of awareness and education
regarding this disease for all genders [1,2]. Early detection through regular screenings
can significantly improve survival rates, making it crucial for individuals to understand
their risk [1,2]. Endocrine-disrupting chemicals (EDCs) are defined broadly as exogenous
molecules that interfere with the endogenous hormonal axis at any level [3,4]. This encom-
passes the synthesis, metabolism, transport, and administration of hormones; disruptions
to hormone receptor expression and downstream signals; the activation or inhibition of
hormonal signals; and changes to epigenetic regulation [3,4]. EDCs include both natural
molecules that affect estrogen signalling, such as phytoestrogens (e.g., genistein, which is
prevalent in soy), and synthetic chemicals intended for therapeutic purposes, such as those
used as adjuvant therapies in breast cancer [5,6]. EDCs have diverse origins, structures,
and actions; it is believed that EDCs predominantly function through nuclear hormone
receptors, such as estrogen receptors (ERs) and progesterone receptors (PRs) [7,8]. There
is increasing evidence indicating that EDCs alter the epigenetic landscape in common
diseases, including cardiovascular, pulmonary, and neurological conditions, as well as
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malignancies, particularly breast cancer [2,3]. Hormones operate as ligands for nuclear
receptors, which can influence gene expression directly by binding to DNA or indirectly
through transcription factors [4,7]. Hormones can also signal through non-genomic routes
by engaging with membrane nuclear receptors or cytoplasmic receptors, triggering sig-
nalling cascades via secondary messengers (SMs) that produce rapid physiological effects
without affecting gene expression [8.9]. Endocrine-disrupting substances can bind to recep-
tors and imitate endogenous hormones, but they also can influence hormone signalling in a
variety of other ways [9]. EDCs can interact with various receptors, including non-nuclear
receptors, either as agonists, facilitating genomic connections, or as antagonists, causing a
conformational change in the receptor to prevent activation [8–11]. Importantly, EDCs can
disrupt endogenous hormone synthesis and breakdown, altering hormone levels. Recent
research has also shown that EDCs can affect genome methylation and histone alterations
through an epigenetic mechanism [6–10].

Epigenetic modifications encompass an array of DNA and histone modifications that
affect levels of gene expression without changing the underlying coding sequence [3,4].
Histone alterations can control the recruitment of DNA Methyltransferases (DNMTs) to
CpG (cytosine and guanine dinucleotide) sites, whereas methylated CpG sites promote
the recruitment of methyl-binding proteins to the genomic area; in turn, these proteins
recruit histone deacetylase enzymes [10–12]. These enzymes facilitate the removal of acetyl
groups from histones, leading to a more compact chromatin structure and transcriptional
repression. Consequently, the interplay between histone modifications and DNA methy-
lation plays a crucial role in governing gene expression and maintaining cellular identity
(Figures 1 and 2) [2–15]. The degradation of histone tail lysine residues causes the local
chromatin structure to constrict, preventing access to transcriptional machinery and thereby
repressing gene transcription [3,5,6]. Small non-coding RNAs (ncRNAs) also serve as a key
element of the cell’s epigenetic processes of regulation. The ncRNAs discovered in mam-
malian systems include microRNA (miRNA), endogenous siRNA, and PIWI-interacting
miRNA (piRNA) [6,7]. They vary in their genetic origin and post-translational processing,
but they all have the same function: the post-transcriptional down regulation of the expres-
sion of target genes as well as other non-coding RNAs [7,8]. Long non-coding RNAs can be
generated from gene regulatory areas or mitochondrial DNA. They mostly impact the local
genetic area of their origin, acquiring transcription factors or other epigenetic modifications
and developing breast cancer (Figures 1 and 2) [2–15].

Environmental epigenetic changes offer clear molecular pathways through which
variables or hazardous substances may influence a genetic cascade of occurrences that
contribute to the development of breast cancer [14–17]. There are crucial windows of
sensitivity in which these components alter and affect vital phases of development. A
tumour sample panel study showed that increased DNA methylation is an indicator of
ER-positive tumours that are involved in breast cancer [3,14–19]. The identification of
epigenetic markers modified by EDCs in the environment will thus provide a potential
method of early detection, predictive value, and functional information about the chemical
itself [18–22]. The WHO and IARC (International Agency for Research on Cancer) have
identified EDCs that are also found in food. These substances fall into several categories,
including phthalates, organochlorine insecticides, polychlorinated biphenyl, polybromi-
nated diphenyl ethers, dioxins, bisphenol A, and heavy metals [22,23]. This study focuses
on EDCs that may alter the epigenome and mainly affect endocrine-responsive organs
such as the breast, addressing the effects of food intake and lifestyle factors on health by
investigating the effects of various environmental factors on gene expression and high-
lighting the potential long-term consequences of exposure to these endocrine-disrupting
chemicals. Data searches were conducted using Google, PubMed, Scopus, Google Scholar,
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and Web of Science. This study emphasises the need for further research to understand the
mechanisms through which EDCs influence epigenetic modifications and their implications
for human health.
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Figure 1. The effects of endocrine-disrupting chemicals (EDCs) and the mechanism(s) by which
epigenetic modification, including DNA methylation, expression of aberrant microRNA (miRNA),
and histone modification, is one mechanism assumed to be a primary pathway leading to the
untoward effects of endocrine disruptors (the figure was designed using BioRender graphics: https:
//www.biorender.com, accessed on 28 July 2024).
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Figure 2. Endocrine disruptors and risk factors mediate epigenome modifications that increase the
risk of breast cancer. EDC may prolong puberty and increase mammary epithelial cell proliferation,
allowing for a longer duration or faster rate of epigenetic remodelling of the developing mammary
gland, resulting in chromatin destabilisation, mispackaging of genes in active/inactive domains, and
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aberrant expression of genes in key regulatory pathways. Mutations in HMTs (histone methyl-
transferases), HDMs (histone methyltransferases), and H3.3 (Histone variant H3.3) increase Histone
deacetylase 1 (HDAC1) but reduce HATs (histone acetyltransferases) (the figure was designed using
BioRender graphics: https://www.biorender.com, accessed on 28 July 2024).

