Characterization of Light-To-Frequency Converter for Visible Light Communication Systems
<p>Block diagram of a visible light communication (VLC) system. LED—light-emitting-diode; PD—photodiode.</p> "> Figure 2
<p>Experimental setup for the characterization of the LTF converter.</p> "> Figure 3
<p>Experimental setup. Estimated <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>O</mi> </msub> </mrow> </semantics></math> and optical power under various link distance: (<b>a</b>) LTF output frequency versus link distance; (<b>b</b>) optical input power versus link distance.</p> "> Figure 4
<p>Model description: (<b>a</b>) signal-to-noise ratio (SNR) versus LTF output frequency; (<b>b</b>) SNR versus link distance.</p> "> Figure 5
<p>Dark frequency versus link distance.</p> "> Figure 6
<p>Transmitter with on-off keying (OOK) modulator signal and LTF as receiver signal: (<b>a</b>) optical power transmission; (<b>b</b>) LTF output frequency.</p> "> Figure 7
<p>LTF frequency estimation for the different <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>O</mi> <mi>O</mi> <mi>K</mi> </mrow> </msub> </mrow> </semantics></math> value and variation link distance.</p> ">
Abstract
:1. Introduction
2. VLC and LTF System Model
2.1. VLC System Model
- q, is the electron charge ,
- is the PD responsivity,
- is the signal power received,
- is the noise power generated by external light sources,
- is the channel equivalent noise bandwidth,
- is the parasitic current of the amplifier,
- is the bandwidth of the amplifier,
- is the Bandwidth factor, and
- is the signal bit rate.
- is the incident optical power,
- is the irradiance, and
- , is the PD area.
2.2. Light-To-Frequency Model
3. Characterization of the LTF for a VLC System
3.1. Evaluation of the LTF Converter
- constant current signal, , is applied to the transmitter LED.
- Using the Tektronix TDS 3034C oscilloscope, the output frequency and dark frequency are measured for different distance cases between the transmitter LED and the LTF.
- Next, the incident optical power, , is recorded for each case using the optical sensor S120C with aperture diameter 9.5 mm, which is coupled with the THORLABS PM100D instrument. This meter console can deliver measurements of luminous flux and incident irradiance. It is not recommended to use the irradiance measurement as the PM100D instrument considers the area of the sensor S120C rather than the area of the photodiodes integrated into the LTF TCS3200 [21]. Therefore, the useful information of this experiment is the incident optical power flow , considering the Ar of the sensor S120C.
3.2. LTF Response to an Optical Periodic Signal
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications System and Channel Modelling with MATLAB; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Cevik, T.; Yilmaz, S. An overview of visible light communication systems. Int. J. Comput. Netw. Commun. (IJCNC) 2015, 7, 139–150. [Google Scholar] [CrossRef]
- Komine, T.; Nakagawa, M. Fundamental analysis for visible light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Grobe, L.; Paraskevopoulos, A.; Hilt, J.; Schulz, D.; Lassak, F.; Hartlieb, F.; Kottke, C.; Jungnickel, V.; Langer, K. High-speed visible light communication systems. IEEE Commun. Mag. 2013, 51, 60–66. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.T.; Hu, P.F.; Mohapatra, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Umbach, A.; Engel, T.; Bach, H.G.; van Waasen, S.; Droge, E.; Strittmatter, A.; Ebert, W.; Passenberg, W.; Steingruber, R.; Schlaak, W.; et al. Technology of InP-based 1.55-/spl mu/m ultrafast OEMMICs: 40-Gbit/s broad-band and 38/60-GHz narrow-band photoreceivers. IEEE J. Quantum Electron. 1999, 35, 1024–1031. [Google Scholar] [CrossRef]
- IEEE Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, 802.15.7-2011, 2011. Available online: https://standards.ieee.org/findstds/standard/802.15.7-2011.html (accessed on 27 August 2018). [CrossRef]
- Agrawal, G.P. Fiber-Optic Communications Systems; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Martinez, R.; Lopez, F.; Betancur, A. RGB sensor frequency response for a visible light communication system. IEEE Latin Am. Trans. 2016, 14, 4688–4692. [Google Scholar] [CrossRef]
- Barrales, G.; Mocholí, S.; Vázquez, C.; Rodríguez, R.; Barrales, G. A technique for sdapting a Quasi-Digital photodetector to a frequency-to-digital converter. In Proceedings of the 2012 IEEE Ninth Electronics, Robotics and Automotive Mechanics Conference (CERMA 2012), Cuernavaca, Mexico, 19–23 November 2012; pp. 343–348. [Google Scholar]
- Ehsan, A.; Shaari, A.; Rahman, M.; Khan, K. Optical transceiver design for POF portable optical access-card system using light-to-frequency converter. In Proceedings of the 2008 IEEE International Conference on Semiconductor Electronics, Johor Bahru, Malaysia, 25–27 November 2008; pp. 345–349. [Google Scholar]
- Tang, F.; Shu, Z.; Ye, K.; Zhou, X.; Hu, S.; Lin, Z.; Bermak, A. A linear 126-dB dynamic range light-to-frequency converter with dark current suppression upto 125 °C for blood oxygen concentration detection. IEEE Trans. Electron Devices 2016, 63, 3983–3988. [Google Scholar] [CrossRef]
- AMS. Light-To-Frequency—Programmable Light-To-Frequency Converter—TSL230RD. AMS Datasheet v1-00. Retrieved 14 September 2016. Available online: https://www.mouser.com/ds/2/588/TSL230RDTSL230ARDTSL230BRD-P-519226.pdf (accessed on 14 September 2016).
