A Review of Simultaneous Localization and Mapping Algorithms Based on Lidar
<p>System framework of SLAM.</p> "> Figure 2
<p>Point cloud matching based on geometric features. (<b>a</b>) Point cloud data obtained by lidar (in orange). (<b>b</b>) The extracted edge and plane features (in green).</p> "> Figure 3
<p>Comparison of the effect of different point cloud matching methods (Green is the source point cloud, and blue is the point cloud to be matched). (<b>a</b>) Initial position of point cloud; (<b>b</b>) ICP algorithm; (<b>c</b>) feature-based algorithm; (<b>d</b>) NDT algorithm.</p> "> Figure 4
<p>Closed loop detection (the green is the current frame point cloud, and the red is the historical loop-closure frame point cloud).</p> "> Figure 5
<p>The representation of a map. (<b>a</b>) Point cloud map; (<b>b</b>) mesh map; (<b>c</b>) octree map; (<b>d</b>) semantic map.</p> "> Figure 6
<p>Dynamic object point cloud.</p> "> Figure 7
<p>Algorithm framework for LOAM.</p> "> Figure 8
<p>The system architecture of factor graph optimization.</p> "> Figure 9
<p>Block diagram of V-LOAM algorithm system.</p> "> Figure 10
<p>Lidar–visual–inertial tightly coupled system architecture.</p> ">
Abstract
:1. Introduction
- (1)
- In this paper, the system architecture of the lidar SLAM algorithm is analyzed comprehensively. The article introduces in detail the four key modules of scan matching, loop closure detection, back-end optimization, and map construction in the SLAM algorithm framework.
- (2)
- The current mainstream lidar SLAM algorithm is summarized and described. The principles, advantages, and disadvantages of various SLAM algorithms are compared and analyzed from three aspects: pure lidar SLAM algorithm, multi-sensor fusion SLAM algorithm, and deep learning SLAM algorithm.
- (3)
- The challenges and future development trends of the lidar SLAM algorithm are discussed and summarized. In practical applications, the lidar SLAM algorithm faces the problems of difficult effective fusion of multiple sensor data, inherent measurement problems of lidar, and poor robustness. Five major trends in the future development of the lidar SLAM algorithm are summarized.
2. Lidar SLAM System Architecture
2.1. Scan Matching
2.1.1. ICP-Based Matching Algorithm
2.1.2. Geometric Feature-Based Matching Algorithm
2.1.3. Mathematical Feature-Based Matching Algorithm
2.2. Closed Loop Detection
2.3. Back-End Optimization
2.3.1. Algorithm Based on Filtering
2.3.2. Algorithm Based on Graph Optimization
2.4. Map Construction
2.5. Dynamic Point Cloud Recognition
3. SLAM Algorithm Scheme Based on Lidar
3.1. SLAM Algorithm Based on Pure Lidar
3.2. Lidar SLAM Algorithm Based on Multi-Sensor Fusion
3.3. Lidar SLAM Algorithm Based on Deep Learning
4. Challenges of the Lidar SLAM Algorithm
5. The Development Trend of Lidar SLAM Algorithm
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, Y.; Lu, Z.; Wang, H.; Chen, L.; Li, Y. A lightweight feature map creation method for intelligent vehicle localization in urban road environments. IEEE Trans. Instrum. Meas. 2022, 71, 8503115. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development status and trend of agricultural robot technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Chen, J.; Song, J.; Guan, Z.; Lian, Y. Measurement of the distance from grain divider to harvesting boundary based on dynamic regions of interest. Int. J. Agric. Biol. Eng. 2021, 14, 226–232. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, X.; Li, Y.; Wang, H.; Zhang, Y.; Fang, X. Multilayer map construction and vision-only multi-scale localization for intelligent vehicles in underground parking. Meas. Sci. Technol. 2022, 33, 115021. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Y.; Liu, Y.; Yuan, C. Vision detection method of car body relative parking position based on close-range images of binocular lens. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 262–269. [Google Scholar]