2. Endocrine Disruption in Breast Cancer Parallels the Epigenome
Environmental and lifestyle factors are considered some of the major influencing

components that increase breast cancer risk [12,13,24,25]. EDCs may epigenetically alter
immune cell differentiation, creating an immunosuppressive environment through the
increased differentiation of regulatory T cells (Tregs), which impair anti-tumour immu-
nity [22–24]. EDC-induced epigenetic alterations might cause aberrant cytokine production,
establishing a pro-tumour milieu by increasing anti-inflammatory cytokines (e.g., IL-10)
and decreasing pro-inflammatory cytokines (e.g., IFN-γ) [25]. EDCs can cause epigenetic
alterations in stromal cells, such as cancer-associated fibroblasts (CAFs) and endothelial
cells. This causes increased release of growth factors (e.g., VEGF) that promote angio-
genesis [26]. Changes in metalloproteinase expression cause altered extracellular matrix
(ECM) remodeling [22]. EDCs can epigenetically upregulate immune checkpoint molecules
such as PD-L1 on tumour cells, allowing them to avoid immune detection [23]. EDCs may
activate NF-κB, causing low-grade inflammation and tumour growth [22]. EDC-induced
epigenetic alterations in immune cells (such as T cells and macrophages) can enhance their
suppressive effects, allowing the TME to avoid immunological responses [22]. EDCs can
epigenetically remodel stromal and immune cells, resulting in niches that promote tumour
cell survival, invasion, and metastasis [22–26]. The link between high amounts of EDCs
in individuals and a higher probability of breast cancer has been frequently investigated,
with no conclusive evidence demonstrating a relationship [21–24]. An EDC can act as
an estrogen mimic and may interact with the ligand-binding region of ER-α, increasing
cellular proliferation, possibly by slowing apoptosis, and producing a gene expression
profile connected with a poor cancer survival prognosis. This has led to enhanced growth of
mammary glands in rats, demonstrating the effects of processing and storing EDCs instead
of exposure via maternal blood, where circulation levels were undetermined [8,9,25–32].
This section discusses how cell signalling mechanisms and exposure to common EDCs
might impact epigenetic changes and the risk of breast cancer. EDC-induced epigenetic
alterations can inhibit genes involved in immune cell activation and cytotoxicity, reducing
the immune system’s ability to attack tumour cells. The epigenetic effects regulated by
EDCs in breast cancer are summarised in Table 1.

Table 1. Epigenetic effects regulated by EDCs in breast cancer.

S. N. Endocrine
Disruptor

Mode of
Exposer

Epigenetic Effect
on Breast Cancer

Epigenetic Effect
on Other Tissues

Affected Signalling
Mechanism References

1 Cadmium

As a naturally
occurring

element of the
Earth’s crust,

tobacco
smoke and

food contain
cadmium.

Modified
methylation of

CCT3 chaperonin
containing TCP1
subunit 3 (CCT3)
and Thioredoxin

Reductase
(TXNRD1).

Thyroid,
pancreas,

prostate, and
kidney.

Important signalling
pathways such the

NF-κB, p53, and
MAPK

(Mitogen-activated
protein kinase)
pathways are

impacted by Cd2+,
either directly or

indirectly.

[30,33]

https://www.biorender.com
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Table 1. Cont.

S. N. Endocrine
Disruptor

Mode of
Exposer

Epigenetic Effect
on Breast Cancer

Epigenetic Effect
on Other Tissues

Affected Signalling
Mechanism References

2 Arsenic

Arsenic is a
common

component in
semiconductor

circuits and
lead alloys that
are employed

in batteries
and arms.

Matrix
metalloproteinas-2

(MMP2) and
MMP-9 (Matrix

metalloproteinase)
are TNFR (tumour

necrosis factor
receptor) family

members.

The highest
associations

between long-term
exposure to arsenic
and cancer are seen

in bladder, lung,
and skin cancers.
Liver and kidney.

Rac, Rho, and MEKK 1–4
(mitogen-activated

protein kinase kinase
kinase-1) mediate JNK

activation, whereas
Ras/Raf/Mek signalling
activates ERKs and p38
signalling. The MAPK

cascade is responsible for
arsenic poisoning.

[30]

3 Lead

Lead (Pb) is
found naturally

in the
Earth’s crust.

WNT signalling
epigenetic

modification in ER+
breast cancer, SFRP
and DKK are two
examples of WNT
antagonist genes
whose epigenetic
silencing leads to

breast cancer.

Blood, digestive
organs, brain,

nerves, and more.

Lead causes chromatin
aggregation through

histone-DNA cross-links
and DNA structural

instability.

[32,33]

4 Bisphenol A
(BPA)

Dental sealants,
thermal paper,
epoxy resins,
and plastics.

Modifications in
CDNK2A

(cyclin-dependent
kinase inhibitor

2A), THBS1
(Thrombospondin

1), BRCA1, CCNA1,
LAMP3,

TNFRSF10C, and
TNFRSF10D
methylation.

Increased brain
tissue DNMT

activity.

The activation of AKT
and ERK1/2 is necessary
for the proliferative and

prosurvival effects of
BPA in breast cancer.

[34,35]

5 Phthalates

Utilised as
liquid

plasticisers,
which are used

to make wall
covers, tiles for

the floor,
pacifiers for

teethers, toys,
furniture fabric
and mattresses,

textiles,
household
goods, and

medical
equipment.

Kcnk5,
COX-2/PGE2,

PPARa, HER2/neu,
v-myc, and c-myc.

The male
reproductive

system may be
harmed by
phthalate.

PKA is short for
cyclin-dependent kinase

(CDK).
AhR-HDAC6-c-Myc and
COX-2/PGE2 pathways

are activated.

[36,37]

6
Polychlorinated

biphenyls
(PCBs)

Agents for heat
transfer and

coolants.

The AHRR gene’s
methylation

Increased DNMT
and SAM content,

which raises
methylation in rat

liver cells

PCBs cause
dysregulatory thyroid

hormone and
impairment of

intracellular calcium
signalling.

[38,39]
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Table 1. Cont.

S. N. Endocrine
Disruptor

Mode of
Exposer

Epigenetic Effect
on Breast Cancer

Epigenetic Effect
on Other Tissues

Affected Signalling
Mechanism References

7 Diethylstilbestrol
(DES)

A nonsteroidal
oestrogen drug
is diethylstilbe-

strol, often
known as

stilboestrol or
stilboestrol.

Elevation of H3
trimethylation
through EZH2

expression
increases.

Hox gene
methylation

pattern in mouse
endometrium;

higher expression
of Dnmt1 in mouse

uterus.

DES and E2 share a
number of pathways,
such as the oestrogen
receptor pathway and

mammary gland
development.

[40,41]

8

Polycyclic
aromatic

hydrocarbons
(PAHs)

Incomplete
combustion of
materials such
as coal, wood,
cigarettes, and
petroleum oil.

Generates DNA
adducts close to
breast epithelial

methylation sites.

Lung cancer.

The stimulation of
cytochrome P450 to

produce DNA. The main
factor contributing to

PAH-induced
carcinogenesis is

epigenetic changes.

