Critical Review of Wireless Charging Technologies for Electric Vehicles
<p>Classification of WPT based on different criteria.</p> "> Figure 2
<p>Principle of inductive power transfer (IPT).</p> "> Figure 3
<p>Principle of magnetic resonance wireless power transfer (MR-WPT).</p> "> Figure 4
<p>Principle of capacitive power transfer (CPT).</p> "> Figure 5
<p>Principle of single-capacitor CPT.</p> "> Figure 6
<p>Principle of microwave power transfer (MWPT).</p> "> Figure 7
<p>Principle of laser power transfer (LPT).</p> "> Figure 8
<p>Schematic of stationary wireless charging of IPT for EVs.</p> "> Figure 9
<p>Schematic of DWC for EVs: (<b>a</b>) elongated rail type and (<b>b</b>) segmented transmitter type.</p> "> Figure 10
<p>Schematic of quasi-dynamic wireless charging for EVs at intersections.</p> "> Figure 11
<p>Higher-order compensation networks for IPT systems: (<b>a</b>) LCL-LCL, (<b>b</b>) LCL-S, (<b>c</b>) LCC-LCC, (<b>d</b>) LCC-S, (<b>e</b>) LCC-P, and (<b>f</b>) S-CLC.</p> "> Figure 12
<p>Misalignment conditions in EV wireless charging: (<b>a</b>) vertical direction (<span class="html-italic">Z</span> axis), (<b>b</b>) driving direction (<span class="html-italic">X</span> axis), and (<b>c</b>) transverse direction (<span class="html-italic">Y</span> axis).</p> "> Figure 13
<p>Modulation methods for WPT: (<b>a</b>) phase-shift modulation (PSM), (<b>b</b>) pulse frequency modulation (PFM), and (<b>c</b>) pulse density modulation (PDM).</p> ">
Abstract
:1. Introduction
2. Theoretical Principle of Wireless Charging Technologies
2.1. Near-Field Wireless Charging
2.1.1. Inductive Wireless Charging Technology
2.1.2. Magnetic Resonance Wireless Charging Technology
2.1.3. Capacitive Wireless Charging Technology
2.2. Far-Field Wireless Charging
2.2.1. Microwave Wireless Charging Technology
2.2.2. Laser Wireless Charging Technology
2.3. Comparative Analysis
3. Implementation of Wireless Charging for EVs
3.1. Stationary Wireless Charging
Power (kW) | Frequency (kHz) | Efficiency | Air Gap (mm) | Reference |
---|---|---|---|---|
3 | 50 | 90% G2B | 200 | [75] |
3.7 | 37 | 91.6% D2D | 100 | [76] |
6 | 95 | 95.3% G2B | 150 | [77] |
7.7 | 85 | 94.93% D2D | 200 | [78] |
11 | 85 | 91.4% D2D | 150 | [79] |
22 | 100 | 97% C2C | 135 | [80] |
25 | 85 | 91% G2B | 210 | [81] |
50 | 85 | 95.8% D2D | 10–200 | [82] |
100 | 25 | 97.7% C2C | 125 | [83] |
3.2. Dynamic Wireless Charging
3.3. Quasi-Dynamic Wireless Charging
4. Optimization of Wireless Charging Technologies for EVs
4.1. Optimization of Coil Structures
4.2. Optimization of Compensation Network
4.3. Optimization of Anti-Misalignment
4.4. Optimization of System Efficiency
4.5. Key-Parameters Identification
5. Discussion
5.1. Development Trends
5.2. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Global EV Outlook 2024 [EB/OL]. Available online: https://www.iea.org/reports/global-ev-outlook-2024 (accessed on 1 April 2024).
- Lukic, S.; Pantic, Z. Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles. IEEE Electrific. Mag. 2013, 1, 57–64. [Google Scholar] [CrossRef]
- Liu, W.; Chau, K.T.; Tian, X.; Wang, H.; Hua, Z. Smart wireless power transfer—Opportunities and challenges. Renew. Sust. Energ. Rev. 2023, 180, 113298. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, H. Continuously adjustable capacitor for multiple pickup wireless power transfer under single-power-induced energy field. IEEE Trans. Ind. Electron. 2020, 67, 6418–6427. [Google Scholar] [CrossRef]
- Xue, Z.; Chau, K.T.; Liu, W.; Fan, Y.; Hou, Y. Wireless power, drive, and data transfer for ultrasonic motors. IEEE Trans. Ind. Electron. 2025, 72, 134–144. [Google Scholar] [CrossRef]
- Hui, S.Y.R.; Zhong, W.; Lee, C.K. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 2014, 29, 4500–4511. [Google Scholar] [CrossRef]
- Prasad, D.V.; Lande, V.S.; Bornare, A.P.; Waghmare, P.B.; Sujith, M. Dynamic wireless charging system for electric vehicles. In Proceedings of the 2024 8th International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 29–30 July 2024; pp. 608–612. [Google Scholar]
- Moisello, E.; Liotta, A.; Malcovati, P.; Bonizzoni, E. Recent trends and challenges in near-field wireless power transfer systems. IEEE Open J. Solid-State Circuits Soc. 2023, 3, 197–213. [Google Scholar] [CrossRef]
- Tavakoli, R.; Pantic, Z. DC modeling of an LCC resonant compensation network in wireless power transfer systems. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 6187–6193. [Google Scholar]
- Rasekh, N.; Kavianpour, J.; Mirsalim, M. A novel integration method for a bipolar receiver pad using LCC compensation topology for wireless power transfer. IEEE Trans. Veh. Technol. 2018, 67, 7419–7428. [Google Scholar] [CrossRef]
- Ahmad, A.; Alam, M.S.; Chabaan, R. A comprehensive review of wireless charging technologies for electric vehicles. IEEE Trans. Transport. Electrific. 2018, 4, 38–63. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Enany, M.A.; Shaier, A.A.; Bawayan, H.M.; Hussien, S.A. An extensive overview of inductive charging technologies for stationary and in-motion electric vehicles. IEEE Access 2024, 12, 69875–69894. [Google Scholar] [CrossRef]
- Gao, X.; Liu, C.; Zhou, H.; Hu, W.; Huang, Y.; Xiao, Y.; Lei, Z.; Chen, J. Design and analysis of a new hybrid wireless power transfer system with a space-saving coupler structure. IEEE Trans. Power Electron. 2021, 36, 5069–5081. [Google Scholar] [CrossRef]
- Rodriguez, J.I.; Jackson, D.K.; Leeb, S.B. Capability analysis for an inductively coupled power transfer system. In Proceedings of the COMPEL 2000. 7th Workshop on Computers in Power Electronics. Proceedings (Cat. No.00TH8535), Blacksburg, VA, USA, 16–18 July 2000; pp. 59–63. [Google Scholar]
- Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007, 317, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.; Wodajo, E.; Choi, S.; Elbuluk, M. Modeling and design of passive shield to limit EMF emission and to minimize shield loss in unipolar wireless charging system for EV. IEEE Trans. Power Electron. 2019, 34, 12235–12245. [Google Scholar] [CrossRef]
- Shin, J.; Shin, S.; Kim, Y.; Ahn, S.; Lee, S.; Jung, G.; Jeon, S.-J.; Cho, D.-H. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans. Ind. Electron. 2014, 61, 1179–1192. [Google Scholar] [CrossRef]
- Sakamoto, H.; Harada, K.; Washimiya, S.; Takehara, K.; Matsuo, Y.; Nakao, F. Large air-gap coupler for inductive charger [for electric vehicles]. IEEE Trans. Magn. 1999, 35, 3526–3528. [Google Scholar] [CrossRef]
- Wang, C.-S.; Covic, G.A.; Stielau, O.H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron. 2004, 51, 148–157. [Google Scholar] [CrossRef]
- Liu, W.; Placke, T.; Chau, K.T. Overview of batteries and battery management for electric vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Wang, C.-S.; Stielau, O.H.; Covic, G.A. Load models and their application in the design of loosely coupled inductive power transfer systems. In Proceedings of the PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), Perth, WA, Australia, 4–7 December 2000; Volume 2, pp. 1053–1058. [Google Scholar]