- Rao, Z.; Cai, Y.; Wang, H.; Chen, L.; Li, Y. A multi-stage model for bird’s eye view prediction based on stereo-matching model and RGB-D semantic segmentation. IET Intell. Transp. Syst. 2023, 18, 2552–2564. [Google Scholar] [CrossRef]
- Li, S.; Sun, X.; Zhang, M. Vehicle recognition technology at urban intersection based on fusion of LiDAR and camera. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 45, 621–628. [Google Scholar]
- Wu, C.; Li, X. Autonomous navigation method of orchard robot based on single laser. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 530–539. [Google Scholar]
- Yang, S.; Dai, Z.; Yang, X.; Tang, L. Bridge state evaluation and numerical simulation analysis based on millimeter-wave radar measurement and control. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 606–613. [Google Scholar]
- Yuan, C.; Zhu, H.; He, Y.; Jie, S.; Chen, L. Autonomous navigation algorithm for intelligent vehicle in weak GPS environment. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 22–28. [Google Scholar]
- Kazerouni, I.A.; Fitzgerald, L.; Dooly, G.; Toal, D. A survey of state-of-the-art on visual SLAM. Expert Syst. Appl. 2022, 205, 117734. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Zhang, T. Camera, LiDAR, and IMU based multi-sensor fusion SLAM: A survey. Tsinghua Sci. Technol. 2023, 29, 415–429. [Google Scholar] [CrossRef]
- Yarovoi, A.; Cho, Y.K. Review of simultaneous localization and mapping (SLAM) for construction robotics applications. Autom. Constr. 2024, 162, 105344. [Google Scholar] [CrossRef]
- Saleem, H.; Malekian, R.; Munir, H. Neural network-based recent research developments in SLAM for autonomous ground vehicles: A review. IEEE Sens. J. 2023, 23, 13829–13858. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, B.; Jiang, C.; Xue, W.; Li, Q. A lidar/visual slam backend with loop closure detection and graph optimization. Remote Sens. 2021, 13, 2720. [Google Scholar] [CrossRef]
- Best, P.J. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Vis. 1992, 14, 239–256. [Google Scholar]
- Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar] [CrossRef]
- Censi, A. An ICP variant using a point-to-line metric. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 19–25. [Google Scholar]
- Low, K.L. Linear Least-Squares Optimization for Point-to-Plane icp Surface Registration; University of North Carolina: Chapel Hill, NC, USA, 2004; Volume 4, pp. 1–3. [Google Scholar]
- Chen, Z.; Xu, Y.; Yuan, S.; Xie, L. iG-LIO: An incremental Gicp-based tightly-coupled LiDAR-inertial odometry. IEEE Robot. Autom. Lett. 2024, 9, 1883–1890. [Google Scholar] [CrossRef]
- Serafin, J.; Grisetti, G. NICP: Dense normal based point cloud registration. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 742–749. [Google Scholar]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 2241–2254. [Google Scholar] [CrossRef]
- Kim, H.; Song, S.; Myung, H. GP-ICP: Ground plane ICP for mobile robots. IEEE Access 2019, 7, 76599–76610. [Google Scholar] [CrossRef]
- Wang, J.; Xu, M.; Foroughi, F.; Dai, D.; Chen, Z. Fastergicp: Acceptance-rejection sampling based 3d lidar odometry. IEEE Robot. Autom. Lett. 2021, 7, 255–262. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. In Robotics: Science and Systems; MIT Press: Cambridge, MA, USA, 2014; Volume 2, pp. 1–9. [Google Scholar]