[42,43]

2.1. Cadmium

Cadmium (Cd2+) is a metal that exists as a natural component of the Earth’s crust [44].
Cd2+ is a heavy metal that has been linked to breast cancer and is known to cause epigenetic
modifications in breast cancer cells, potentially influencing gene expression and contribut-
ing to tumour progression [44,45]. Research continues to explore the mechanisms through
which cadmium affects cellular pathways, aiming to identify potential interventions or
preventative measures for those at risk [46,47]. Understanding the specific pathways influ-
enced by cadmium exposure may lead to targeted therapies that could mitigate its harmful
effects [48–50]. Cd2+ has been demonstrated to cause a variety of epigenetic alterations.
These alterations may cause modifications in gene expression, as observed both in vitro and
in vivo. Cd2+ affects key signalling pathways, either directly or indirectly, including the
NF-κB, p53, and MAPK pathways (Figure 3) [44–54]. The modification enhances the patho-
logical situation, influences the functions of cells, and triggers unique biological responses
in various types of cells, enabling them to react to a variety of external signals, including
growth hormones, cellular stress, and inflammatory stimuli [50–54]. These responses are
crucial for maintaining homeostasis and adapting to changing environments. By modulat-
ing cellular activities, the modification plays a significant role in processes such as tissue
repair and immune response [54]. The Ras-Raf-MEK-ERK signalling pathway is activated
by external inputs, and under normal conditions, it stimulates ERK and the expression of
specific genes required for regular cell growth and division, maintaining the physiological
state and functionality of cells [54]. However, the dysregulation of this pathway can lead to
uncontrolled cell proliferation and survival, contributing to the development of various
cancers [46–50]. Understanding the intricacies of the Ras-Raf-MEK-ERK signalling pathway
is crucial for developing targeted therapies aimed at restoring normal cellular functions
(Figure 3) [50–60]. The prolonged stimulation of the ERK pathway can occur from chronic
Cd2+ toxicity [54,55], leading to altered signal transduction and clinical consequences in
different cells since importunate ERK activation increases cell proliferation, suppresses
mechanisms for programmed cell death, and tampers with cell cycle control [56–58]. Cd2+

activates this process, triggering a variety of cellular reactions such as transcription factors
controlling the cell cycle, apoptosis, proliferation, and the regulation of genes essential
for cell survival [55–57]. The active route helps cells adapt to or fend off the harmful
effects of Cd2+ by encouraging the phosphorylation of the transcription factor c-Jun, an
essential stage in cellular stress responses [50–52]. High-dose or increased consumption of
Cd2+ can result in excessive JNK pathway activation, which can impede cellular functions
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such as autophagy, apoptosis, DNA damage, and cytoskeletal instability [56–60]. These
modifications can eventually lead to cell problems and pathogenic alterations, promoting
the development of diseases like breast cancer [59,60]. In the final phase, they impact
long-term survival by modulating responses to inflammation, apoptosis, and survival
signals [48–52]. Comparable to activating the JNK pathway, Cd2+ directly interacts with
specific cell surface receptors or channels, such as calcium channels, to cause signalling
downstream that alters intracellular Cd2+ concentrations [58–62]. This, in turn, indirectly
activates a number of calcium-related kinases, which activate the p38 MAPK pathway. An
increase in ROS brought on by Cd2+ either directly or indirectly activates the p38 MAPK
pathway through upstream kinases such as apoptosis signal-regulating kinase 1 (ASK1),
enabling an oxidative stress response that helps cells resist the harmful effects of Cd2+

(Figure 3) [50–60]. One important signalling mechanism that regulates where cells react
to inflammatory and immune responses is the NF-κB pathway; NF-κB is usually linked
to the inhibitory protein IκB and persists in the cytoplasm in a state of inactivity [60–64].
Cell survival signals trigger inflammatory processes, and Cd2+ may stimulate the NF-κB
pathway, thus mediating cellular responses to its toxicity. Based on the result of a few
studies, Cd2+ enhances the response to inflammation by increasing NF-κB activation via an
ROS-dependent mechanism [65–67]. The two cell surface receptors that Cd2+ can mimic
or activate are receptor-interacting serine/threonine protein kinase 1 (RIP1) and receptor-
associated factor 6 (TRAF6). As a result, signalling molecules and related adaptor proteins
become activated, which then increases IKK activity and opens the NF-κB pathway [63–67].
Cell growth and development, differentiation, apoptosis, and responses to stress are all
significantly influenced by the complex and wide-ranging biological impacts that can arise
from Cd2+ disruption of cellular signalling networks [62–66].
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cause cancer, often through non-genetic mechanisms such as DNA methylation, histone changes,
and microRNA (miRNA) control. The disrupting effects of cadmium on MAPK pathways on cellular
signalling and health. Figure highlights the direct and indirect effects of Cd2+ interference on cellular
function, which lead to aberrant cell responses and elevated breast cancer. These disruptions can result
in altered gene expression and impaired cell proliferation, ultimately contributing to tumourigenesis
(the figure was designed using BioRender graphics: https://www.biorender.com, accessed on 8
August 2024).

2.2. Arsenic

Arsenic (As) is a hazardous element present in the Earth’s crust. It is commonly
utilised in lead alloys (batteries and weapons) and semiconductor circuits [68,69]. Arsenic
trioxide was used to make herbicides and cure wood products, but both applications have
been mostly discontinued since its toxicity was identified and associated with mutation,
genotoxicity, and breast cancer [69]. Chronic arsenic exposure can activate oncogenes or tu-
mour suppressors owing to arsenic’s impact on miRNA, contributing to the overexpression
of hypoxia factors, and it has been linked to lung, skin, bladder, and other cancers [70,71].
MiR-182-5p is suppressed, and the overexpression of these factors may increase arsenic’s
carcinogenic potential [72–74]. Several genes are expressed via cellular proliferation, dif-
ferentiation, transformation, and apoptosis with the aid of mitogen-activated protein
kinase [72,73]. The three most significant members of this family are p38, extracellular
signal-regulated kinases (ERKs), and c Jun N-terminal kinase (JNK) [73–76]. ERK and p38
signalling are activated by Ras/Raf/Mek signalling; however, JNK activation is mediated
by Rac, Rho, and MEKK 1-4. Arsenic poisoning occurs due to the MAPK cascade [70–74].
Exposure to arsenic has been associated with the phosphorylation of the epidermal growth
factor receptor (EGFR), which then triggers cellular proliferation, tumour invasion, and
angiogenesis (Figure 4) [68–75]. The transmembrane tyrosine kinase receptor known as
EGFR, or epithelial growth factor receptor, is a member of the ErB family and is found
on the surface of epithelial cells [75,76]. In in vivo settings, transcription is triggered by
EGFR’s continued attachment to the AT-rich consensus region in the promoter of cyclin D1,
and the Ras/MAP kinase pathway can also be activated by EGF [77,78]. The overexpression
of cyclin D1 will trigger the development of the cyclin D1-cdk4 complex, which, in turn,
will promote the transcription factors E2F and cyclin via the phosphorylation of pRB, a
growth suppressor, finally resulting in the progression of the cell cycle [76–80]. Recent
experiments using p53 antisense oligonucleotide-induced p53 suppression in human gastric
cancer and human glioblastoma cell lines showed suppressed apoptosis and no caspase
activation [81,82]. This result demonstrates that p53 plays a role in apoptosis caused by
arsenic [81,82]. MMPs have a wide range of physiological and pathological functions,
participating in angiogenesis, tissue remodelling, trophoblastic implantation, tumour devel-
opment, wound healing, and degenerative illnesses of various kinds, among others [83–89].
The majority of MMPs are secreted by cells in a proactive state, and they are crucial reg-
ulators of a variety of pathophysiological processes when they are activated [87,88]. The
over-secretion of pro-inflammatory and growth-promoting cytokines may be induced by
NF-kβ and AP-1, which might lead to the onset of carcinogenesis [89]. Arsenate’s effects on
telomeres and telomerase, as well as cell proliferation and death, have been evaluated in
HL-60 and HaCaT cells in vitro [68]. Low doses (0.1–1 µM) of arsenate increased telomerase
activity, extended telomeres, and encouraged cell proliferation. High doses (>1–40 µM) of
arsenide reduced telomerase activity, shortened telomeres, and caused apoptosis [68,69].
The results of research comparing cell lines with and without telomerase activity indicated
that telomerase was implicated in arsenic-induced apoptosis [68]. These findings show that
arsenic’s carcinogenic effects may be partly due to an increase in telomerase activity, which