- Stielau, O.H.; Covic, G.A. Design of loosely coupled inductive power transfer systems. In Proceedings of the PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), Perth, WA, Australia, 4–7 December 2000; Volume 1, pp. 85–90. [Google Scholar]
- Mizuno, T.; Yachi, S.; Kamiya, A.; Yamamoto, D. Improvement in efficiency of wireless power transfer of magnetic resonant coupling using magnetoplated wire. IEEE Trans. Magn. 2011, 47, 4445–4448. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Kong, S.; Kim, H.; Suh, I.S.; Suh, N.P.; Cho, D.H.; Kim, J.; Ahn, S. Coil design and shielding methods for a magnetic resonant wireless power transfer system. Proc. IEEE 2013, 101, 1332–1342. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K. Effects of number of relays on achievable efficiency of magnetic resonant wireless power transfer. IEEE Trans. Power Electron. 2020, 35, 6697–6700. [Google Scholar] [CrossRef]
- Pang, H.; Liu, W.; Xue, Z.; Hou, Y.; Chan, C.C. Load-independent dual-frequency constant-current and constant-voltage wireless power transfer system for multiple pickups. In Proceedings of the 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE), Kyoto, Japan, 8–11 May 2024; pp. 641–645. [Google Scholar]
- Oh, S.J.; Khan, D.; Jang, B.G.; Basim, M.; Asif, M.; Ali, I.; Pu, Y.; Yoo, S.S.; Lee, M.; Hwang, K.C.; et al. A 15-W quadruple-mode reconfigurable bidirectional wireless power transceiver with 95% system efficiency for wireless charging applications. IEEE Trans. Power Electron. 2021, 36, 3814–3827. [Google Scholar] [CrossRef]
- Foote, A.; Asa, E.; Onar, O. Thermal integration of a high power polyphase inductive coil assembly. In Proceedings of the 2024 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 19–21 June 2024; pp. 1–5. [Google Scholar]
- Han, W.; Chau, K.T.; Jiang, C.; Liu, W.; Lam, W.H. Design and analysis of quasi-omnidirectional dynamic wireless power transfer for fly-and-charge. IEEE Trans. Magn. 2019, 55, 8001709. [Google Scholar] [CrossRef]
- Gu, W.; Qiu, D.; Shu, X.; Zhang, B.; Xiao, W.; Chen, Y. A constant output capacitive wireless power transfer system based on parity-time symmetric. IEEE Trans. Circuits Syst. II Exp. Briefs 2023, 70, 2585–2589. [Google Scholar] [CrossRef]
- Luo, B.; Long, T.; Guo, L.; Dai, R.; Mai, R.; He, Z. Analysis and design of inductive and capacitive hybrid wireless power transfer system for railway application. IEEE Trans. Ind. Appl. 2020, 56, 3034–3042. [Google Scholar] [CrossRef]
- Xue, Z.; Chau, K.T.; Liu, W.; Hua, Z. Magnetic-free wireless self-direct drive motor system for biomedical applications with high-robustness. IEEE Trans. Power Electron. 2024, 39, 2882–2891. [Google Scholar] [CrossRef]
- Dai, J.; Ludois, D.C. A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 2015, 30, 6017–6029. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging. IEEE Trans. Power Electron. 2015, 30, 6011–6014. [Google Scholar] [CrossRef]
- Sinha, S.; Regensburger, B.; Doubleday, K.; Kumar, A.; Pervaiz, S.; Afridi, K.K. High-power-transfer-density capacitive wireless power transfer system for electric vehicle charging. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 967–974. [Google Scholar]
- Regensburger, B.; Kumar, A.; Sinha, S.; Afridi, K. High performance 13.56-MHz large air-gap capacitive wireless power transfer system for electric vehicle charging. In Proceedings of the IEEE 19th Workshop Control Modeling for Power Electron (COMPEL), Padua, Italy, 25–28 June 2018; pp. 1–4. [Google Scholar]
- Choi, J.; Tsukiyama, D.; Tsuruda, Y.; Rivas, J. 13.56 MHz 1.3 kW resonant converter with GaN FET for wireless power transfer. In Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, CO, USA, 13–15 May 2015; pp. 1–4. [Google Scholar]
- Choi, J.; Tsukiyama, D.; Rivas, J. Comparison of SiC and eGaN devices in a 6.78 MHz 2.2 kW resonant inverter for wireless power transfer. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–6. [Google Scholar]
- Xue, Z.; Chau, K.T.; Liu, W.; Ching, T.W. Design analysis, and implementation of wireless traveling-wave ultrasonic motors. IEEE Trans. Power Electron. 2024, 39, 4601–4611. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, H.; Hu, W.; Deng, Q.; Liu, G.; Lai, J. Capacitive power transfer through virtual self-capacitance route. IET Power Electron. 2018, 11, 1110–1118. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, H.; Mi, C. A two-plate capacitive wireless power transfer system for electric vehicle charging applications. IEEE Trans. Power Electron. 2018, 33, 964–969. [Google Scholar] [CrossRef]
- Zou, L.J.; Zhu, Q.; Van Neste, C.W.; Hu, A.P. Modeling single wire capacitive power transfer system with strong coupling to ground. IEEE J. Emerg. Sel. Topics Power Electron. 2021, 9, 2295–2302. [Google Scholar] [CrossRef]
- Liu, Z.; Su, Y.; Hu, H.; Deng, Z.; Deng, R. Research on transfer mechanism and power improvement technology of the SCC-WPT system. IEEE Trans. Power Electron. 2023, 38, 1324–1335. [Google Scholar] [CrossRef]
- Garnica, J.; Chinga, R.A.; Lin, J. Wireless power transmission: From far field to near field. Proc. IEEE 2013, 101, 1321–1331. [Google Scholar] [CrossRef]
- Brown, W.C. The history of power transmission by radio waves. IEEE Trans. Microw. Theory Techn. 1984, 32, 1230–1242. [Google Scholar] [CrossRef]
- Shinohara, N. Beam efficiency of wireless power transmission via radio waves from short range to long range. J. Korean Inst. Electromagn. Eng. Sci. 2010, 10, 4–10. [Google Scholar] [CrossRef]
- Matsumoto, H. Research on solar power satellites and microwave power transmission in Japan. IEEE Microw. Mag. 2002, 3, 36–45. [Google Scholar] [CrossRef]
- Jin, K.; Zhou, W. Wireless laser power transmission: A review of recent progress. IEEE Trans. Power Electron. 2019, 34, 3842–3859. [Google Scholar] [CrossRef]
- Luo, B.; Wang, J.; Yang, Y.; Lan, J.; Liu, Y. Evaluation and enhancement of laser power transfer efficiency in the presence of atmospheric turbulence. IEEE J. Photovolt. 2024, 14, 466–472. [Google Scholar] [CrossRef]
- Chen, Y.; Mou, Z.; Wang, J.; Zhu, L.; Gou, Y.; Sun, Z. 808 nm laser power converters for simultaneous wireless information and power transfer. IEEE J. Photovolt. 2024, 14, 890–900. [Google Scholar] [CrossRef]
- Ho, S.L.; Wang, J.; Fu, W.N.; Sun, M. A comparative study between novel witricity and traditional inductive magnetic coupling in wireless charging. IEEE Trans. Magn. 2011, 47, 1522–1525. [Google Scholar] [CrossRef]
- Li, S.; Chau, K.T.; Liu, W.; Liu, C.; Lee, C.K. Design and control of wireless hybrid stepper motor system. IEEE Trans. Power Electron. 2024, 39, 10518–10531. [Google Scholar] [CrossRef]
- Hua, Z.; Chau, K.T.; Liu, W.; Tian, X.; Pang, H. Autonomous pulse frequency modulation for wireless battery charging with zero-voltage switching. IEEE Trans. Ind. Electron. 2023, 70, 8959–8969. [Google Scholar] [CrossRef]
- Shinohara, N.; Kubo, Y.; Tonomura, H. Wireless charging for electric vehicle with microwaves. In Proceedings of the 2013 3rd International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 29–30 October 2013; pp. 1–4. [Google Scholar]