- Oelsch, M.; Karimi, M.; Steinbach, E. R-LOAM: Improving LiDAR odometry and mapping with point-to-mesh features of a known 3D reference object. IEEE Robot. Autom. Lett. 2021, 6, 2068–2075. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, J.; Chen, Y. E-LOAM: LiDAR odometry and mapping with expanded local structural information. IEEE Trans. Intell. Veh. 2022, 8, 1911–1921. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, Z.; Xiao, X. CMDS-SLAM: Real-time efficient centralized multi-robot dense surfel SLAM. Meas. Sci. Technol. 2024, 35, 116303. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, R.; Li, J.; Yan, C.; Tang, H. A High-Precision LiDAR-Inertial Odometry via Invariant Extended Kalman Filtering and Efficient Surfel Mapping. IEEE Trans. Instrum. Meas. 2024, 73, 8502911. [Google Scholar] [CrossRef]
- Liu, H.; Gong, J.; Zhang, Y. Extraction method of small agricultural AGV navigation baseline based on crop row characteristics. J. Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 296–301. [Google Scholar]
- Fan, Y.; Shi, L.; Su, W.; Yan, H. Lane detection algorithm based on PINet + RESA network. J. Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 373–378. [Google Scholar]
- He, Y.; Yang, J.; Hou, X.; Pang, S.; Chen, J. ICP registration with DCA descriptor for 3D point clouds. Opt. Express 2021, 29, 20423–20439. [Google Scholar] [CrossRef] [PubMed]
- Biber, P.; Straßer, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2743–2748. [Google Scholar]
- Das, A.; Waslander, S.L. Scan registration using segmented region growing NDT. Int. J. Robot. Res. 2014, 33, 1645–1663. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, B.; Wang, J.; Zhang, Y.; Wu, Y.; Chen, Y.; Chen, D. MI-NDT: Multi-scale Iterative Normal Distribution Transform for Registering Large-scale Outdoor Scans. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5705513. [Google Scholar] [CrossRef]
- Gupta, H.; Lilienthal, A.J.; Andreasson, H.; Kurtser, P. NDT-6D for color registration in agri-robotic applications. J. Field Robot. 2023, 40, 1603–1619. [Google Scholar] [CrossRef]
- Chen, S.; Ma, H.; Jiang, C.; Zhou, B.; Xue, W.; Xiao, Z.; Li, Q. NDT-LOAM: A real-time LiDAR odometry and mapping with weighted NDT and LFA. IEEE Sens. J. 2021, 22, 3660–3671. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Liu, Y.; Zhang, X. Point Cloud Registration Algorithm Based on Combination of NDT and ICP. Comput. Eng. Appl. 2020, 56, 88–95. [Google Scholar]
- Yang, J.; Wang, C.; Luo, W.; Zhang, Y.; Chang, B.; Wu, M. Research on point cloud registering method of tunneling roadway based on 3D NDT-ICP algorithm. Sensors 2021, 21, 4448. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chen, Y.; Shen, Q.; Yin, C.; Cai, J. Semantic closed-loop based visual mapping algorithm for automated valet parking. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 2091–2104. [Google Scholar] [CrossRef]
- Tomono, M. Loop detection for 3D LiDAR SLAM using segment-group matching. Adv. Robot. 2020, 34, 1530–1544. [Google Scholar] [CrossRef]
- Meng, Q.; Guo, H.; Zhao, X.; Cao, D.; Chen, H. Loop-closure detection with a multiresolution point cloud histogram mode in lidar odometry and mapping for intelligent vehicles. IEEE/ASME Trans. Mechatron. 2021, 26, 1307–1317. [Google Scholar] [CrossRef]
- Shang, G.; Jiang, K.; Han, J.; Ni, W. An environmental fruit detection method for light weight orchard. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45, 46–52. [Google Scholar]
- Liu, L.; Bai, Y.; Wang, Y.; Sun, Z. Point cloud registration method based on 3DSIFT and BSHOT features. Laser Infrared 2021, 51, 848–852. [Google Scholar]
- Song, S.; Shi, X.; Ma, C.; Mei, X. MF-LIO: Integrating multi-feature LiDAR inertial odometry with FPFH loop closure in SLAM. Meas. Sci. Technol. 2024, 35, 086308. [Google Scholar] [CrossRef]
- Gao, R.; Li, Y.; Li, B.; Li, G. FELC-SLAM: Feature extraction and loop closure optimized lidar SLAM system. Meas. Sci. Technol. 2024, 35, 115112. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, D.; Wu, Y.; Wu, H.; Qi, X.; Huang, D.; Zhong, R. Mercator Descriptor: A Novel Global Descriptor for Loop Closure Detection in LiDAR SLAM. IEEE Sens. J. 2024, 24, 35730–35742. [Google Scholar] [CrossRef]