https://www.biorender.com
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promotes cell proliferation, as well as its anticancer effects, which exert oxidative stress and
cause telomeric DNA attrition and death [69]. These investigations suggest that arsenic
plays an important role in the development of breast cancer.
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Figure 4. Growth factor receptors activated by arsenic stimulate the PI3K/AKT pathway, which
promotes angiogenesis, cell cycle progression, and cellular proliferation. Through the TRAIL receptor
and reactive oxygen species, arsenic triggered apoptosis by upregulating pro-apoptotic markers
and down-regulating anti-apoptotic signs. These mechanisms illustrate how arsenic can exert both
pro-survival and pro-death signals within cells, leading to complex interplay in tumour standing
these pathways is crucial for developing targeted therapies that could mitigate the adverse effects of
arsenic exposure while potentially harnessing its apoptotic capabilities against cancer cell biology.
Understanding these pathways is crucial for developing targeted therapies that could mitigate the
adverse effects of arsenic exposure while potentially harnessing its apoptotic capabilities against can-
cer cells (the figure was designed using BioRender graphics: https://www.biorender.com, accessed
on 9 August 2024).

2.3. Lead

The outermost layer of the planet is composed of lead (Pb) [90]. Lead emissions from
metal smelters and mines are significant sources of environmental pollution, impacting
both air and water quality [91]. Long-term lead exposure can lead to serious health issues in
humans and wildlife, necessitating stringent regulations and monitoring efforts [92]. Many
medical conditions, such as neurological, haematological, reproductive, and gastrointestinal
illnesses, are the result of exposure to lead [92–97]. Exposure to lead changes cell regulatory
mechanisms and influences genetic and epigenetic regulations. Epigenetic alterations can
modify gene expression without changing the underlying DNA sequence, making them
important in breast cancer growth and progression [98–100]. The expression of genes
that encode certain miRNAs is one way that Pb affects the epigenetic regulation of genes
throughout breast cancer development [100–102]. Lead inhibits delta-aminolevulinic acid
dehydratase (ALAD) and enhances the δ-aminolevulinic acid substrate, which is known to
increase ROS production [103–105]. Two specific types of enzymes are inhibited by lead:
ALAD and glutathione reductase (GR). Investigations have indicated that lead disrupts
the cycle that decreases glutathione levels by converting oxidised glutathione (GSSG)
into reduced glutathione (GSH) [105]. Lead leads to structural instability in DNA, and
histone–DNA crosslinks result in chromatin aggregation [104,105]. It has been discovered
that lead acts as a mitogen to promote liver cell proliferation in vivo [104–106]. Biological
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impairment may result from the harmful effects of free ROS and RNS when there is an
excess of ROS/RNS production or an antioxidant deficiency. In light of this, MDA is
often employed as a lipid peroxidation biomarker. The aforementioned data support the
hypothesis that reactive oxygen species (ROS), markers of oxidative stress, are produced by
lead (Figure 5) [93–106]. Among them, ROS/RNS signalling transduction normally aids in
proliferation, differentiation, and transformation in a time- and dosage-dependent manner,
whereas ROS/RNS are frequently activated by responses to stress and are involved in
apoptosis and proliferation arrest (Figure 5) [93–106]. Understanding the interaction of
lead exposure and epigenetic changes could provide important insights into breast cancer
prevention and treatment options.
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Figure 5. Lead inhibits delta-aminolevulinic acid dehydratase (ALAD) and enhances the δ-
aminolevulinic acid substrate, which is known to increase ROS production and oxidative stress
within cells. Epigenetic alterations can modify gene expression without changing the underlying
DNA sequence, making them an important role in breast cancer growth and progression (the figure
was designed using BioRender graphics: https://www.biorender.com, accessed on 10 August 2024).

2.4. Bisphenol A

Bisphenol A (BPA) is one of the most extensively researched endocrine disruptors
because it is readily converted into nonbioactive metabolites [107]. BPA mimics estrogen,
causing breast cancer cells to proliferate. BPA can interact with estrogen receptors in cells,
causing alterations in proliferation, apoptosis, and migration [108]. BPA can alter the
environment surrounding a tumour, which is critical for cancer growth, and can induce
hypermethylation, an epigenetic process that increases the risk of breast cancer [109];
for example, BPA can cause hypermethylation of BRCA1 in human mammary epithelial
cells [109,110]. It was also demonstrated that exposure to BPA causes hypermethylation of
the carnitine palmitoyl transferase 1A (CPTA1) gene [111]. This enzyme facilitates the entry
of long-chain fatty acids into mitochondria and stimulates their oxidation by transferring
acyl groups from fatty acids from coenzyme A to carnitine [109–112]. It is interesting to
consider that BPA has been demonstrated to reduce DNA methylation via coat colour and
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enzymes like PDE type 4 variations [112,113]. This may initiate signalling pathways that
lead to breast cancer and encourage malignancy. The inappropriate activation of oestrogen
signalling is a significant contributing factor to the development of BC [111–114]. The
activation of AKT and ERK1/2 is necessary for the proliferative and prosurvival effects of
BPA in TNBC cells [111–115]. BPA elevated the expression of mRNA and proteins linked to
migration in TNBC cells, including matrix metalloproteinase-2 (MMP2) [116,117]. Members
of the nuclear receptor superfamily, or ERRs, are commonly referred to as orphan receptors
since they do not have endogenous ligands. BPA stimulates the expression of EERγ in
oestrogen-receptor-positive (ER+) breast cancer cells via phosphorylating ERK1/2 [117,118].
These results demonstrated that BC cell proliferation is stimulated by the EERγ/ERK1/2
axis [58,59]. Bisphenol A (BPA), oestrogen receptor alpha (ERA), G-protein-coupled receptor
30 (GPR30), ten-eleven translocation 2 (TET2), SNAIL, and extracellular signal-regulated
kinase 1/2 (ERK1/2). Some studies have analysed the role of epigenetic modifications
caused by BPA, particularly in relation to genes like TET2, in breast cancer development
(Figure 6) [112–118]. BPA exposure can cause changes in gene expression while leaving
the underlying DNA sequence unchanged [119]. These changes, which include DNA
methylation and histone modification, can impair normal cellular functioning and promote
neoplastic pathways, ultimately leading to the development and spread of breast cancer
(Figure 6) [112–118]. Research has demonstrated that an increase in HOXB9 in BC is
associated with neovascularisation, tumour invasion, and disease progression. The HOXB9
gene promoter contains a putative oestrogen response element (ERE4) that controls how
the protein reacts to BPA and E2 [116]. BPA is sensitive to mammotrophic hormones
and increases the risk of breast cancer in later life [116]. Research supporting this notion
showed that BPA altered the expression and location of type 1 BMP receptors, reduced the
development of BMPs in mammary fibroblasts, and impacted stem cells’ sensitivity to BMP
signalling [116–118]. By activating SMAD1/5/8 phosphorylation, BPA enhanced BMP
signalling [116]. Recent investigations suggest that BPA may activate signalling pathways
that are linked to cancer, resulting in DNA damage, stem cell differentiation, and epigenetic
changes [111–119].
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Bisphenol A (BPA), oestrogen receptor alpha (ERA), G-protein-coupled receptor 30 (GPR30), ten-
eleven translocation 2 (TET2), Snail family zinc finger protein (SNAIL), and extracellular signal-
regulated kinase 1/2 (ERK1/2). These elements interact in intricate ways to alter biological pathways,
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eventually leading to cancer linked with BPA exposure. Understanding these pathways is critical for
developing tailored treatments and prevention methods for BPA-induced breast cancer (the figure
was designed using BioRender graphics: https://www.biorender.com, accessed on 12 August 2024).

