An LDPC-RS Concatenation and Decoding Scheme to Lower the Error Floor for FTN Signaling
<p>FTN signaling with turbo equalization.</p> "> Figure 2
<p>BER vs. SNR of 5G LDPC (7680, 3840) code with three turbo iterations and 4-BCJR detection.</p> "> Figure 3
<p>Proposed LDPC-RS concatenation code. With concatenation and shortening, the code rate is 0.42.</p> "> Figure 4
<p>One example of BP decoding in a (6, 3) trapping set. Three variable nodes all have incorrect negative values, meanwhile relevant check nodes are weak and cannot provide error correction during BP iterations.</p> "> Figure 5
<p>Value distribution of <math display="inline"><semantics> <msubsup> <mi>L</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>′</mo> </msubsup> </semantics></math>.</p> "> Figure 6
<p>Decoding of a (6, 3) trapping set without/with perturbation.</p> "> Figure 7
<p>Conventional serial RS (340, 320) encoder.</p> "> Figure 8
<p>Structure of a 4-parallel RS (340, 320) encoder.</p> "> Figure 9
<p>4-BCJR, BP max. itr. = 20, turbo eq. itr. = 3.</p> "> Figure 10
<p>4-BCJR, BP max. itr. = 50, turbo eq. itr. = 3.</p> ">
Abstract
:1. Introduction
2. FTN Signaling with Turbo Equalization
2.1. FTN Signaling with OBM
2.2. BCJR Detection and Turbo Equalization
2.3. LDPC and RS Code
Algorithm 1 BP Decoding of LDPC Code. |
|
2.4. Experiment with 5G LDPC Code and Turbo Equalization in FTN Signaling
3. LDPC-RS Concatenation Code
3.1. Occurrence of an Error Floor in FTN Signaling
3.2. Structure of the Proposed LDPC-RS Concatenation Code
3.3. Perturbation BP Decoder
3.4. RS Parallel Encoder
Algorithm 2 Parallel Encoding Coefficient Calculation. |
|
4. Performance Evaluation, Results, and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Parallel RS Encoding Coefficient Calculation
- Initialize the serial encoder, reset all registers to zero. Input . Let the encoder run for 4 clocks. Store all registers’ values and .
- Initialize the serial encoder, reset all registers to zero. Input . Let the encoder run for 4 clocks. Store all registers’ values and .
- Initialize the serial encoder, reset all registers to zero. Input . Let the encoder run for 4 clocks. Store all registers’ values and .
- Initialize the serial encoder, reset all registers to zero. Input . Let the encoder run for 4 clocks. Store all registers’ values and .
References
- Anderson, J.B.; Rusek, F.; Öwall, V. Faster-Than-Nyquist Signaling. Proc. IEEE 2013, 101, 1817–1830. [Google Scholar] [CrossRef]
- Prlja, A.; Anderson, J.B. Reduced-Complexity Receivers for Strongly Narrowband Intersymbol Interference Introduced by Faster-than-Nyquist Signaling. IEEE Trans. Commun. 2012, 60, 2591–2601. [Google Scholar] [CrossRef]
- Che, D.; Chen, X. Higher-Order Modulation vs Faster-Than-Nyquist PAM-4 for Datacenter IM-DD Optics: An AIR Comparison Under Practical Bandwidth Limits. J. Light. Technol. 2022, 40, 3347–3357. [Google Scholar] [CrossRef]
- Gallager, R. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 21–28. [Google Scholar] [CrossRef]
- Chung, S.Y.; Forney, G.; Richardson, T.; Urbanke, R. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 2001, 5, 58–60. [Google Scholar] [CrossRef]
- Chen, W.; Wang, T.; Han, C.; Yang, J. Erasure-correction-enhanced iterative decoding for LDPC-RS product codes. China Commun. 2021, 18, 49–60. [Google Scholar] [CrossRef]
- Chen, W.; Yin, L.; Lu, J. Minimum distance lower bounds for girth-constrained RA code ensembles. IEEE Trans. Commun. 2010, 58, 1623–1626. [Google Scholar] [CrossRef]
- Zhang, Z.; Dolecek, L.; Nikolic, B.; Anantharam, V.; Wainwright, M. Design of LDPC decoders for improved low error rate performance: Quantization and algorithm choices. IEEE Trans. Commun. 2009, 57, 3258–3268. [Google Scholar] [CrossRef]
- Kyung, G.B. Finding the Exhaustive List of Small Fully Absorbing Sets and Designing the Corresponding Low Error-Floor Decoder. IEEE Trans. Commun. 2012, 60, 1487–1498. [Google Scholar] [CrossRef]
- Dolecek, L.; Lee, P.; Zhang, Z.; Anantharam, V.; Nikolic, B.; Wainwright, M. Predicting error floors of structured LDPC codes: Deterministic bounds and estimates. IEEE J. Sel. Areas Commun. 2009, 27, 908–917. [Google Scholar]