- Kim, G.; Kim, A. Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4802–4809. [Google Scholar]
- Zhang, X.; Zhang, H.; Qian, C.; Li, B.; Cao, Y. A LiDAR-intensity SLAM and loop closure detection method using an intensity cylindrical-projection shape context descriptor. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103419. [Google Scholar] [CrossRef]
- Li, L.; Kong, X.; Zhao, X.; Huang, T.; Liu, Y. Semantic scan context: A novel semantic-based loop-closure method for LiDAR SLAM. Auton. Robot. 2022, 46, 535–551. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, C. Optimization of automatic navigation control system of unmanned working ship. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45, 417–425. [Google Scholar]
- Zhou, Z.; Wang, D.; Xu, B. A multi-innovation with forgetting factor based EKF-SLAM method for mobile robots. Assem. Autom. 2021, 41, 71–78. [Google Scholar] [CrossRef]
- Bahraini, M. On the efficiency of SLAM using adaptive unscented Kalman filter. Iran. J. Sci. Technol. Trans. Mech. Eng. 2020, 44, 727–735. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.; Zi, Y.; Guo, S.; Cui, G. An ESKF Based SLAM Approach with Millimeter Wave Radar and IMU. In Proceedings of the International Conference on Autonomous Unmanned Systems, Xi’an, China, 23–25 September 2022; pp. 2301–2310. [Google Scholar]
- Zhang, Z.; Liang, J.; Zhang, Z.; Chen, X.; Chen, L.; Wei, W.; Li, H. Cooperative tracking of multiple maneuvering targets based on AIMM-PF. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45, 434–440. [Google Scholar]
- Gao, J.; Sha, J.; Wang, Y.; Wang, X.; Tan, C. A fast and stable GNSS-LiDAR-inertial state estimator from coarse to fine by iterated error-state Kalman filter. Robot. Auton. Syst. 2024, 175, 104675. [Google Scholar] [CrossRef]
- Júnior, G.P.C.; Rezende, A.M.; Miranda, V.R.; Fernandes, R.; Azpúrua, H.; Neto, A.A.; Freitas, G.M. EKF-LOAM: An adaptive fusion of LiDAR SLAM with wheel odometry and inertial data for confined spaces with few geometric features. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1458–1471. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, F. Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter. IEEE Robot. Autom. Lett. 2021, 6, 3317–3324. [Google Scholar] [CrossRef]
- Lang, F.; Ming, R.; Yuan, Z.; Xu, X.; Wu, K.; Yang, X. Adaptive Global Graph Optimization for LiDAR-Inertial SLAM. IEEE Robot. Autom. Lett. 2024, 9, 9868–9875. [Google Scholar] [CrossRef]
- Du, T.; Shi, S.; Zeng, Y.; Yang, J.; Guo, L. An integrated INS/LiDAR odometry/polarized camera pose estimation via factor graph optimization for sparse environment. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Guo, J.; He, B. Improved iSAM based on flexible re-linearization threshold and error learning model for AUV in large scale areas. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7678–7687. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, W.; Su, D.; Xu, H.; Tan, Y. Development of harvesting and handling robot system for hilly citrus orchard. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45, 167–172. [Google Scholar]
- Sousa, R.; Sobreira, H.; Moreira, A. A systematic literature review on long-term localization and mapping for mobile robots. J. Field Robot. 2023, 40, 1245–1322. [Google Scholar] [CrossRef]
- Tsai, T.C.; Peng, C.C. Ground segmentation based point cloud feature extraction for 3D LiDAR SLAM enhancement. Measurement 2024, 236, 114890. [Google Scholar] [CrossRef]
- Ruetz, F.; Hernández, E.; Pfeiffer, M.; Oleynikova, H.; Cox, M.; Lowe, T.; Borges, P. Ovpc mesh: 3d free-space representation for local ground vehicle navigation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8648–8654. [Google Scholar]