2.5. Phthalates

Toys, nipples, wall coverings, floor tiles, pacifiers, teethers, textiles, vinyl floors,
beds, household goods, and medical equipment are all made with phthalates, which are
liquid plasticising agents [119]. Phthalates have the potential to disrupt epigenetic pro-
cesses that are critical for gene expression development and maintenance [120]. Epigenetic
changes can activate or silence genes, resulting in pathogenic conditions [121]. Phtha-
lates can mimic hormones, potentially affecting the body’s estrogen, progesterone, and
androgen systems [121]. Phthalates are frequently found in human urine, serum, and milk
because they are not chemically bonded to plastic, making them easier to absorb [122].
Urine concentrations of phthalates are linked to many CpG sites that exhibit variable
methylation [123–125]. In skeletal muscle cells, the Dnmt3a-dependent promoter and
long non-coding RNAs (lncRNAs) were methylated, which decreased the synthesis of
miR-17 [125–127]. It has been discovered that phthalates interact with miRNAs that target
mRNAs linked to processes associated with adverse outcomes in human patients, such
as angiogenesis, apoptosis, and connective tissue proliferation [127,128]. Another group
suggested that EDCs may exert their effects through epigenetic changes to mitochondrial
DNA [129]. Some of the nongenomic AhR pathways of activation that have been linked to
mitogenic responses are increased human epidermal growth factor receptor 2 (HER2/neu),
v-myc myelocyto-matosis viral oncogene homologue (c-myc), FBJ murine esteosarcoma
viral oncogene homologue (c-fos), jun proto-oncogene (c-jun), Harvey rat sarcoma viral
onco-gene homologue (Ha-ras), cyclin-dependent kinase 4 (CDK4), and nuclear factor
kappa-B (NF-kB) [68e70] [125,129]. Telomerase activity is stimulated by C-Myc expres-
sion through AhR signalling and/or ER-independent mechanisms [130,131]. Through the
Plyc, Mekk, IRAK, and PLC-β signalling pathways, phthalates alter gene expression in
breast cancer (Figure 7) [121–129]. Another nongenomic AhR-activated factor implicated in
carcinogenesis is cyclooxygenase-2 (Cox-2) [123,125]. The overexpression of COX-2 and ele-
vated levels of prostaglandin E2 (PGE2) is associated with breast carcinogenesis [122–125].
These changes can influence the expression of genes linked to breast cancer, including
AHR, BAX, BCL2, CAT, ESR2, IL6, and PTGS2 [120–130]. Understanding the impact of
phthalates in this situation is critical for establishing preventive measures and therapeutic
treatments [120–130]. More research is needed to completely understand the processes
through which these substances contribute to breast cancer risk and to identify means of
reducing their effects.

2.6. Polychlorinated Biphenyls

It has been established that multiple receptors and enzyme networks interact with
PCBs, and recent research has examined the possibility that PCBs may alter the endocrine
system [131,132]. The cellular microenvironment responds to stimuli such as food avail-
ability, hypoxia, and extracellular pH and can epigenetically change cancer cells’ metabolic
behavior to adapt to changing environments [132,133]. The fact that cancer cells’ metabolic
profiles differ from those of normal cells reveals the underlying genetic and epigenetic
machinery that is altered in breast cancer, giving cancer cells a growth advantage for sur-
vival [134,135]. Cellular metabolites moving between cellular compartments such as the
cytoplasm, mitochondria, and nucleus have the potential to regulate gene expression by
altering the availability of enzymatic substrates and cofactors required for metabolic reac-
tions that mediate epigenetic processes such as DNA and histone modifications [136,137].
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Metabolites that move between different parts of a cell, like the nucleus, mitochondria, and
cytoplasm, can change gene expression by affecting the availability of enzyme substrates
and cofactors needed for metabolic reactions that control epigenetic processes like DNA and
histone modifications [137,138]. In addition, it has been demonstrated that PCBs that are
not dioxin-like and those that are dioxin-like have different effects on DNA methylation; the
former promote hypermethylation, while the latter stimulate hypermethylation [138,139].
The co-chaperone protein p23 and the chaperone protein hsp90 interact with the AhR-
containing cytoplasmic Per-Ahreceptor Nuclear Translocator (ARNT)-Sim domain protein
family [139,140]. AhR plays a major role in the development of cancer because it divides
and travels into the nucleus when dL-PcBs activate the ligand [135–138]. There, it connects
to dNA response elements via an ARNT to initiate transcription and AhR activation. The
calcium 2+-regulated ion channel RyR is a component of both the endoplasmic reticulum
(ER) in non-muscle cells and the sarcoplasmic reticulum (SR) in muscle cells [134–140]. RyR
activation can swiftly release Ca2+ from the ER/SR. An NdL-PcB and a single congener
increased RyR activity by 2.4–19.2 times [137–142]. There is evidence connecting NdL-PcBs
to the development of cancer. Both Ca2+ and MAPK signalling are important in the de-
velopment of breast cancer. PCBs trigger pertinent upstream signalling cascades, such as
MAPK, ERK, and p38 [137–144]. ROS are generated after the PCB challenge and greatly
decrease the activation of these axis signalling pathways by the PCBs, which promotes
breast cancer metastasis (Figure 8) [131–145]. These modifications can influence chromatin
structure, ultimately affecting gene accessibility and transcriptional activity. Consequently,
the interplay between cellular metabolism and gene expression underscores the importance
of metabolic pathways in cellular function and identity.
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Figure 7. All the way through the Plyc, Mekk, IRAK, and PLC-β signalling pathways, phthalates
altered the gene expression in breast cancer. These changes in gene expression could potentially
influence tumour growth and metastasis, highlighting the need for further research into the mecha-
nisms by which phthalates affect cellular processes. Understanding these pathways may lead to new
therapeutic strategies for breast cancer treatment (the figure was designed using BioRender graphics:
https://www.biorender.com, accessed on 13 August 2024).
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Figure 8. PCB activates relevant upstream signalling cascades, including p38, extracellular regu-
lated protein kinases (ERK), and mitogen-activated protein kinase (MAPK). This includes phos-
phatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt. Reactive oxygen species (ROS) were pro-
duced following a PCB challenge and antioxidant therapy, which significantly reduced the activa-
tion of these axis signalling pathways by PCBs and caused breast cancer metastasis and progres-