- Vincent, D.; Huynh, P.S.; Azeez, N.A.; Patnaik, L.; Williamson, S.S. Evolution of hybrid inductive and capacitive AC links for wireless EV charging—A comparative overview. IEEE Trans. Transp. Electrific. 2019, 5, 1060–1077. [Google Scholar] [CrossRef]
- Shahin, A.; Abdelaziz, A.Y.; Houari, A.; Nahid-Mobarakeh, B.; Pierfederici, S.; Deng, F.; Abulanwar, S. A comprehensive analysis: Integrating renewable energy sources with wire/wireless EV charging systems for green mobility. IEEE Access 2024, 12, 140527–140555. [Google Scholar] [CrossRef]
- Mahesh, A.; Chokkalingam, B.; Mihet-Popa, L. Inductive wireless power transfer charging for electric vehicles–A review. IEEE Access 2021, 9, 137667–137713. [Google Scholar] [CrossRef]
- Mohamed, N.; Aymen, F.; Alharbi, T.E.A.; El-Bayeh, C.Z.; Lassaad, S.; Ghoneim, S.S.M.; Eicker, U. A comprehensive analysis of wireless charging systems for electric vehicles. IEEE Access 2022, 10, 43865–43881. [Google Scholar] [CrossRef]
- Tenllado, I.C.; Cabrera, A.T.; Lin, Z. Simultaneous wireless power and data transfer for electric vehicle charging: A review. IEEE Trans. Transp. Electrific. 2024, 10, 4542–4570. [Google Scholar] [CrossRef]
- Ramoliya, F.; Gupta, R.; Darji, K.; Trivedi, C.; Kakkar, R.; Tanwar, S.; Guizani, M. A green IoT-integrated AI-based EV scheduling scheme for efficient charging station selection. In Proceedings of the 2024 International Wireless Communications and Mobile Computing (IWCMC), Ayia Napa, Cyprus, 27–31 May 2024; pp. 327–332. [Google Scholar]
- Okuyama, T.; Gonsalves, T.; Upadhay, J. Autonomous driving system based on deep Q learning. In Proceedings of the 2018 International Conference on Intelligent Autonomous Systems (ICoIAS), Singapore, 1–3 March 2018; pp. 201–205. [Google Scholar]
- Mohamed, A.A.S.; Shaier, A.A.; Metwally, H.; Selem, S.I. Wireless charging technologies for electric vehicles: Inductive, capacitive, and magnetic gear. IET Power Electron. 2023, 17, 3139–3165. [Google Scholar] [CrossRef]
- Wu, H.H.; Gilchrist, A.; Sealy, K.D.; Bronson, D. A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE Trans. Ind. Informat. 2012, 8, 585–595. [Google Scholar] [CrossRef]
- Sinha, S.; Kumar, A.; Regensburger, B.; Afridi, K.K. A new design approach to mitigating the effect of parasitics in capacitive wireless power transfer systems for electric vehicle charging. IEEE Trans. Transport. Electrific. 2019, 5, 1040–1059. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Cao, Y.; Lu, F. Remaining opportunities in capacitive power transfer based on duality with inductive power transfer. IEEE Trans. Transp. Electrific. 2023, 9, 2902–2915. [Google Scholar] [CrossRef]
- Sallan, J.; Villa, J.L.; Llombart, A.; Sanz, J.F. Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Trans. Ind. Electron. 2009, 56, 2140–2149. [Google Scholar] [CrossRef]
- Gu, L.; Zulauf, G.; Stein, A.; Kyaw, P.A.; Chen, T.; Davila, J.M. 6.78-MHz wireless power transfer with self-resonant coils at 95% DC–DC efficiency. IEEE Trans. Power Electron. 2021, 36, 2456–2460. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Z.; Kan, T.; Zeng, X.; Chen, S.; Mi, C.C. Modeling and analysis of a strongly coupled series–parallel-compensated wireless power transfer system. IEEE J. Emerg. Sel. Topics Power Electron. 2019, 7, 1364–1370. [Google Scholar] [CrossRef]
- Kuperman, A. Additional two-capacitor basic compensation topologies for resonant inductive WPT links. IEEE Trans. Power Deliv. 2020, 35, 2568–2570. [Google Scholar] [CrossRef]
- Komaru, T.; Akita, H. Positional characteristics of capacitive power transfer as a resonance coupling system. In Proceedings of the 2013 IEEE Wireless Power Transfer (WPT), Perugia, Italy, 15–16 May 2013; pp. 218–221. [Google Scholar]
- IEC 61980; Electric Vehicle Wireless Power Transfer (WPT) Systems. IEC: London, UK, 2020.
- SAE J2954_202408; Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology. SAE International: Warrendale, PA, USA, 2024.
- SAE J2954/2_202212; Wireless Power Transfer for Heavy-Duty Electric Vehicles. SAE International: Warrendale, PA, USA, 2022.
- Longo, M.; Zaninelli, D.; Cipriani, G.; Di Dio, V.; Miceli, R. Economie assessments on the use of wired and wireless recharging systems in Italian and European market. In Proceedings of the 2017 AEIT International Annual Conference, Cagliari, Italy, 20–22 September 2017; pp. 1–5. [Google Scholar]
- Takanashi, H.; Sato, Y.; Kaneko, Y.; Abe, S.; Yasuda, T. A large air gap 3 kW wireless power transfer system for electric vehicles. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 269–274. [Google Scholar]
- Yang, Y.; El Baghdadi, M.; Lan, U.; Benomar, Y.; Van Mierlo, J.; Hegazy, O. Design methodology modeling and comparative study of wireless power transfer systems for electric vehicles. Energies 2018, 11, 1716. [Google Scholar] [CrossRef]
- Li, W.; Zhao, H.; Li, S.; Deng, J.; Kan, T.; Mi, C.C. Integrated LCC compensation topology for wireless charger in electric and plug-in electric vehicles. IEEE Trans. Ind. Electron. 2015, 62, 4215–4225. [Google Scholar] [CrossRef]
- Chowdhury, S.; Tarek, M.T.B.; Sozer, Y. Design of a 7.7 kW three-phase wireless charging system for light duty vehicles based on overlapping windings. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 5169–5176. [Google Scholar]
- Mohammad, M.; Pries, J.; Onar, O.; Galigekere, V.P.; Su, G.-J.; Anwar, S.; Wilkins, J.; Kavimandan, U.D.; Patil, D. Design of an EMF suppressing magnetic shield for a 100-kW dd-coil wireless charging system for electric vehicles. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 1521–1527. [Google Scholar]
- Tritschler, J.; Reichert, S.; Goeldi, B. A practical investigation of a high power, bidirectional charging system for electric vehicles. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; pp. 1–7. [Google Scholar]
- Bojarski, M.; Asa, E.; Colak, K.; Czarkowski, D. A 25 kW industrial prototype wireless electric vehicle charger. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 1756–1761. [Google Scholar]
- Bosshard, R.; Kolar, J.W. Multi-objective optimization of 50 kW/85 kHz IPT system for public transport. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1370–1382. [Google Scholar] [CrossRef]
- Galigekere, V.P.; Pries, J.; Onar, O.C.; Su, G.J.; Anwar, S.; Wiles, R.; Seiber, L.; Wilkins, J. Design and implementation of an optimized 100 kW stationary wireless charging system for EV battery recharging. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 3587–3592. [Google Scholar]
- KAIST OLEV Team. Feasibility Studies of On-Line Electric Vehicle (OLEV) Project; Internal Report; KAIST: Daejeon, Republic of Korea, 2009. [Google Scholar]
- Choi, S.Y.; Gu, B.W.; Jeong, S.Y.; Rim, C.T. Advances in wireless power transfer systems for roadway-powered electric vehicles. IEEE J. Emerg. Sel. Topics Power Electron. 2015, 3, 18–36. [Google Scholar] [CrossRef]
- INTIS. INTIS-Integrated Infrastructure Solutions. Available online: https://www.intis.de/wireless-power-transfer.html (accessed on 18 December 2024).