- Cai, Y.; Kong, F.; Ren, Y.; Zhu, F.; Lin, J.; Zhang, F. Occupancy grid mapping without ray-casting for high-resolution LiDAR sensors. IEEE Trans. Robot. 2024, 40, 172–192. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Markham, A. Learning semantic segmentation of large-scale point clouds with random sampling. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 8338–8354. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Eoh, G.; Lee, B. Relational FastSLAM: An improved Rao-Blackwellized particle filtering framework using particle swarm characteristics. Robotica 2016, 34, 1282–1296. [Google Scholar] [CrossRef]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar] [CrossRef]
- Konolige, K.; Grisetti, G.; Kümmerle, R.; Burgard, W.; Limketkai, B.; Vincent, R. Efficient sparse pose adjustment for 2D mapping. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 22–29. [Google Scholar]
- Kohlbrecher, S.; Von Stryk, O.; Meyer, J.; Klingauf, U. A flexible and scalable SLAM system with full 3D motion estimation. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; pp. 155–160. [Google Scholar]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar]
- Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Lin, J.; Zhang, F. Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 3126–3131. [Google Scholar]
- Wang, H.; Wang, C.; Xie, L. Intensity-slam: Intensity assisted localization and mapping for large scale environment. IEEE Robot. Autom. Lett. 2021, 6, 1715–1721. [Google Scholar] [CrossRef]
- Li, Z.; Ma, L.; Han, C.; Wang, S. Obstacle detection method of lawn mowing robot based on multi-sensor fusion. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45, 160–166. [Google Scholar]
- Ye, H.; Chen, Y.; Liu, M. Tightly coupled 3d lidar inertial odometry and mapping. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3144–3150. [Google Scholar]
- Pan, H.; Liu, D.; Ren, J.; Huang, T.; Yang, H. LiDAR-IMU Tightly-Coupled SLAM Method Based on IEKF and Loop Closure Detection. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2024, 17, 6986–7001. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 5135–5142. [Google Scholar]
- Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. Fast-lio2: Fast direct lidar-inertial odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar] [CrossRef]
- Li, C.; Jiang, H.; Wang, C.; Ma, S. Estimation method of vehicle position and attitude based on sensor information fusion. J. Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 636–644. [Google Scholar]
- Zhang, J.; Singh, S. Visual-lidar odometry and mapping: Low-drift, robust, and fast. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2174–2181. [Google Scholar]
- Shan, T.; Englot, B.; Ratti, C.; Rus, D. Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5692–5698. [Google Scholar]
- Lin, J.; Zheng, C.; Xu, W.; Zhang, F. R2LIVE: A Robust, Real-Time, LiDAR-Inertial-Visual Tightly-Coupled State Estimator and Mapping. IEEE Robot. Autom. Lett. 2021, 6, 7469–7476. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, F. R3LIVE: A Robust, Real-time, RGB-colored, LiDAR-Inertial-Visual tightly-coupled state Estimation and mapping package. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 10672–10678. [Google Scholar]
- Liu, J.; Hou, G. Application prospect of voice technology in agricultural intelligence. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021, 42, 540–545. [Google Scholar]
- Hong, Z.; Petillot, Y.; Wallace, A.; Wang, S. RadarSLAM: A robust simultaneous localization and mapping system for all weather conditions. Int. J. Robot. Res. 2022, 41, 519–542. [Google Scholar] [CrossRef]
- Su, Y.; Wang, T.; Shao, S.; Yao, C.; Wang, Z. GR-LOAM: LiDAR-based sensor fusion SLAM for ground robots on complex terrain. Robot. Auton. Syst. 2021, 140, 103759. [Google Scholar] [CrossRef]