Figure 8. PCB activates relevant upstream signalling cascades, including p38, extracellular
regulated protein kinases (ERK), and mitogen-activated protein kinase (MAPK). This includes
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt. Reactive oxygen species (ROS) were
produced following a PCB challenge and antioxidant therapy, which significantly reduced the activa-
tion of these axis signalling pathways by PCBs and caused breast cancer metastasis and progression.
This interaction underscores the potential for targeted therapies that could disrupt these pathways,
offering new avenues for treatment in patients affected by PCB-related breast cancer (the figure was
designed using BioRender graphics: https://www.biorender.com, accessed on 14 August 2024).

2.7. Parabens

Parabens are a type of EDC that can mimic estrogen in the body and are used as
preservatives in hair and personal care products [146]. Hair and personal care products
are thought to be the most common sources of paraben exposure, though other sources
may exist [147]. The Environmental Working Group (EWG) created a hazardous chemical
scale for cosmetic, personal care, and household product chemicals. Consumers can rate
the hazard level of their items on a scale from 1 (best) to 10 (worst) [146,147]. Hormon-
ally dangerous substances have been related to breast cancer; in particular, investigations
have discovered oestrogenic qualities in paraben-containing hair and other personal care
products extensively promoted to Black women [146–148]. Parabens are alkyl ester forms
of p-hydroxybenzoic acid used in everyday products to inhibit the growth of hazardous
pathogens and moulds [149]. Parabens are believed to enhance the prevalence of breast
cancer (BC); nevertheless, very limited studies have examined the interactions between
parabens, global DNA methylation (DNAm), and BC risk. Despite scant epidemiological
data linking paraben exposure to breast cancer, recent in vitro and animal model studies
have provided light on parabens’ endocrine-modulating activities, implying that parabens

https://www.biorender.com


J. Xenobiot. 2025, 15, 1 15 of 30

may be involved in breast carcinogenesis (Figure 9) [71,72,150]. The relationships between
parabens and BCs have been determined according to the tumour promoter methylation
state of 13 genes with documented functions in breast carcinogenesis that are often methy-
lated in breast tumour tissues and linked to the malignant BC phenotype. These comprise
the promoter regions of steroid hormone genes (ESR1, PGR, and RARβ), tumour suppressor
genes (APC, BRCA1, CDH1, DAPK1, HIN1, P16, and RASSF1a), an oncogene (CCND2),
a detoxification gene (GSTP1), and a transcription factor (TWIST1) [9,11,14,71,146–150].
Further investigation is required to understand the link between parabens and tumour-
promoting methylation on the epigenetic level that enhances the risk of breast cancer.
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Figure 9. Epigenetic changes can influence the expression of genes involved in paraben metabolism,
detoxification, and response. Parabens, including methyl paraben and propylparaben, are weak
estrogen mimics that attach to estrogen receptors. Aberrant hypermethylation of CpG islands in
promoter regions can mute genes that metabolise or detoxify paraben, including UDP-glucuronosyl
transferees (UGTs) and sulfotransferases. Their estrogenic action may impact breast cancer cell
proliferation, especially in ER-positive tumours. Parabens may affect the expression of microRNA
(miR-155, miR-21), which regulate genes involved in cell cycle control, apoptosis, and estrogen
response (the figure was designed using BioRender graphics: https://www.biorender.com, accessed
on 16 August 2024).

2.8. Organochlorine

Organochlorine pesticides (OCPs) have been widely employed since the 1940s, provid-
ing significant agricultural benefits but also causing environmental harm. Since the 1980s,
a majority of nations have banned the production of OC pesticides [151,152]. However,
certain OC pesticides (e.g., dicofol) used to combat malaria are still permitted in some
impoverished nations [153]. Because of their slow degradations, OCP compounds can
persist in the food chain for extended periods of time and accumulate in a variety of biota,
including humans [151–153]. Accumulating evidence suggested a link between OCP expo-
sure and breast cancer risk [152–155]. Previous research has shown that long-term exposure
to OCPs, such as in the workplace, is associated with an increased risk of multiple types of
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cancer, which may explain the negative effects of OCP exposure, such as endocrine disrup-
tion, oxidative stress induction, and epigenetic modifications [151–154]. OCPs can change
DNA methylation patterns, which are important for controlling gene expression [155,156].
For example, tumour suppressor genes may be hypermethylated or oncogenes may be
hypomethylated, increasing the risk of cancer. Studies have found altered methylation
patterns in breast tissue exposed to OCPs, which may be suppressing genes essential in
DNA repair and cell cycle regulation [11,72,157]. OCP exposure has been demonstrated to
modify levels of gene promoter methylation. Another prominent epigenetic modification
is histone modifications, which include changes to histone N-tail residues [14,20,154–157].
Some studies have shown that OCPs can change histone acetylation and methylation status,
which, when combined with DNA methylation, can impact chromatin shape and, as a
result, transcription activity [152–157]. In breast cancer patients, researchers have looked
at the methylation patterns of two tumour suppressor genes, RRP22 and P16, as well as
histone modifications such as methylation at lysine 4 of histone H3 (H3K4), acetylation
at lysine 9 of histone H3 (H3K9), acetylation at lysine 16 of histone H4 (H4K16), and
methylation at lysine 20 of histone H4 (H4K20) [20,72,157]. The expression of the genome
and epigenome is limited to breast cancer, and the mechanisms of inactivation have yet
to be completely investigated [153–157]. The epigenetic inactivation of organochlorine-
responsive pathways in breast cancer entails lowering cellular activity while imitating or
interfering with estrogen signalling, which is critical in hormone receptor-positive breast
cancers. The aberrant methylation of gene promoters can inhibit detoxifying enzymes like
CYP1A1 and glutathione S-transferases (GSTs), which metabolise OCPs. Silencing genes
that encode hormone receptors, like ESR1 for ERα, can affect tumour response to estrogen.
Furthermore, multiple studies have found changes in the methylation and acetylation of
histones H3 and H4 in cancer, underlining the significance of epigenetic modifications in
breast cancer growth (Figure 10) [72,151–157]. These changes can impact gene expression
patterns that promote tumour growth and metastasis, indicating prospective therapeutic
targets and the need for more research into epigenetic control in cancer treatment tactics.

