An Integrated Navigation Algorithm for Underwater Vehicles Improved by a Variational Bayesian and Minimum Mixed Error Entropy Unscented Kalman Filter
<p>Underwater experimental platform.</p> "> Figure 2
<p>AUV navigation coordinate system.</p> "> Figure 3
<p>Experimental data for Simulation Case 1: (<b>a</b>) experimental trajectory diagram; (<b>b</b>) algorithmic pushover error map; (<b>c</b>) endpoint RMSE of 30 Monte Carlo simulations; (<b>d</b>) ARMSE of 30 Monte Carlo simulations.</p> "> Figure 4
<p>Experimental data for Simulation Case 2: (<b>a</b>) experimental trajectory diagram; (<b>b</b>) algorithmic pushover error map; (<b>c</b>) endpoint RMSE of 30 Monte Carlo simulations; (<b>d</b>) ARMSE of 30 Monte Carlo simulations.</p> "> Figure 5
<p>Experimental data for Simulation Case 3: (<b>a</b>) experimental trajectory diagram; (<b>b</b>) algorithmic pushover error map; (<b>c</b>) endpoint RMSE of 30 Monte Carlo simulations; (<b>d</b>) ARMSE of 30 Monte Carlo simulations.</p> "> Figure 5 Cont.
<p>Experimental data for Simulation Case 3: (<b>a</b>) experimental trajectory diagram; (<b>b</b>) algorithmic pushover error map; (<b>c</b>) endpoint RMSE of 30 Monte Carlo simulations; (<b>d</b>) ARMSE of 30 Monte Carlo simulations.</p> "> Figure 6
<p>PX-260 AUV work process.</p> "> Figure 7
<p>Experimental data from Sea Trial Data 1: (<b>a</b>) experimental trajectory diagram; (<b>b</b>) algorithmic pushover error map; (<b>c</b>) endpoint RMSE of 30 Monte Carlo simulations; (<b>d</b>) ARMSE of 30 Monte Carlo simulations.</p> "> Figure 8
<p>Experimental data from Sea Trial Data 2: (<b>a</b>) experimental trajectory diagram; (<b>b</b>) algorithmic pushover error map; (<b>c</b>) endpoint RMSE of 30 Monte Carlo simulations; (<b>d</b>) ARMSE of 30 Monte Carlo simulations.</p> ">
Abstract
:1. Introduction
2. Underwater Navigation Model
3. The Variational Bayesian Method and Mixed-Entropy-Based MEE-UKF Algorithm
3.1. Minimum Error Entropy Criterion
3.2. VB-MMEE-UKF Algorithmic Framework
3.2.1. Condition Prediction
3.2.2. Measurement Updates
3.2.3. Status Update
Algorithm 1 VB-MMEE-UKF | |
1: | ; |
2: | by Equation (15); |
3: | by Equations (25) and (26); |
4: | = 1, 2, …, N |
5: | by Equation (24); |
6: | by Equation (17); |
7: | ; |
8: | by Equation (30); |
9: | by Equations (32) and (33); |
10: | = 1, 2, …, G |
11: | by Equation (34); |
12: | by Equations (38) and (39); |
13: | ; |
14: | by Equations (46)–(49) |
15: | by Equation (51); |
16: | by Equation (50) through fixed-point iteration; |
17: | |
18: | |
19: | end if |
20: | end for |
21: | by Equation (52); |
22: | end for |
23: | Repeat steps 2~22 until the navigation task is complete. |
4. Experimental Results and Simulation Analysis
4.1. Simulation Setup and Data Analysis
4.2. Analysis of Data Obtained from Maritime Field Trials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, S.; Liu, J.; Guo, J.; Wang, J.; Xie, Y.; Cui, J.H. Neural-network-based AUV navigation for fast-changing environments. IEEE Internet Things J. 2020, 7, 9773–9783. [Google Scholar] [CrossRef]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. Sensor-driven online coverage planning for autonomous underwater vehicles. IEEE/ASME Trans. Mechatron. 2012, 18, 1827–1838. [Google Scholar] [CrossRef]
- Leonard, J.J.; Bahr, A. Autonomous underwater vehicle navigation. In Springer Handbook of Ocean Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 341–358. [Google Scholar]
- Han, J.; Ma, C.; Zou, D.; Jiao, S.; Chen, C.; Wang, J. Distributed Multi-Robot SLAM Algorithm with Lightweight Communication and Optimization. Electronics 2024, 13, 4129. [Google Scholar] [CrossRef]
- Zhang, X.; He, B.; Gao, S.; Mu, P.; Xu, J.; Zhai, N. Multiple model AUV navigation methodology with adaptivity and robustness. Ocean Eng. 2022, 254, 111258. [Google Scholar] [CrossRef]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV navigation and localization: A review. IEEE J. Ocean. Eng. 2013, 39, 131–149. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J.A. A new adaptive extended Kalman filter for cooperative localization. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 353–368. [Google Scholar] [CrossRef]