- INTIS. Available online: https://www.intis.de/assets/ecartec2014_e.pdf (accessed on 18 December 2024).
- DC Streetcar. Available online: https://dcstreetcar.com/wp-content/uploads/2020/10/Section-D-Part-6-723-830-pagesred.pdf (accessed on 18 December 2024).
- Kim, J.H.; Lee, B.-S.; Lee, J.-H.; Lee, S.-H.; Park, C.-B.; Jung, S.-M.; Lee, S.-G.; Yi, K.-P.; Baek, J. Development of 1-MW inductive power transfer system for a high-speed train. IEEE Trans. Ind. Electron. 2015, 62, 6242–6250. [Google Scholar] [CrossRef]
- Villar, I.; Garcia-Bediaga, A.; Iruretagoyena, U.; Arregi, R.; Estevez, P. Design and experimental validation of a 50 kW IPT for Railway Traction Applications. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 1177–1183. [Google Scholar]
- Mi, C.C.; Buja, G.; Choi, S.Y.; Rim, C.T. Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6533–6545. [Google Scholar] [CrossRef]
- Throngnumchai, K.; Hanamura, A.; Naruse, Y.; Takeda, K. Design and evaluation of a wireless power transfer system with road embedded transmitter coils for dynamic charging of electric vehicles. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), 17–20 November 2013; pp. 1–10. [Google Scholar]
- Buja, G.; Bertoluzzo, M.; Dashora, H.K. Lumped track layout design for dynamic wireless charging of electric vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6631–6640. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, Z.; Yang, Q.; Li, Y.; Zhu, J.; Li, Y. Coil design and efficiency analysis for dynamic wireless charging system for electric vehicles. IEEE Trans. Magn. 2016, 52, 8700404. [Google Scholar] [CrossRef]
- Bertoluzzo, M.; Buja, G.; Dashora, H.K. Design of DWC system track with unequal DD coil set. IEEE Trans. Transp. Electrific. 2017, 3, 380–391. [Google Scholar] [CrossRef]
- Tavakoli, R.; Dede, E.M.; Chou, C.; Pantic, Z. Cost-efficiency optimization of ground assemblies for dynamic wireless charging of electric vehicles. IEEE Trans. Transp. Electrific. 2022, 8, 734–751. [Google Scholar] [CrossRef]
- Chen, W.; Lin, F.; Covic, G.A. A modified DDQ track for interoperable EV dynamic charging. IEEE Trans. Power Electron. 2023, 38, 11738–11750. [Google Scholar] [CrossRef]
- Bagchi, A.C.; Kamineni, A.; Zane, R.A.; Carlson, R. Review and comparative analysis of topologies and control methods in dynamic wireless charging of electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 4947–4962. [Google Scholar] [CrossRef]
- Tavakoli, R.; Pantic, Z. Analysis, design, and demonstration of a 25-kW dynamic wireless charging system for roadway electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1378–1393. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L.; Liu, Z.; Chen, Q.; Long, R.; Su, H. Model predictive control for the receiving-side DC–DC converter of dynamic wireless power transfer. IEEE Trans. Power Electron. 2020, 35, 8985–8997. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Su, H. Passivity-based PI control for receiver side of dynamic wireless charging system in electric vehicles. IEEE Trans. Ind. Electron. 2022, 69, 783–794. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Su, H. Precise disturbance rejection for dynamic wireless charging system of electric vehicle using internal model-based regulator with disturbance observer. IEEE Trans. Ind. Electron. 2024, 71, 7695–7705. [Google Scholar] [CrossRef]
- Li, S.; Mi, C.C. Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. [Google Scholar]
- Rahulkumar, J.; Narayanamoorthi, R. Power control and efficiency enhancement topology for dual receiver wireless power transfer EV quasi-dynamic charging. In Proceedings of the 2023 IEEE International Transportation Electrification Conference (ITEC-India), Chennai, India, 12–15 December 2023; pp. 1–6. [Google Scholar]
- Mohamed, A.A.S.; Lashway, C.R.; Mohammed, O. Modeling and feasibility analysis of quasi-dynamic WPT system for EV applications. IEEE Trans. Transport. Electrific. 2017, 3, 343–353. [Google Scholar] [CrossRef]
- Zhang, B.; Carlson, R.B.; Galigekere, V.P.; Onar, O.C.; Mohammad, M.; Dickerson, C.C.; Walker, L.K. Quasi-dynamic electromagnetic field safety analysis and mitigation for high-power dynamic wireless charging of electric vehicles. In Proceedings of the 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 1–7. [Google Scholar]
- Tan, L.; Xie, H.; Wu, Z.; Wang, R.; Huang, X. An optimized power-efficiency coordinated control method for EVs charging and discharging applications. IEEE Trans. Ind. Electron. 2023, 70, 7257–7267. [Google Scholar] [CrossRef]
- Carmeli, M.S.; Castclli-Dezza, F.; Mauri, M.; Rossi, M.; Dolata, A.; Pedretti, M.; Simonini, I. Analysis of a quasi-dynamic wireless power transfer system for EV batteries charging. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018; pp. 383–388. [Google Scholar]
- Karneddi, H.; Ronanki, D. Driving range extension of electric city buses using opportunity wireless charging. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–5. [Google Scholar]
- Shafiqurrahman, A.; Khadkikar, V.; Rathore, A.K. Electric vehicle-to-vehicle (V2V) power transfer: Electrical and communication developments. IEEE Trans. Transport. Electrific. 2024, 10, 6258–6284. [Google Scholar] [CrossRef]
- Liu, W.; Chau, K.T.; Chow, C.C.T.; Lee, C.H.T. Wireless energy trading in traffic internet. IEEE Trans. Power Electron. 2022, 37, 4831–4841. [Google Scholar] [CrossRef]
- Newbolt, T.; Mandal, P.; Wang, H.; Zane, R. Sustainability of dynamic wireless power transfer roadway for in-motion electric vehicle charging. IEEE Trans. Transport. Electrific. 2024, 10, 1347–1362. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T. Modern trends in inductive power transfer for transportation applications. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 28–41. [Google Scholar] [CrossRef]
- Covic, G.A.; Boys, J.T.; Kissin, M.L.G.; Lu, H.G. A three-phase inductive power transfer system for roadway-powered vehicles. IEEE Trans. Ind. Electron. 2007, 54, 3370–3378. [Google Scholar] [CrossRef]
- Nagatsuka, Y.; Ehara, N.; Kaneko, Y.; Abe, S.; Yasuda, T. Compact contactless power transfer system for electric vehicles. In Proceedings of the 2010 International Power Electronics Conference-ECCE ASIA-, Sapporo, Japan, 21–24 June 2010; pp. 807–813. [Google Scholar]
- Elliott, G.; Raabe, S.; Covic, G.A.; Boys, J.T. Multiphase pickups for large lateral tolerance contactless power-transfer systems. IEEE Trans. Ind. Electron. 2010, 57, 1590–1598. [Google Scholar] [CrossRef]
- Budhia, M.; Covic, G.A.; Boys, J.T. Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 2011, 26, 3096–3108. [Google Scholar] [CrossRef]