2.9. Dioxins

Dioxins (TCDD: 2,3,7,8-Tetrachlorodibenzodioxin) stimulates CYP1A1 by attaching
to and activating the aryl hydrocarbon receptor (AhR), which then moves to the nucleus
and binds with its companion protein Arnt to form an active heteromeric transcription
factor (AhRC for AhR complex) [158]. AhRC regulates TCDD-inducible gene expression
by interacting with DNA-binding sites known as dioxin response elements (DRE) on the
CYP1A1 enhancer [70,73,159]. TCDD stimulates CYP1A1 by attaching to and activating
the aryl hydrocarbon receptor (AhR), which then moves to the nucleus and binds with
its companion protein Arnt to form an active heteromeric transcription factor (AhRC
for AhR complex) [5–8,74,160]. All DRE sites contain a CpG dinucleotide, which, when
methylated in vitro, decreases AhRC interaction in an electrophoretic mobility shift ex-
periment and reduces TCDD-inducible reporter gene expression [13,74,160–164]. Several
genes in breast cancer exhibit CpG island hypermethylation, and in several instances,
aberrant activity of DNA methyltransferases led to the hypermethylation and silencing
of HOXA5, TMS1, p16, RASSF1A, and BRCA1 genes with tumour suppressor behav-
ior [11,13,75,161–163]. Furthermore, promoter hypermethylation silences genes such as
E-cadherin, TMS1, GSTP1, and p16 [21,70,74,158,164]. These genes are involved in numer-
ous biological processes, including estrogen signalling, pro-apoptosis (HOXA5, TMS1), cell
cycle checkpoints (RASSF1A, p16), and DNA repair pathways (BRCA1) [161–164]. The
BRCA1 gene is one of the greatest instances of a breast cancer susceptibility gene that is
commonly repressed in sporadic breast tumours; yet, the CpG hypermethylation of BRCA1
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has been linked to DNMT 3b overexpression. Early stages of sporadic breast cancer show a
loss of the cell cycle checkpoint gene p16INK4a due to aberrant CpG promoter methylation,
and approximately 80% of breast tumours show the decreased expression of another cell cy-
cle inhibitor gene, p21/CIP1/WAF1, due to increased methylation of the p21/CIP1/WAF1
gene (Figure 11) [74,75,158–164]. These results indicate that methylation of the CYP1A1
enhancer may reduce its TCDD response. These findings suggest that methylation of the
CYP1A1 enhancer may diminish its TCDD response, thereby affecting cellular proliferation
and tumour growth [158–161]. More research is needed to understand the mechanisms by
which these epigenetic changes contribute to breast cancer development and to identify
possible therapeutic targets for intervention.
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Figure 10. Epigenetic inactivation of organochlorine-responsive pathways in breast cancer entails
suppressing cellular activity and imitating or interfering with estrogen signalling, which is crucial
in hormone receptor-positive breast cancers. Aberrant methylation of gene promoters can silence
detoxifying enzymes such as CYP1A1 and glutathione S-transferases (GSTs), which metabolise
OCs. Epigenetically silencing genes that encode hormone receptors, such as ESR1 for ERα, can
influence tumour responsiveness to estrogen (the figure was designed using BioRender graphics:
https://www.biorender.com, accessed on 16 August 2024).
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Figure 11. The AhR is a ligand-activated transcription factor that regulates gene expression by
translocating to the nucleus after binding to dioxins or similar ligands. Aberrant methylation of CpG
islands in promoter regions has the potential to silence critical AhR pathway genes such as CYP1A1
and CYP1B1, which are involved in the detoxification of hazardous drugs. Loss of AhR function may
disrupt cell proliferation and apoptosis, contributing to carcinogenesis in breast cancer (the figure
was designed using BioRender graphics: https://www.biorender.com, accessed on 19 August 2024).

3. Impact of EDCs on Dietary Intake in Breast Cancer
Women with low breast cancer risk are rapidly more sensitive to the illness compared

to those with high-risk factors [165]. This increased sensitivity may be attributed to a variety
of biological and environmental influences that affect their overall health and immune
response [166]. Excessive doses of genistein have been shown in vitro to promote cell
proliferation in tumours that are reliant on estrogen. Further discoveries have indicated
that isoflavone-induced promoter demethylation in breast epithelial cells may target RARb2
(RARB) and CCND2 [166,167]. In breast cancer cells, genistein may reduce the expression
and activity of all three DNA methyl transferase enzymes, which would deplete de novo
methylation and preserve DNA methylation [168]. Additionally, methyl-binding domain
protein 2’s variable binding to the BRCA1 promoter is increased by resveratrol, preventing
gene suppression in MCF-7ER-positive breast cancer cells [168]. In a mouse xenograft
model, resveratrol raised miR-141 and miR-200c, which decreased the number of cancer
stem cells [169]. In breast cancer cell lines, resveratrol also increased the expression of
many additional tumour-suppressive miRNAs, such as miR-16 and miR-143 [170]. There
was a notable loss of 5 hydroxymethylation of cytosine (5hmC) and 5 methylation of
cytosine (mC) in the epithelial cells of the TEBs, a dramatic loss of the histone H4 lysine
20 monomethylation (H4K20me1) mark in these cells, and ER a-positive-associated cell
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proliferation in the epithelial cells of the TEBs (proliferating epithelial cells are known to
have low numbers of ER a-positive cells) [171]. The incidence of DMBA-induced cancer is
significantly higher in correlation with these early cellular and epigenetic changes [172–176].
Moreover, current studies suggest that a diet heavy in butter and safflower oil elicits
a response to BPA more effectively than a diet heavy in olive oil [173–177]. The four
families of phytoestrogens—isoflavones, lignans, coumestans, and stilbens—compose more
than 100 different chemicals that have been identified in various plant sources. These
compounds can mimic estrogen in the body, potentially influencing hormonal balance
and offering various health benefits, including reduced risks of certain cancers and the
alleviation of menopausal symptoms [170–177]. Various epidemiological studies have
demonstrated that consuming a diet high in soy or taking supplements lowers the risk
of breast cancer. Research conducted on animals has demonstrated the diverse effects
of isoflavones, such as genistein, on the growth and maturation of the mammary gland
from early childhood to maturity [177]. Crucially, MiR-93 was epigenetically repressed,
which led to increased cell proliferation by blocking the apoptotic pathway mediated by
p53 [178]. Studies in the breast and other tissues provide a solid foundation for future
investigations into global epigenetic changes in the breasts of children exposed to DES
in utero, even if there is presently insufficient information to suggest an epigenetic basis
for DES-induced breast cancer risk [19,179–181]. A well-known organochlorine, 2, 3,
7, 8-tetrachloridibenzop-dioxin (2, 3, 7, 8-TCDD), is a pollutant that is created during
chemical combustion and manufacture [180,181]. TCDD is categorised as an endocrine
disruptor with significant anti-estrogenic effects and a substantial affinity for the aromatic
hydrocarbon receptor (AhR) [182,183]. Rats exposed to TCDD during pregnancy showed a
reduction in lobules and an increase in TEBs [184]. According to research conducted at the
molecular level with the Holtzman rats model, TCDD may act systemically by elevating the
expression of Esr1mRNA in the ovaries, uterus, and breast while reducing the generation of
oestradiol [185].Chemicals employed for printed circuit boards (PCBs) include plasticisers,
solvents, hydraulic fluids, and printing inks. It has been discovered that PCBs accumulate in
breast adipose tissue before entering breast milk [186]. Epidemiology studies have found a
link between PAH-DNA adducts and the incidence of breast cancer. Studies have suggested
that the site of preference for PAH-induced DNA adducts formation may be methylated
CpG sites. Various studies have found a favourable correlation between active or passive
smoking and an increased risk of breast cancer [187]. The chemical perfluorooctanoic
acid (PFOA) is widely used in business and the environment for a variety of purposes,
including surfactants, water proofing, insulating agents, and dental goods [188]. PFOA
is a non-lipophilic protein-binding material that persists in humans for 2–4 years and in
mice for 16–22 days [188]. Given that preeclampsia, early menopause, and delayed puberty
have all been demonstrated to lessen the risk of breast cancer, epidemiological research
has discovered that PFOA is positively connected with these conditions and has thus been
linked to a lower risk of breast cancer [189]. Additional research on PFOAs in animal
models revealed modifications to the development of the mammary gland, which may
increase susceptibility to carcinogens [190]. Thus, the high-throughput screening of gene
promoters that target the epigenome would yield the most accurate assessment of PFOA
epigenetic targets [191]. Even though no studies using mouse or human breast models have
been done in this area, it is still beneficial to look into this issue. DDT is a synthetic pesticide
that is widely used, has a long half-life, and is lipophilic [192]. As a result, it is a major
environmental contaminant that accumulates in the fat stores of both humans and animals.
Human blood still contains large concentrations of 1,1-dichloro-2,2-bis(p-chlorophenyl)
ethylene (DDE), a metabolite of DDT [193]. Description of endocrine-disrupting food
chemical contaminants with their origin and main source of dietary exposure has shown
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in Table 2 [194–203]. Human disorders, including testicular tumours, type 2 diabetes,
endometrial cancer, pancreatic cancer, and breast cancer, have been linked to DDT and its
derivatives, including DDE [194]. Early life exposure greatly affects the epigenetic actions
of EDCs in disease states like breast cancer. Additionally, recent studies have suggested that
DDT may have a critical role in the control of miRNA in the breast [195,196]. As a pesticide
used on fruits and vegetables to protect them from various fungi, the majority of exposure
occurs through the consumption of leftover contaminated food and beverages [197]. On
the other hand, not much epidemiological study has been done about the association
between breast cancer and vinclozolin exposure. Therefore, more research is required on
the transgenerational epigenetic targets that induce breast tumours, which have not yet
been thoroughly defined.