- Liu, X.; Wen, S.; Jiang, Z.; Tian, W.; Qiu, T.Z.; Othman, K. A multi-sensor fusion with automatic vision-LiDAR calibration based on Factor graph joint optimization for SLAM. IEEE Trans. Instrum. Meas. 2023, 72, 9513809. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, H.; Ma, S.; Li, Y. Intelligent Parking Control Method Based on Multi-Source Sensory Information Fusion and End-to-End Deep Learning. Appl. Sci. 2023, 13, 5003. [Google Scholar] [CrossRef]
- Niu, J.; Qian, K.; Bu, X. Place recognition method based on YOLOv3 and deep features. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021, 42, 733–737. [Google Scholar]
- Sun, L.; Zhang, Z.; Zhong, R.; Chen, D.; Zhang, L.; Zhu, L.; Wang, Y. A weakly supervised graph deep learning framework for point cloud registration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Poiesi, F.; Boscaini, D. Learning general and distinctive 3D local deep descriptors for point cloud registration. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 3979–3985. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Y.; Yang, S.; Lu, H. Global-PBNet: A novel point cloud registration for autonomous driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22312–22319. [Google Scholar] [CrossRef]
- Liu, W.; Hu, J.; Liu, J.; Yue, R.; Zhang, T.; Yao, M.; Li, J. Method for the navigation line recognition of the ridge without crops via machine vision. Int. J. Agric. Biol. Eng. 2024, 17, 230–239. [Google Scholar]
- Wang, W.; Luo, S.; Geng, G.; Liu, J. Pedestrian trajectory and intention estimation under low brightness based on human key points. J. Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 400–406. [Google Scholar]
- Xiang, H.; Zhu, X.; Shi, W.; Fan, W.; Chen, P.; Bao, S. Delightlcd: A deep and lightweight network for loop closure detection in lidar slam. IEEE Sens. J. 2022, 22, 20761–20772. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, D.; Li, Y. LiDAR-SLAM loop closure detection based on multi-scale point cloud feature transformer. Meas. Sci. Technol. 2023, 35, 036305. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Xu, J.; Ai, R.; Gu, W.; Chen, X. Overlaptransformer: An efficient and yaw-angle-invariant transformer network for lidar-based place recognition. IEEE Robot. Autom. Lett. 2022, 7, 6958–6965. [Google Scholar] [CrossRef]
- Li, Y.; Feng, F.; Cai, Y.; Li, Z.; Sotelo, M.A. Localization for intelligent vehicles in underground car parks based on semantic information. IEEE Trans. Intell. Transp. Syst. 2023, 25, 1317–1332. [Google Scholar] [CrossRef]
- Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. Suma++: Efficient lidar-based semantic slam. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4530–4537. [Google Scholar]
- Wen, S.; Wang, T.; Tao, S. Hybrid CNN-LSTM architecture for LiDAR point clouds semantic segmentation. IEEE Robot. Autom. Lett. 2022, 7, 5811–5818. [Google Scholar] [CrossRef]
- Li, W.; Zhan, L.; Min, W.; Zou, Y.; Huang, Z.; Wen, C. Semantic Segmentation of Point Cloud With Novel Neural Radiation Field Convolution. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6501705. [Google Scholar] [CrossRef]
- Luo, H.; Chen, C.; Fang, L.; Khoshelham, K.; Shen, G. MS-RRFSegNet: Multiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8301–8315. [Google Scholar] [CrossRef]
- Fu, X.; He, Z.; Huang, B.; Pei, B.; Yang, F. Slope identification algorithm based on multi-information data fusion filtering. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021, 42, 173–179. [Google Scholar]
- Li, S.; Wang, L.; Li, J.; Tian, B.; Chen, L.; Li, G. 3D LiDAR/IMU calibration based on continuous-time trajectory estimation in structured environments. IEEE Access 2021, 9, 138803–138816. [Google Scholar] [CrossRef]
- Yang, W.; Gong, Z.; Huang, B.; Hong, X. Lidar with velocity: Correcting moving objects point cloud distortion from oscillating scanning lidars by fusion with camera. IEEE Robot. Autom. Lett. 2022, 7, 8241–8248. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, S.; Li, J.; Qi, J. Research on slam localization algorithm for orchard dynamic vision based on YOLOD-SLAM2. Agriculture 2024, 14, 1622. [Google Scholar] [CrossRef]