- Budhia, M.; Boys, J.T.; Covic, G.A.; Huang, C.-Y. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans. Ind. Electron. 2013, 60, 318–328. [Google Scholar] [CrossRef]
- Bosshard, R.; Iruretagoyena, U.; Kolar, J.W. Comprehensive evaluation of rectangular and double-D coil geometry for 50 kW/85 kHz IPT system. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1406–1415. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Venugopal, P.; Dong, J.; Bauer, P. Comparison of magnetic couplers for IPT-based EV charging using multi-objective optimization. IEEE Trans. Veh. Technol. 2019, 68, 5416–5429. [Google Scholar] [CrossRef]
- Covic, G.A.; Kissin, M.L.G.; Kacprzak, D.; Clausen, N.; Hao, H. A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 1832–1838. [Google Scholar]
- Kim, S.; Zaheer, A.; Covic, G.; Boys, J. Tripolar pad for inductive power transfer systems. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 3066–3072. [Google Scholar]
- Tan, P.; Peng, T.; Gao, X.; Zhang, B. Flexible combination and switching control for robust wireless power transfer system with hexagonal array coil. IEEE Trans. Power Electron. 2021, 36, 3868–3882. [Google Scholar] [CrossRef]
- Kurschner, D.; Rathge, C.; Jumar, U. Design methodology for high efficient inductive power transfer systems with high coil positioning flexibility. IEEE Trans. Ind. Electron. 2013, 60, 372–381. [Google Scholar] [CrossRef]
- Bosshard, R.; Kolar, J.W.; Muhlethaler, J.; Stevanovic, I.; Wunsch, B.; Canales, F. Modeling and η—α -pareto optimization of inductive power transfer coils for electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 50–64. [Google Scholar] [CrossRef]
- Hariri, A.; Elsayed, A.; Mohammed, O.A. An integrated characterization model and multi-objective optimization for the design of an EV charger’s circular wireless power transfer pads. IEEE Trans. Magn. 2017, 53, 8001004. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, Y.; Wang, Y. Decoupling optimization of the three-coil coupler for IPT system featuring high efficiency and misalignment tolerance. IEEE Trans. Ind. Electron. 2023, 70, 8918–8927. [Google Scholar] [CrossRef]
- Qin, R.; Li, J.; Sun, J.; Costinett, D. Shielding design for high-frequency wireless power transfer system for EV charging with self-resonant coils. IEEE Trans. Power Electron. 2023, 38, 7900–7909. [Google Scholar] [CrossRef]
- Wang, H.; Chau, K.T.; Lee, C.H.T.; Tian, X. Design and analysis of wireless resolver for wireless switched reluctance motors. IEEE Trans. Ind. Electron. 2023, 70, 2221–2230. [Google Scholar] [CrossRef]
- Liu, W.; Lu, J.; Mi, C.C.; Chau, K.T. Integrated sensorless wireless charging using symmetric high-order network for multistorey car parks. IEEE Trans. Power Electron. 2024, 39, 10568–10581. [Google Scholar] [CrossRef]
- Mai, J.; Wang, Y.; Yao, Y.; Xu, D. Analysis, design, and optimization of the IPT system with LC filter rectifier featuring high efficiency. IEEE Trans. Ind. Electron. 2022, 69, 12829–12841. [Google Scholar] [CrossRef]
- Liu, C.; Ge, S.; Guo, Y.; Li, H.; Cai, G. Double-LCL resonant compensation network for electric vehicles wireless power transfer: Experimental study and analysis. IET Power Electron. 2016, 9, 2262–2270. [Google Scholar] [CrossRef]
- Liu, Z.; Su, M.; Zhu, Q.; Zhao, L.; Hu, A.P. A dual frequency tuning method for improved coupling tolerance of wireless power transfer system. IEEE Trans. Power Electron. 2021, 36, 7360–7365. [Google Scholar] [CrossRef]
- Lu, F.; Hofmann, H.; Deng, J.; Mi, C. Output power and efficiency sensitivity to circuit parameter variations in double-sided LCC compensated wireless power transfer system. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 597–601. [Google Scholar]
- Byeon, J.; Kang, M.; Kim, M.; Joo, D.-M.; Lee, B.K. Hybrid control of inductive power transfer charger for electric vehicles using LCCL-S resonant network in limited operating frequency range. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–6. [Google Scholar]
- Liu, F.; Zhang, Y.; Chen, K.; Zhao, Z.; Yuan, L. A comparative study of load characteristics of resonance types in wireless transmission systems. In Proceedings of the 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, 17–21 May 2016; pp. 203–206. [Google Scholar]
- Wang, Y.; Yao, Y.; Liu, X.; Xu, D. S/CLC compensation topology analysis and circular coil design for wireless power transfer. IEEE Trans. Transport. Electrific. 2017, 3, 496–507. [Google Scholar] [CrossRef]
- Kan, T.; Nguyen, T.-D.; White, J.C.; Malhan, R.K.; Mi, C.C. A new integration method for an electric vehicle wireless charging system using LCC compensation topology: Analysis and design. IEEE Trans. Power Electron. 2017, 32, 1638–1650. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Deng, J.; Nguyen, T.D.; Mi, C.C. A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans. Veh. Technol. 2015, 64, 2261–2273. [Google Scholar] [CrossRef]
- Li, W.; Zhao, H.; Deng, J.; Li, S.; Mi, C.C. Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers. IEEE Trans. Veh. Technol. 2016, 65, 4429–4439. [Google Scholar] [CrossRef]
- Tao, C.; Wang, L.; Zhang, Y.; Li, S.; Da, C. Research on three-phase hybrid compensation WPT system with high misalignment tolerance and its ZVS control strategy. IEEE Trans. Power Electron. 2023, 38, 14847–14860. [Google Scholar] [CrossRef]
- Esteban, B.; Sid-Ahmed, M.; Kar, N.C. A comparative study of power supply architectures in wireless EV charging systems. IEEE Trans. Power Electron. 2015, 30, 6408–6422. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, Y.; Liu, X.; Lin, F.; Xu, D. A novel parameter tuning method for a double-sided LCL compensated WPT system with better comprehensive performance. IEEE Trans. Power Electron. 2018, 33, 8525–8536. [Google Scholar] [CrossRef]
- Cai, J.; Wu, X.; Sun, P.; Deng, Q.; Sun, J.; Zhou, H. Design of constant-voltage and constant-current output modes of double-sided LCC inductive power transfer system for variable coupling conditions. IEEE Trans. Power Electron. 2024, 39, 1676–1689. [Google Scholar] [CrossRef]
- Cai, C.; Wang, J.; Fang, Z.; Zhang, P.; Hu, M.; Zhang, J.; Li, L.; Lin, Z. Design and optimization of load-independent magnetic resonant wireless charging system for electric vehicles. IEEE Access 2018, 6, 17264–17274. [Google Scholar] [CrossRef]
- Campi, T.; Cruciani, S.; Maradei, F.; Feliziani, M. Near-field reduction in a wireless power transfer system using LCC compensation. IEEE Trans. Electromagn. Compat. 2017, 59, 686–694. [Google Scholar] [CrossRef]
