Visible Light Communication and Positioning: Present and Future
1. Introduction
2. The Present Issue
3. Future
Acknowledgments
Conflicts of Interest
References
- Werfli, K.; Chvojka, P.; Ghassemlooy, Z.; Hassan, N.B.; Zvanovec, S.; Burton, A.; Haigh, P.A.; Bhatnagar, M.R. Experimental Demonstration of High-Speed 4 × 4 Imaging Multi-CAP MIMO Visible Light Communications. IEEE J. Lightware Technol. 2018, 36, 1944–1951. [Google Scholar] [CrossRef]
- Bian, R.; Tavakkolnia, I.; Haas, H. 15.73 Gb/s Visible Light Communication With Off-the-Shelf LEDs. IEEE J. Lightware Technol. 2019, 37, 2418–2424. [Google Scholar] [CrossRef] [Green Version]
- Ling, X.; Wang, J.; Liang, X.; Ding, Z.; Zhao, C.; Gao, X. Biased Multi-LED Beamforming for Multicarrier Visible Light Communications. IEEE J. Sel. Areas Commun. 2018, 36, 106–120. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Wang, J.; Wu, Y.; Lin, M.; Cheng, J. Physical-layer Security for Indoor Visible Light Communications: Secrecy Capacity Analysis. IEEE Trans. Commun. 2018, 66, 6423–6436. [Google Scholar] [CrossRef]
- Yin, L.; Haas, H. Coverage Analysis of Multiuser Visible Light Communication Networks. IEEE Trans. Wirel. Commun. 2018, 17, 1630–1643. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.R.; Yang, S.H.; Son, Y.H.; Han, S.K. An indoor visible light communication positioning system using a RF carrier allocation technique. IEEE J. Lightware Technol. 2012, 31, 134–144. [Google Scholar] [CrossRef]
- Jeong, E.M.; Yang, S.H.; Kim, H.S.; Han, S.K. Tilted receiver angle error compensated indoor positioning system based on visible light communication. Electron. Lett. 2013, 49, 890–892. [Google Scholar] [CrossRef]
- Tanaka, T.; Haruyama, S. New position detection method using image sensor and visible light leds. In Proceedings of the IEEE International Conference on Machine Vision, Dubai, UAE, 28–30 December 2009. [Google Scholar]
- Pan, W.; Hou, Y.; Xiao, S. Visible light indoor positioning based on camera with specular reflection cancellation. In Proceedings of the IEEE Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017. [Google Scholar]
- Lin, B.; Ghassemlooy, Z.; Lin, C.; Tang, X.; Li, Y.; Zhang, S. An indoor visible light positioning system based on optical camera communications. IEEE Photonics Technol. Lett. 2017, 29, 579–582. [Google Scholar] [CrossRef]
- Zhang, R.; Zhong, W.D.; Qian, K.; Wu, D. Image sensor based visible light positioning system with improved positioning algorithm. IEEE Access 2017, 5, 6087–6094. [Google Scholar] [CrossRef]
- Guan, W.; Chen, X.; Huang, M.; Liu, Z.; Wu, Y.; Chen, Y. High-speed robust dynamic positioning and tracking method based on visual visible light communication using optical flow detection and bayesian forecast. IEEE Photonics J. 2018, 10, 1–22. [Google Scholar] [CrossRef]
- Lv, H.; Feng, L.; Yang, A.; Guo, P.; Huang, H.; Chen, S. High accuracy VLC indoor positioning system with differential detection. IEEE Photonics J. 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Makino, H.; Nishimori, K.; Wakatsuki, D.; Kobayashi, M.; Komagata, H. High-speed, fish-eye lens equipped camera based indoor positioning using visible light communication. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015. [Google Scholar]
- Li, Y.; Ghassemlooy, Z.; Tang, X.; Lin, B.; Zhang, Y. VLC smartphone camera based indoor positioning system. IEEE Photonics Technol. Lett. 2018, 30, 1171–1174. [Google Scholar] [CrossRef]