- Qiu, J.; Chen, L.; Liu, S. A Novel Concatenated Coding Scheme: RS-SC-LDPC Codes. IEEE Commun. Lett. 2020, 24, 2092–2095. [Google Scholar] [CrossRef]
- Urard, P.; Paumier, L.; Georgelin, P.; Michel, T.; Lebars, V.; Yeo, E.; Gupta, B. A 135Mbps DVB-S2 compliant codec based on 64800-bit LDPC and BCH codes (ISSCC Paper 24.3). In Proceedings of the 42nd Design Automation Conference, Anaheim, CA, USA, 13–17 June 2005; pp. 547–548. [Google Scholar]
- Rasheed, O.A.; Ivanis, P.; Vasic, B. Fault-Tolerant Probabilistic Gradient-Descent Bit Flipping Decoder. IEEE Commun. Lett. 2014, 18, 1487–1490. [Google Scholar] [CrossRef]
- Vasić, B.; Ivanis, P.; Brkic, S.; Ravanmehr, V. Fault-resilient decoders and memories made of unreliable components. In Proceedings of the 2015 Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 1–6 February 2015; pp. 136–142. [Google Scholar]
- Ivanis, P.; Al Rasheed, O.; Vasić, B. MUDRI: A fault-tolerant decoding algorithm. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 4291–4296. [Google Scholar]
- Ivaniš, P.; Vasić, B.; Declercq, D. Performance evaluation of faulty iterative decoders using absorbing Markov chains. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1566–1570. [Google Scholar]
- Ivanis, P.; Brkic, S.; Vasić, B. Stochastic resonance in iterative decoding: Message passing and gradient descent bit flipping. In Proceedings of the 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), Nis, Serbia, 18–20 October 2017; pp. 300–307. [Google Scholar]
- Reed, I.S.; Solomon, G. Polynomial Codes Over Certain Finite Fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [Google Scholar] [CrossRef]
- Mazo, J.E. Faster-Than-Nyquist Signaling. Bell Syst. Tech. J. 1975, 54, 1451–1462. [Google Scholar] [CrossRef]
- Wu, R.; Wang, L.; Yuan, T.; Wang, M. Improved MS LDPC Decoder Based on Jacobian Logarithm. In Proceedings of the 2019 7th International Conference on Information, Communication and Networks (ICICN), Macao, China, 24–26 April 2019; pp. 53–56. [Google Scholar]
- Chen, J.; Fossorier, M.P.C. Near optimum universal belief propagation based decoding of low-density parity check codes. Commun. IEEE Trans. 2002, 50, 406–414. [Google Scholar] [CrossRef]
- Ding, J.; Shi, H.; Luo, Z. Joint SB/NMS and Genetic Optimization for High Performance LDPC Decoding. In Proceedings of the 2022 International Symposium on Networks, Computers and Communications (ISNCC), Shenzhen, China, 19–22 July 2022; pp. 1–6. [Google Scholar]
- Shi, H.; Zhong, M.; Luo, Z.; Li, C. Low Complexity Neural Network-Aided NMS LDPC Decoder. In Proceedings of the 2021 Computing, Communications and IoT Applications (ComComAp), Shenzhen, China, 24–26 April 2019; pp. 227–231. [Google Scholar]
- Richardson, T.; Kudekar, S. Design of Low-Density Parity Check Codes for 5G New Radio. IEEE Commun. Mag. 2018, 56, 28–34. [Google Scholar] [CrossRef]
- Ivaniš, P.; Vasić, B. Error Errore Eicitur: A Stochastic Resonance Paradigm for Reliable Storage of Information on Unreliable Media. IEEE Trans. Commun. 2016, 64, 3596–3608. [Google Scholar] [CrossRef]
- Tang, Y.J.; Zhang, X. Low-Complexity Resource-Shareable Parallel Generalized Integrated Interleaved Encoder. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 694–706. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Luo, Z.; Li, C. An LDPC-RS Concatenation and Decoding Scheme to Lower the Error Floor for FTN Signaling. Electronics 2024, 13, 1588. https://doi.org/10.3390/electronics13081588
Shi H, Luo Z, Li C. An LDPC-RS Concatenation and Decoding Scheme to Lower the Error Floor for FTN Signaling. Electronics. 2024; 13(8):1588. https://doi.org/10.3390/electronics13081588
Chicago/Turabian StyleShi, Honghao, Zhiyong Luo, and Congduan Li. 2024. "An LDPC-RS Concatenation and Decoding Scheme to Lower the Error Floor for FTN Signaling" Electronics 13, no. 8: 1588. https://doi.org/10.3390/electronics13081588
APA StyleShi, H., Luo, Z., & Li, C. (2024). An LDPC-RS Concatenation and Decoding Scheme to Lower the Error Floor for FTN Signaling. Electronics, 13(8), 1588. https://doi.org/10.3390/electronics13081588