- Park, M.; Nguyen, V.T.; Yu, S.-D.; Yim, S.-W.; Park, K.; Min, B.D.; Kim, S.-D.; Cho, J.G. A study of wireless power transfer topologies for 3.3 kW and 6.6 kW electric vehicle charging infrastructure. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, Republic of Korea, 1–4 June 2016; pp. 689–692. [Google Scholar]
- Onar, O.C.; Miller, J.M.; Campbell, S.L.; Coomer, C.; White, P.; Seiber, L.E. A novel wireless power transfer for in-motion EV/PHEV charging. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 3073–3080. [Google Scholar]
- Deng, J.; Li, W.; Nguyen, T.D.; Li, S.; Mi, C.C. Compact and efficient bipolar coupler for wireless power chargers: Design and analysis. IEEE Trans. Power Electron. 2015, 30, 6130–6140. [Google Scholar] [CrossRef]
- Feng, H.; Cai, T.; Duan, S.; Zhao, J.; Zhang, X.; Chen, C. An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Trans. Ind. Electron. 2016, 63, 6591–6601. [Google Scholar] [CrossRef]
- Li, Y.; Sun, W.; Liu, J.; Liu, Y.; Yang, X.; Li, Y.; Hu, J.; He, Z. A new magnetic coupler with high rotational misalignment tolerance for unmanned aerial vehicles wireless charging. IEEE Trans. Power Electron. 2022, 37, 12986–12991. [Google Scholar] [CrossRef]
- Liu, N.; Habetler, T.G. Design of a universal inductive charger for multiple electric vehicle models. IEEE Trans. Power Electron. 2015, 30, 6378–6390. [Google Scholar] [CrossRef]
- Vu, V.B.; Ramezani, A.; Triviño, A.; González-González, J.M.; Kadandani, N.B.; Dahidah, M.; Pickert, V.; Narimani, M.; Aguado, J. Operation of inductive charging systems under misalignment conditions: A review for electric vehicles. IEEE Trans. Transp. Electrific. 2023, 9, 1857–1887. [Google Scholar] [CrossRef]
- Villa, J.L.; Sallan, J.; Osorio, J.F.S.; Llombart, A. High-misalignment tolerant compensation topology for ICPT systems. IEEE Trans. Ind. Electron. 2012, 59, 945–951. [Google Scholar] [CrossRef]
- Ramezani, A.; Narimani, M. Optimized electric vehicle wireless chargers with reduced output voltage sensitivity to misalignment. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3569–3581. [Google Scholar] [CrossRef]
- Zhao, L.; Thrimawithana, D.J.; Madawala, U.K.; Hu, A.P.; Mi, C.C. A misalignment-tolerant series-hybrid wireless EV charging system with integrated magnetics. IEEE Trans. Power Electron. 2019, 34, 1276–1285. [Google Scholar] [CrossRef]
- Qu, X.; Yao, Y.; Wang, D.; Wong, S.-C.; Tse, C.K. A family of hybrid IPT topologies with near load-independent output and high tolerance to pad misalignment. IEEE Trans. Power Electron. 2020, 35, 6867–6877. [Google Scholar] [CrossRef]
- Chen, Y.; He, S.; Yang, B.; Chen, S.; He, Z.; Mai, R. Reconfigurable rectifier-based detuned series-series compensated IPT system for anti-misalignment and efficiency improvement. IEEE Trans. Power Electron. 2023, 38, 2720–2729. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, W.; Wang, H.; Shen, Z.; Wu, Y.; Dong, J.; Mao, X. Misalignment-tolerant dual-transmitter electric vehicle wireless charging system with reconfigurable topologies. IEEE Trans. Power Electron. 2022, 37, 8816–8819. [Google Scholar] [CrossRef]
- Mai, J.; Wang, Y.; Yao, Y.; Xu, D. Analysis and design of high-misalignment-tolerant compensation topologies with constant-current or constant-voltage output for IPT systems. IEEE Trans. Power Electron. 2021, 36, 2685–2695. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, Y.; Wang, L.; Liao, C.; Li, F. Improving the misalignment tolerance of wireless charging system by optimizing the compensate capacitor. IEEE Trans. Ind. Electron. 2015, 62, 4832–4836. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, B.; Lin, S.; Wang, C. A self-oscillation WPT system with high misalignment tolerance. IEEE Trans. Power Electron. 2024, 39, 1870–1887. [Google Scholar] [CrossRef]
- Miller, J.M.; Onar, O.C.; Chinthavali, M. Primary-side power flow control of wireless power transfer for electric vehicle charging. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 147–162. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, F.; Xu, D.; Krein, P.T.; Ma, H. An integrated inductive power transfer system design with a variable inductor for misalignment tolerance and battery charging applications. IEEE Trans. Power Electron. 2020, 35, 11544–11556. [Google Scholar] [CrossRef]
- Dai, X.; Li, X.; Li, Y.; Hu, A.P. Maximum efficiency tracking for wireless power transfer systems with dynamic coupling coefficient estimation. IEEE Trans. Power Electron. 2018, 33, 5005–5015. [Google Scholar] [CrossRef]
- Berger, A.; Agostinelli, M.; Vesti, S.; Oliver, J.A.; Cobos, J.A.; Huemer, M. A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power. IEEE Trans. Power Electron. 2015, 30, 6338–6348. [Google Scholar] [CrossRef]
- Fang, Y.; Pong, B.M.H.; Hui, R.S.Y. An enhanced multiple harmonics analysis method for wireless power transfer systems. IEEE Trans. Power Electron. 2020, 35, 1205–1216. [Google Scholar] [CrossRef]
- Chen, F.; Garnier, H.; Deng, Q.; Kazimierczuk, M.K.; Zhuan, X. Control-oriented modeling of wireless power transfer systems with phase shift control. IEEE Trans. Power Electron. 2020, 35, 2119–2134. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, L.; Wang, Y.; Liu, J.; Li, X.; Ning, G. Analysis, design, and implementation of accurate ZVS angle control for EV battery charging in wireless high-power transfer. IEEE Trans. Ind. Electron. 2019, 66, 4075–4085. [Google Scholar] [CrossRef]
- Liu, W.; Chau, K.T.; Lee, C.H.T.; Jiang, C.; Han, W.; Lam, W.H. A wireless dimmable lighting system using variable-power variable-frequency control. IEEE Trans. Ind. Electron. 2020, 67, 8392–8404. [Google Scholar] [CrossRef]
- Hua, Z.; Chau, K.T.; Liu, W.; Tian, X. Pulse frequency modulation for parity-time-symmetric wireless power transfer system. IEEE Trans. Magn. 2022, 58, 1–5. [Google Scholar] [CrossRef]
- Zhou, J.; Guidi, G.; Ljøkelsøy, K.; Suul, J.A. Evaluation and suppression of oscillations in inductive power transfer systems with constant voltage load and pulse skipping modulation. IEEE Trans. Power Electron. 2023, 38, 10412–10425. [Google Scholar] [CrossRef]
- Wu, D.; Mai, R.; Zhou, W.; Liu, Y.; Peng, F.; Zhao, S.; Zhou, Q. An improved pulse density modulator in inductive power transfer system. IEEE Trans. Power Electron. 2022, 37, 12805–12813. [Google Scholar] [CrossRef]
- Hua, Z.; Chau, K.T.; Han, W.; Liu, W.; Ching, T.W. Output-controllable efficiency-optimized wireless power transfer using hybrid modulation. IEEE Trans. Ind. Electron. 2022, 69, 4627–4636. [Google Scholar] [CrossRef]
- Liu, W.; Chau, K.T.; Lee, C.H.T.; Han, W.; Tian, X.; Lam, W.H. Full range soft-switching pulse frequency modulated wireless power transfer. IEEE Trans. Power Electron. 2020, 35, 6533–6547. [Google Scholar] [CrossRef]