- Xu, J.; Gong, C.; Xu, Z. Indoor Visible Light Positioning with Centimeter Accuracy Based on A Commercial Smartphone Camera. IEEE Photonics J. 2018, 10, 1–6. [Google Scholar]
- Zhu, B.; Cheng, J.; Yan, J.; Wang, J.; Wang, Y. VLC positioning using cameras with unknown tilting angles. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017. [Google Scholar]
- Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Commun. Surv. Tutor. 2016, 19, 1327–1346. [Google Scholar] [CrossRef] [Green Version]
- Hassan, N.; Naeem, A.; Pasha, M.; Jadoon, T.; Yuen, C. Indoor positioning using visible led lights: A survey. ACM Comput. Surv. 2015. [Google Scholar] [CrossRef]
- Martínez Ciro, R.; López Giraldo, F.; Betancur Perez, A.; Luna Rivera, M. Characterization of Light-To-Frequency Converter for Visible Light Communication Systems. Electronics 2018, 7, 165. [Google Scholar] [CrossRef]
- Dong, Z.; Shang, T.; Li, Q.; Tang, T. Adaptive Power Allocation Scheme for Mobile NOMA Visible Light Communication System. Electronics 2019, 8, 381. [Google Scholar] [CrossRef]
- Kwon, T.H.; Kim, J.E.; Kim, Y.H.; Kim, K.D. Color-Independent Visible Light Communications Based on Color Space: State of the Art and Potentials. Electronics 2018, 7, 190. [Google Scholar] [CrossRef]
- Martinek, R.; Danys, L.; Jaros, R. Visible Light Communication System Based on Software Defined Radio: Performance Study of Intelligent Transportation and Indoor Applications. Electronics 2019, 8, 433. [Google Scholar] [CrossRef]
- Tran, H.; Ha, C. Fingerprint-Based Indoor Positioning System Using Visible Light Communication—A Novel Method for Multipath Reflections. Electronics 2019, 8, 63. [Google Scholar] [CrossRef]
- Plets, D.; Bastiaens, S.; Martens, L.; Joseph, W. An Analysis of the Impact of LED Tilt on Visible Light Positioning Accuracy. Electronics 2019, 8, 389. [Google Scholar] [CrossRef]
- Luo, Y.; Ren, W.; Huang, Y.; He, Q.; Wu, Q.; Zhou, X.; Mao, Y. Feedforward Control Based on Error and Disturbance Observation for the CCD and Fiber-Optic Gyroscope-Based Mobile Optoelectronic Tracking System. Electronics 2018, 7, 223. [Google Scholar] [CrossRef]
Ref. | Algorithm | Accuracy (cm) | Number of TX LEDs | Receiver Realization | LED Height (cm) | Note |
---|---|---|---|---|---|---|
[6] | RSS | 2.4 | 3 | Single PD | 60 | |
[7] | 1.66 | 3 | 100 | Compensation of Positioning Error | ||
[8] | Finger Print | 5 | 2 | Camera | 167 | Image Sensor Acceleration |
[9] | AOA | 1.53 | 4 | 72 | Error Cancellation | |
[10] | 6.6 | 3 | 180 | |||
[11] | SVD | 6 | 3 | 120 | ||
[12] | Bayesian | 0.86 | 4 | 190 | Industrial Camera, Optical Compensation | |
[13] | Differential | 4 | 3 | 100 | Differential Detection | |
[14] | Image Processing | <10 | 24 | 300 | Fisheye Camera | |
[15] | 4.81 | 4 | 50 | |||
[16] | 1 | 3 | 231 | Shift and Rotation based on a Reference Point | ||
[17] | Differential AOA | <6 | 4 | 113 | Unknown Tilting Angle |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, C. Visible Light Communication and Positioning: Present and Future. Electronics 2019, 8, 788. https://doi.org/10.3390/electronics8070788
Gong C. Visible Light Communication and Positioning: Present and Future. Electronics. 2019; 8(7):788. https://doi.org/10.3390/electronics8070788
Chicago/Turabian StyleGong, Chen. 2019. "Visible Light Communication and Positioning: Present and Future" Electronics 8, no. 7: 788. https://doi.org/10.3390/electronics8070788
APA StyleGong, C. (2019). Visible Light Communication and Positioning: Present and Future. Electronics, 8(7), 788. https://doi.org/10.3390/electronics8070788