- TSL230RD, TSL230ARD, TSL230BRS Programable Light-To-Frequency Converters. 2016. Available online: http://ams.com/eng/Products/Light-Sensors/Light-to-Frequency (accessed on 17 May 2016).
- TCS3200, TCS3210, Programmable Color Light-To-Frequency Converter. 2009. Available online: http://ams.com/eng/Products/Light-Sensors/Color-Sensors/TCS3200 (accessed on 10 July 2015).
- Yurish, S. Intelligent opto sensors’ interfacing based on universal. frequency-to-digital converter. Sens. Transducers Mag. 2005, 56, 326–334. [Google Scholar]
- Monteiro, E. Design and Implementation of Color-Shift Keying for Visible Light Communications. Master’s Thesis, McMaster University, Hamilton, ON, Canada, 2013. [Google Scholar]
- Bhalerao, M.; Sonavane, S.; Kumar, V. A survey of wireless communication using visible light. Int. J. Adv. Eng. Technol. 2013, 5, 188–197. [Google Scholar]
- Li, H.; Chen, X.; Huang, B.; Tang, D.; Chen, H. High bandwidth visible light communications based on a post-equalization circuit. IEEE Photonics Technol. Lett. 2014, 26, 119–122. [Google Scholar] [CrossRef]
- Zeng, L.; O’Brien, D.; Le-Minh, H.; Lee, K.; Jung, D.; Oh, Y. Improvement of date rate by using equalization in an indoor visible light communication system. In Proceedings of the 2008 4th IEEE International Conference on Circuits and Systems for Communications, Shanghai, China, 26–28 May 2008; pp. 678–682. [Google Scholar]
- THORLABS. PM100D Compact Power and Energy Meter Console. 2016. Available online: https://www.thorlabs.com/thorproduct.cfm?partnumber=PM100D (accessed on 28 September 2016).
- Murata, N.; Kozawa, Y.; Umeda, Y. Digital color shift keying with multicolor LED array. IEEE Photonics J. 2016, 8, 1–13. [Google Scholar] [CrossRef]
- Luna-Rivera, J.; Suarez-Rodriguez, C.; Guerra, V.; Perez-Jimenez, R.; Rabadan-Borges, J.; Rufo-Torres, J. Low-complexity colour-shift keying-based visible light communications system. IET Optoelectron. 2015, 9, 191–198. [Google Scholar] [CrossRef]
- Assabir, A.; Elmhamdi, J.; Hammouch, A.; Akherraz, A. Application of Li-Fi technology in the transmission of the sound at the base of the PWM. In Proceedings of the 2016 International Conference on Electrical and Information Technologies (ICEIT), Tangiers, Morocco, 4–7 May 2016; pp. 260–265. [Google Scholar]
- Pradana, A.; Ahmadi, N.; Adionos, T. Design and implementation of visible light communication system using pulse width modulation. In Proceedings of the 2015 International Conference on Electrical Engineering and Informatics (ICEEI), Denpasar, Indonesia, 10–11 August 2015; pp. 25–30. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez Ciro, R.A.; López Giraldo, F.E.; Betancur Perez, A.F.; Luna Rivera, M. Characterization of Light-To-Frequency Converter for Visible Light Communication Systems. Electronics 2018, 7, 165. https://doi.org/10.3390/electronics7090165
Martínez Ciro RA, López Giraldo FE, Betancur Perez AF, Luna Rivera M. Characterization of Light-To-Frequency Converter for Visible Light Communication Systems. Electronics. 2018; 7(9):165. https://doi.org/10.3390/electronics7090165
Chicago/Turabian StyleMartínez Ciro, Roger Alexander, Francisco Eugenio López Giraldo, Andrés Felipe Betancur Perez, and Martín Luna Rivera. 2018. "Characterization of Light-To-Frequency Converter for Visible Light Communication Systems" Electronics 7, no. 9: 165. https://doi.org/10.3390/electronics7090165
APA StyleMartínez Ciro, R. A., López Giraldo, F. E., Betancur Perez, A. F., & Luna Rivera, M. (2018). Characterization of Light-To-Frequency Converter for Visible Light Communication Systems. Electronics, 7(9), 165. https://doi.org/10.3390/electronics7090165