- Tian, L.; Jin, J.; Zheng, Q. Road scene pedestrian detection based on detection-enhanced YOLOv3-tiny. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45, 441–448. [Google Scholar]
- Gong, J.; Chen, T.; Zhang, Y.; Lan, Y. An improved interframe differential target detection and tracking algorithm based on multi-region information fusion constraints. J. Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 302–309. [Google Scholar]
- Tian, X.; Zhu, Z.; Zhao, J.; Tian, G.; Ye, C. Dl-slot: Tightly-coupled dynamic lidar slam and 3d object tracking based on collaborative graph optimization. IEEE Trans. Intell. Veh. 2023, 9, 1017–1027. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Shi, J.; Zhou, C.; Hu, J. SN-CNN: A Lightweight and Accurate Line Extraction Algorithm for Seedling Navigation in Ridge-Planted Vegetables. Agriculture 2024, 14, 1446. [Google Scholar] [CrossRef]
- Yuan, C.; Song, J.; He, Y.; Jie, S.; Chen, L.; Weng, S. Active collision avoidance algorithm of autonomous vehicle based on pedestrian trajectory prediction. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021, 42, 1–8. [Google Scholar]
- Ren, X.; Duan, N.; Cheng, Y.; Miao, Z. Statistics method of basic seedling based on machine vision. J. Jiangsu Univ. (Nat. Sci. Ed.) 2022, 43, 191–194. [Google Scholar]
- Lv, X.; He, Z.; Yang, Y.; Nie, J.; Dong, Z.; Wang, S.; Gao, M. MSF-SLAM: Multi-Sensor-Fusion-Based Simultaneous Localization and Mapping for Complex Dynamic Environments. IEEE Trans. Intell. Transp. Syst. 2024, 25, 19699–19713. [Google Scholar] [CrossRef]
- Cui, M.; Zhu, Y.; Liu, Y.; Liu, Y.; Chen, G.; Huang, K. Dense depth-map estimation based on fusion of event camera and sparse LiDAR. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Huang, Y.; Shan, T.; Chen, F.; Englot, B. DiSCo-SLAM: Distributed scan context-enabled multi-robot lidar slam with two-stage global-local graph optimization. IEEE Robot. Autom. Lett. 2021, 7, 1150–1157. [Google Scholar] [CrossRef]
- Lajoie, P.Y.; Beltrame, G. Swarm-slam: Sparse decentralized collaborative simultaneous localization and mapping framework for multi-robot systems. IEEE Robot. Autom. Lett. 2023, 9, 475–482. [Google Scholar] [CrossRef]
- Chang, Y.; Ebadi, K.; Denniston, C.E.; Ginting, M.F.; Rosinol, A.; Reinke, A.; Carlone, L. LAMP 2.0: A robust multi-robot SLAM system for operation in challenging large-scale underground environments. IEEE Robot. Autom. Lett. 2022, 7, 9175–9182. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, K.; Wang, H. A multi-scale YOLOv3 detection algorithm of road scene object. J. Jiangsu Univ. (Nat. Sci. Ed.) 2021, 42, 628–633. [Google Scholar]
- Wang, L.; Mou, C. Few shot semantic segmentation algorithm based on meta-learning. J. Jiangsu Univ. (Nat. Sci. Ed.) 2024, 45, 574–580. [Google Scholar]
Sensor Type | Advantages | Disadvantages | |
---|---|---|---|
Camera | Monocular camera | Simple structure and low cost | Depth information cannot be obtained |
Binocular camera | Depth information can be measured | The calibration process is complex and the calculation load is large | |
Depth camera | Depth information and the color of the object can be obtained | High cost, limited by field angle and resolution | |
Lidar | 2D lidar | Fast scanning speed and low cost | The height information of an object cannot be measured |
3D lidar | Three-dimensional structure information such as the distance and shape of an object can be obtained | Affected by the weather, the price is high | |
Inertial measurement unit | The acceleration and attitude angle of the carrier can be measured | Easy to produce cumulative errors | |