- Liu, W.; Chau, K.T.; Lee, C.H.T.; Tian, X.; Jiang, C. Hybrid frequency pacing for high-order transformed wireless power transfer. IEEE Trans. Power Electron. 2021, 36, 1157–1170. [Google Scholar] [CrossRef]
- Wang, X.; Leng, M.; Zhang, X.; Ma, H.; Guo, B.; Xu, J.; Lee, C.K. Synthesis and analysis of primary high-order compensation topologies for wireless charging system applying sub-harmonic control. IEEE Trans. Power Electron. 2023, 38, 9173–9182. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Q.; Cui, C.; Na, T.; Hu, T. An improved hybrid frequency pacing modulation for wireless power transfer systems. IEEE Trans. Power Electron. 2021, 36, 12365–12374. [Google Scholar] [CrossRef]
- Guo, J.; Chau, K.T.; Liu, W.; Hua, Z.; Li, S. Segmented-vector pulse frequency modulated three-level converter for wireless power transfer. IEEE Trans. Power Electron. 2024, 39, 8959–8972. [Google Scholar] [CrossRef]
- Mishima, T.; Lai, C.-M. Load-adaptive resonant frequency-tuned D-R pulse density modulation for class-D ZVS high-frequency inverter based inductive wireless power transfer. IEEE Trans. Emerg. Sel. Topics Ind. Electron. 2022, 3, 411–420. [Google Scholar] [CrossRef]
- Sheng, X.; Shi, L. An improved pulse density modulation strategy based on harmonics for ICPT system. IEEE Trans. Power Electron. 2020, 35, 6810–6819. [Google Scholar] [CrossRef]
- Esteve, V.; Jordan, J.; Sanchis-Kilders, E.; Dede, E.J.; Maset, E.; Ejea, J.B.; Ferreres, A. Enhanced pulse-density-modulated power control for high frequency induction heating inverters. IEEE Trans. Ind. Electron. 2015, 62, 6905–6914. [Google Scholar] [CrossRef]
- Li, H.; Fang, J.; Chen, S.; Wang, K.; Tang, Y. Pulse density modulation for maximum efficiency point tracking of wireless power transfer systems. IEEE Trans. Power Electron. 2018, 33, 5492–5501. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Fang, J.; Tang, Y. Pulse density modulated ZVS full-bridge converters for wireless power transfer systems. IEEE Trans. Power Electron. 2019, 34, 369–377. [Google Scholar] [CrossRef]
- Li, H.; Chen, S.; Fang, J.; Tang, Y.; de Rooij, M.A. A low-subharmonic, full-range, and rapid pulse density modulation strategy for ZVS full-bridge converters. IEEE Trans. Power Electron. 2019, 34, 8871–8881. [Google Scholar] [CrossRef]
- Fan, M.; Shi, L.; Yin, Z.; Jiang, L.; Zhang, F. Improved pulse density modulation for semi-bridgeless active rectifier in inductive power transfer system. IEEE Trans. Power Electron. 2019, 34, 5893–5902. [Google Scholar] [CrossRef]
- Yenil, V.; Cetin, S. An improved pulse density modulation control for secondary side controlled wireless power transfer system using LCC-S compensation. IEEE Trans. Ind. Electron. 2022, 69, 12762–12772. [Google Scholar] [CrossRef]
- Zhou, J.; Guidi, G.; Chen, S.; Tang, Y.; Suul, J.A. Conditional pulse density modulation for inductive power transfer systems. IEEE Trans. Power Electron. 2024, 39, 88–93. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, C.Q.; Zhou, J.; Wang, Y.; Mo, L. Hybrid control based on pulse density modulation and asymmetrical voltage cancellation for WPT systems. IEEE Trans. Ind. Electron. 2024; early access. [Google Scholar] [CrossRef]
- Tang, J.; Na, T.; Zhang, Q. A novel full-bridge step density modulation for wireless power transfer systems. IEEE Trans. Power Electron. 2023, 38, 41–45. [Google Scholar] [CrossRef]
- Guo, J.; Chau, K.T.; Liu, W.; Hou, Y.; Chan, W.L. Pulse magnitude modulation and token rotation-based voltage balancing method of multilevel inverter for wireless power transfer. IEEE Trans. Power Electron. 2024; early access. [Google Scholar] [CrossRef]
- Jiwariyavej, V.; Imura, T.; Hori, Y. Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 191–200. [Google Scholar] [CrossRef]
- Chow, J.P.-W.; Chung, H.S.-H.; Cheng, C.-S. Use of transmitter-side electrical information to estimate mutual inductance and regulate receiver-side power in wireless inductive kink. IEEE Trans. Power Electron. 2016, 31, 6079–6091. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, S.C.; Hui, S.Y.R. Fast hardware approach to determining mutual coupling of series–series-compensated wireless power transfer systems with active rectifiers. IEEE Trans. Power Electron. 2020, 35, 11026–11038. [Google Scholar] [CrossRef]
- Wang, L.; Sun, P.; Wu, X.; Cai, J.; Deng, Q.; Sun, J.; Zhou, H. Mutual inductance identification of IPT system based on soft-start process. IEEE Trans. Power Electron. 2022, 37, 7504–7517. [Google Scholar] [CrossRef]
- Mohammad, M.; Choi, S. Sensorless estimation of coupling coefficient based on current and voltage harmonics analysis for wireless charging system. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 2767–2772. [Google Scholar]
- Hu, J.; Zhao, J.; Cui, C. A wide charging range wireless power transfer control system with harmonic current to estimate the coupling coefficient. IEEE Trans. Power Electron. 2021, 36, 5082–5094. [Google Scholar] [CrossRef]
- Dai, X.; Jiang, J.; Xu, Z.; Li, Y. Cooperative control for multi-excitation units WPT system with multiple coupling parameter identification and area adaptation. IEEE Access 2020, 8, 38728–38741. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, H.; Wang, Z.; Hu, A.P.; Chen, L.; Sun, Y. Steady-state load identification method of inductive power transfer system based on switching capacitors. IEEE Trans. Power Electron. 2015, 30, 6349–6355. [Google Scholar] [CrossRef]
- Sheng, X.; Shi, L. Mutual inductance and load identification method for inductively coupled power transfer system based on auxiliary inverter. IEEE Trans. Veh. Technol. 2020, 69, 1533–1541. [Google Scholar] [CrossRef]
- Su, Y.; Chen, L.; Wu, X.; Hu, A.P.; Tang, C.; Dai, X. Load and mutual inductance identification from the primary side of inductive power transfer system with parallel-tuned secondary power pickup. IEEE Trans. Power Electron. 2018, 33, 9952–9962. [Google Scholar] [CrossRef]
- Dai, R.; Zhou, W.; Chen, Y.; Zhu, Z.; Mai, R. Pulse density modulation based mutual inductance and load resistance identification method for wireless power transfer system. IEEE Trans. Power Electron. 2022, 37, 9933–9943. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Li, S.; Tao, C.; Wang, L. Load parameter joint identification of wireless power transfer system based on the DC input current and phase-shift angle. IEEE Trans. Power Electron. 2020, 35, 10542–10553. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Zhang, W.; Wang, L. Battery parameter identification based on wireless power transfer system with rectifier load. IEEE Trans. Ind. Electron. 2021, 68, 6893–6904. [Google Scholar] [CrossRef]