Table 2. Description of endocrine-disrupting food chemical contaminants with their origin and main
source of dietary exposure.

S.N. Group of
Chemicals Agent Origin Main Source of

Dietary Exposure References

1 Cd2+
Cadmium and

cadmium
compounds

Erosion, weathering, river
transport, volcanic activity,

and human actions including
burning trash, smoking

cigarettes, burning metal ore,
using fossil fuels, and
industrial pollution

Products from
agriculture, seafood,

shellfish
[197]

2 As
Agricultural

products,
especially rice

Occurring naturally in the soil,
highly released by forest fires,

volcanic eruptions, rock
erosion, human activities, and
chemicals such as soap, paint,

dye, metal, medication,
semi-conductors, fertilisers,

and pesticides

Agricultural goods,
particularly rice [198]

3 Pb Methylmercury
compounds

Cans of food, water pipes,
polluted water, paint,

cosmetics, batteries, fuel,
traditional medicine,

Pb-crystal, kids’ toys, vinyl
lunchboxes, and cigarettes

Seafood, poultry [199]

4 Bisphenol Tetrabromobisphenol
A

Epoxy resins and
polycarbonate plastics Canned food [200]

5 Phthalate Di (2-ethylhexyl)
phthalate

Detergents, plasticisers, and
pesticides

Cereals, veggies,
and legumes [201]

6 Biphenyls
Polychlorinated
biphenyls that

resemble dioxin

Development, application,
and removal of items treated

with PCBs, accidental
emissions resulting from
burning operations, and

re-emission of PCBs from
water, sediment, and soil in

environmental reservoirs

Seafood, meat, dairy,
and fats [202]
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Table 2. Cont.

S.N. Group of
Chemicals Agent Origin Main Source of

Dietary Exposure References

7 Dibenzofurans
and dioxins

2,3,7,8-
Tetrachlorodibenzo-

para-dioxin

Byproducts in the processes of
production and disposal

(organochlorides) Manufacturing,
bleaching of paper, and burning
of materials containing chloride

Eggs, seafood, dairy
products, and adipose

tissue from cows
[203]

4. Conclusions and Future Prospective
EDCs regulate a variety of epigenetic mechanisms, including DNA methylation, his-

tone modifications, and non-coding RNA expression. The same EDC may have various
epigenetic effects in different tissues, making it difficult to generalise findings on pathway
activation unique to breast tissue. Epigenetic modifications are reversible and can fluctuate
in response to environmental factors, complicating the discovery of stable controls. The
function and clinical significance of EDCs in the progression of breast cancer are elucidated
in this manuscript, highlighting the molecular mechanisms through which these endocrine-
disrupting chemicals influence tumour growth and metastasis. By understanding these
pathways, targeted therapeutic strategies may be developed to mitigate the risks associated
with EDC exposure. Breast cancer research has increasingly focused on understanding the
limitations of epigenetic mechanisms influenced by endocrine-disrupting chemicals (EDCs).
Many studies on EDCs and epigenetics use animal models, which may not accurately rep-
resent human breast cancer development. There have been few long-term studies tracking
dietary EDC exposure and epigenetic changes over time, making it difficult to establish
causal links. These mechanisms may not fully account for the complex interplay of genetic,
environmental, and lifestyle factors that contribute to breast cancer risk, highlighting the
need for a more comprehensive approach to studying EDCs and their long-term effects on
hormonal regulation and tumour development. Studies on the relationship between EDC
exposure and breast cancer risk have yielded conflicting results, which could be attributed
to discrepancies in study designs, sample sizes, and other variables. Future studies on
environmental epigenetic need to include different parameters by using advanced animal
models. However, these systems are extremely interconnected, and the precise paths that
connect them to breast cancer remain unknown. To establish causal links and inform
prevention and treatment efforts, interdisciplinary approaches are required, such as more
sophisticated model systems, improved exposure assessment methodologies, and longitu-
dinal human investigations. Furthermore, future studies should examine lifestyle factors,
such as circadian cycles, food, and exercise, as exposure modifiers. Epigenetic reprogram-
ming might offer significant insights into human diversity. The primary prevention of
environmental illnesses is feasible since epigenetics may be reversible. Assessing these
epigenetic changes over the course of a lifetime would be difficult; thus, environmental
epigenetic indicators are a better choice for determining a person’s future risk of an illness
like breast cancer.
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