Millimeter wave radar | Strong penetration for rain, snow, and haze | Low data accuracy | |
Ultrasonic radar | Easy to install, suitable for close-range accurate detection | Easy to be affected by the environment, it is difficult to detect objects in a non-linear direction | |
GPS | Can provide accurate positioning information, update speed, high precision | GPS signals may be blocked by trees and buildings |
Features | ICP-Type Methods | Feature-Based Methods | NDT-Type Methods |
---|---|---|---|
Iteration | Need | Optional | Need |
Initial value | Need | No need | Need |
Domain of convergence | Small | Large | Medium |
Operating speed | Slow | Fast | Medium |
Robustness | Poor | Medium | Good |
Precision | High, Affected by outliers and noise | Low, Related to feature extraction accuracy | Medium, Related to voxel size |
Scope of application | Wide | Structured scene | Wide |
Filtering Algorithm | Description | Limitation |
---|---|---|
Kalman filter (KF) | Recursive optimal estimation of linear Gaussian system | Only applicable to linear systems |
Extended Kalman filter (EKF) | The first-order Taylor is used to linearize the nonlinear system to solve the nonlinear problem to a certain extent. | When it is far away from the working point, the degree of linearization is not enough, which will have a greater impact. |
Unscented Kalman filter (UKF) | The Sigma sampling points are used to approximate the nonlinear Gaussian transform. | Depending on the number of sampling points, it can deal with nonlinear problems but has high computational complexity. |
Error state Kalman filter (ESKF) | The error state variable is used instead of the original variable for iterative update, which has small dimension and high linearization degree. | It is sensitive to initial estimates and has accumulated errors. |
Particle filter (PF) | Based on the Monte Carlo method, a set of particles is constructed to approximate the target state distribution and update the particles. | There is a particle dissipation problem, and the computational complexity is proportional to the number of particles. |
Algorithm Name | Algorithm Framework | Loop Closure Detection | Merits and Demerits |
---|---|---|---|
Fast-SLAM | Particle filter | No | Pose estimation and mapping are optimized separately; it can deal with nonlinear problems; but there is a problem of particle degradation. |
Gmapping | Particle filter | No | Improve particle degradation; it cannot build large-scale maps. |
Karto | Graph optimization | Yes | The first open-source SLAM based on graph optimization, with loopback detection function; poor real-time performance |
Hector | Gauss-Newton | No | Without a loop closure detection function, it is easy to drift when rotating too fast. |
Cartographer | Graph optimization | Yes | High precision and strong real-time, accelerate loop closure detection; high requirements for computing resources |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; An, J.; He, N.; Li, Y.; Han, Z.; Chen, Z.; Qu, Y. A Review of Simultaneous Localization and Mapping Algorithms Based on Lidar. World Electr. Veh. J. 2025, 16, 56. https://doi.org/10.3390/wevj16020056
Li Y, An J, He N, Li Y, Han Z, Chen Z, Qu Y. A Review of Simultaneous Localization and Mapping Algorithms Based on Lidar. World Electric Vehicle Journal. 2025; 16(2):56. https://doi.org/10.3390/wevj16020056
Chicago/Turabian StyleLi, Yong, Jiexin An, Na He, Yanbo Li, Zhenyu Han, Zishan Chen, and Yaping Qu. 2025. "A Review of Simultaneous Localization and Mapping Algorithms Based on Lidar" World Electric Vehicle Journal 16, no. 2: 56. https://doi.org/10.3390/wevj16020056
APA StyleLi, Y., An, J., He, N., Li, Y., Han, Z., Chen, Z., & Qu, Y. (2025). A Review of Simultaneous Localization and Mapping Algorithms Based on Lidar. World Electric Vehicle Journal, 16(2), 56. https://doi.org/10.3390/wevj16020056