- Wang, L.; Sun, P.; Liang, Y.; Sun, J.; Wu, X.; Shen, H.; Deng, Q. Joint real-time identification for mutual inductance and load charging parameters of IPT system. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 4574–4590. [Google Scholar] [CrossRef]
- Li, W.; Wei, G.; Cui, C.; Zhang, X.; Zhang, Q. A double-side self-tuning LCC/S system using a variable switched capacitor based on parameter recognition. IEEE Trans. Ind. Electron. 2021, 68, 3069–3078l. [Google Scholar] [CrossRef]
- Xue, Z.; Niu, S.; Li, X. A simplified multi-vector-based model predictive current control for PMSM with enhanced performance. IEEE Trans. Transport. Electrific. 2023, 9, 4032–4044. [Google Scholar] [CrossRef]
- Yin, Z.; Dai, X.; Yang, Z.; Shen, Y.; Li, F.; Xiao, D.; Zhao, H. Torque-induced-overshoot reduction inspired compensator for PMSMs using motor-physics embedded gaussian process regression. IEEE ASME Trans. Mechatron. 2024; early access. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, X.; Shen, Y.; Su, X.; Xiao, D.; Abel, D.; Zhao, H. Plant-physics-guided neural network control for permanent magnet synchronous motors. IEEE J. Sel. Top. Signal Process. 2024; early access. [Google Scholar] [CrossRef]
- Xue, Z.; Niu, S.; Chau, A.M.H.; Luo, Y.; Lin, H.; Li, X. Recent advances in multi-phase electric drives model predictive control in renewable energy application: A state-of-the-art review. World Electric Veh. J. 2023, 14, 44. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, X.; Su, X.; Shen, Y.; Xiao, D.; Zhao, H. A switched ultra-local model-free predictive controller for PMSMs. IEEE Trans. Power Electron. 2024, 39, 10665–10669. [Google Scholar] [CrossRef]
- Li, X.; Sang, M.; Wei, Z.; Zhang, Z.; Zhu, X.; Wang, Y.; Hua, W. Magnetic shielding design and performance improvement of HTS coil for single HTS-excitation claw-pole field-modulation machine. IEEE Trans. Appl. Supercond. 2024, 34, 5200609. [Google Scholar] [CrossRef]
- Lyu, R.; Liu, W.; Li, Q.; Chau, K.T. Overview of superconducting wireless power transfer. Energy Rep. 2024, 12, 4055–4075. [Google Scholar] [CrossRef]
- Ma, J.; Li, Z.; Liu, Y.; Ban, M.; Song, W. Thermal analysis and optimization of the magnetic coupler for wireless charging system. IEEE Trans. Power Electron. 2023, 38, 16269–16280. [Google Scholar] [CrossRef]
- Liang, C.; Yang, G.; Yuan, F.; Huang, X.; Sun, Y.; Li, J.; Song, K. Modeling and analysis of thermal characteristics of magnetic coupler for wireless electric vehicle charging system. IEEE Access 2020, 8, 173177–173185. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, C.; Dou, R.; Zhang, P.; Yuan, Z.; Yang, Q. Ferrite pads gap thermal-magnetic evaluation and mitigation for 11.1 kW wireless power transfer. IEEE Trans. Magn. 2023, 59, 8600806. [Google Scholar] [CrossRef]
- Deng, P.; Tang, C.; Sun, M.; Liu, Z.; Hu, H.; Lin, T. EMI suppression method for LCC-S MC-WPT systems by parameter optimization. IEEE Trans. Power Electron. 2024, 39, 11134–11147. [Google Scholar] [CrossRef]
- Sim, B.; Jeong, S.; Kim, Y.; Park, S.; Lee, S.; Hong, S.; Song, J.; Kim, H.; Kang, H.; Park, H.; et al. A near field analytical model for EMI reduction and efficiency enhancement using an nth harmonic frequency shielding coil in a loosely coupled automotive WPT system. IEEE Trans. Electromagn. Compat. 2021, 63, 935–946. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Kang, J.; Wang, Y. Electromagnetic safety evaluation and protection methods for a wireless charging system in an electric vehicle. IEEE Trans. Electromagn. Compat. 2019, 61, 1913–1925. [Google Scholar] [CrossRef]
- Park, S. Evaluation of Electromagnetic Exposure During 85 kHz Wireless Power Transfer for Electric Vehicles. IEEE Trans. Magn. 2018, 54, 5100208. [Google Scholar] [CrossRef]
WPT Methods | Advantages | Disadvantages | |
---|---|---|---|
Near-field WPT | Inductive | Simple structure | Short transmission distance |
High efficiency at short range | Low efficiency at long range | ||
Relatively safe | High alignment requirements | ||
Magnetic resonant | Relatively long transfer range | Heat dissipation issues | |
Misalignment insensitive | EMI issues | ||
High efficiency and power level | Relatively high cost | ||
Capacitive | Medium power transmission | High resonant frequency | |
Lightweight coupler | Cumbersome coupler with 4 plates | ||
Power transfer through metal | High voltage and current stress | ||
Far-field WPT | Microwave | Long transfer distances | High cost and difficult to implement |
High-power possibilities | No bidirectional transmission | ||
Highly efficient possibilities | Biologically unsafe | ||
Laser | Long transfer range | Biological unsafety | |
High-power possibilities | Low efficiency | ||
Small transmitter and receiver | Vulnerability to obstacles |
Property | Magnetic Coupler | Electric Coupler |
---|---|---|
Structure | ||
Coupling | ||
Self-L/C | Lp, Ls | C1, C2 |
Mutual coupling | LM | CM |
Coupling coefficient | kL = LM/√(LpLs) | kC = CM/√(C1C2) |
SS-IPT | PP-IPT | SP-IPT | PS-IPT |
---|---|---|---|
ZPA frequency | |||
Output property with the voltage source | |||
SS-CPT | PP-CPT | SP-CPT | PS-CPT |
---|---|---|---|
ZPA frequency | |||
Output property with the voltage source | |||
CP | RP | DDP | DDQ Pad | BPP |
---|---|---|---|---|
|
|
|
|
|
Compensation | Frequency (kHz) | Power Level (kW) | Efficiency | Coupling kL | Air Gap (mm) |
---|---|---|---|---|---|
S-S [146] | 85 | 1 | 95% | 0.135 | 200 |
S-S [147] | 85 | 3.3 | 93.1% | 0.1 | 100 |
S-P [148] | 23 | 2 | 92% | N/A | 100 |
LCC-LCC [138] | 85 | 1.4 | 89.78% | 0.13 | 150 |
LCC-LCC [149] | 95 | 5.6 | 95.36% | 0.14–0.3 | 150 |
LCC-LCC [140] | 79 | 7.7 | 96% | 0.18–0.32 | 200 |
LCL-LCL [147] | 85 | 3.3 | 89.5% | 0.1 | 100 |
LCL-S [150] | 140 | 0.45 | 93% | 0.18–0.32 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Liu, W.; Liu, C.; Chau, K.T. Critical Review of Wireless Charging Technologies for Electric Vehicles. World Electr. Veh. J. 2025, 16, 65. https://doi.org/10.3390/wevj16020065
Xue Z, Liu W, Liu C, Chau KT. Critical Review of Wireless Charging Technologies for Electric Vehicles. World Electric Vehicle Journal. 2025; 16(2):65. https://doi.org/10.3390/wevj16020065
Chicago/Turabian StyleXue, Zhiwei, Wei Liu, Chang Liu, and K. T. Chau. 2025. "Critical Review of Wireless Charging Technologies for Electric Vehicles" World Electric Vehicle Journal 16, no. 2: 65. https://doi.org/10.3390/wevj16020065
APA StyleXue, Z., Liu, W., Liu, C., & Chau, K. T. (2025). Critical Review of Wireless Charging Technologies for Electric Vehicles. World Electric Vehicle Journal, 16(2), 65. https://doi.org/10.3390/wevj16020065