- Sabet, M.T.; Daniali, H.M.; Fathi, A.; Alizadeh, E. A low-cost dead reckoning navigation system for an AUV using a robust AHRS: Design and experimental analysis. IEEE J. Ocean. Eng. 2017, 43, 927–939. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y. A new process uncertainty robust Student’s t-based Kalman filter for SINS/GPS integration. IEEE Access 2017, 5, 14391–14404. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J. Innovation Adaptive UKF Train Location Method Based on Kinematic Constraints. Electronics 2024, 13, 3958. [Google Scholar] [CrossRef]
- Uhlmann, J.K. Algorithms for multiple-target tracking. Am. Sci. 1992, 80, 128–141. [Google Scholar]
- Lu, J.; Zhang, T.; Hu, F.; Hao, Q. Preprocessing design in pyroelectric infrared sensor-based human-tracking system: On sensor selection and calibration. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 263–275. [Google Scholar] [CrossRef]
- Chen, S.Y. Kalman filter for robot vision: A survey. IEEE Trans. Ind. Electron. 2011, 59, 4409–4420. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W.A.; Yu, L. A bank of decentralized extended information filters for target tracking in event-triggered WSNs. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50, 3281–3289. [Google Scholar] [CrossRef]
- Bucci, A.; Franchi, M.; Ridolfi, A.; Secciani, N.; Allotta, B. Evaluation of UKF-based fusion strategies for autonomous underwater vehicles multisensor navigation. IEEE J. Ocean. Eng. 2022, 48, 1–26. [Google Scholar] [CrossRef]
- Cantelobre, T.; Chahbazian, C.; Croux, A.; Bonnabel, S. A real-time unscented Kalman filter on manifolds for challenging AUV navigation. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25 October 2020; pp. 2309–2316. [Google Scholar]
- Choi, M.; Seo, M.; Kim, H.S.; Seo, T. UKF-based sensor fusion method for position estimation of a 2-DOF rope driven robot. IEEE Access 2021, 9, 12301–12308. [Google Scholar] [CrossRef]
- Filipovic, V.; Nedic, N.; Stojanovic, V. Robuste Identifikation von pneumatischen Servo-Aktuatoren in der realen Situationen. Forsch. Ingenieurwes. 2011, 75, 183–196. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Y.; Gu, Y.; Cao, J.; Chen, B. Fixed-point minimum error entropy with fiducial points. IEEE Trans. Signal Process. 2020, 68, 3824–3833. [Google Scholar] [CrossRef]
- Chen, B.; Dang, L.; Gu, Y.; Zheng, N.; Príncipe, J.C. Minimum error entropy Kalman filter. IEEE Trans. Syst. Man Cybern. 2019, 51, 5819–5829. [Google Scholar] [CrossRef]
- Wang, G.; Xue, R.; Wang, J. A distributed maximum correntropy Kalman filter. Signal Process. 2019, 160, 247–251. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.; Lyu, H.; Jiang, Z.; Ren, P.; Chen, B. Linear and nonlinear regression-based maximum correntropy extended Kalman filtering. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3093–3102. [Google Scholar] [CrossRef]
- Li, P.; Sun, X.; Chen, Z.; Zhang, X.; Yan, T.; He, B. A Robust and Adaptive AUV Integrated Navigation Algorithm Based on a Maximum Correntropy Criterion. Electronics 2024, 13, 2426. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
- Chen, B.; Príncipe, J.C. Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Process. Lett. 2012, 19, 491–494. [Google Scholar] [CrossRef]
- Erdogmus, D.; Principe, J.C. An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Trans. Signal Process. 2002, 50, 1780–1786. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Liu, X.; Yuan, Z.; Principe, J.C. Convergence of a fixed-point minimum error entropy algorithm. Entropy 2015, 17, 5549–5560. [Google Scholar] [CrossRef]
- Erdogmus, D.; Principe, J.C. Generalized information potential criterion for adaptive system training. IEEE Trans. Neural Netw. 2002, 13, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.M.; Felgueiras, C.S.; Alexandre, L.A.; de Sá, J.M. Error entropy in classification problems: A univariate data analysis. Neural Comput. 2006, 18, 2036–2061. [Google Scholar] [CrossRef]
- Santamaría, I.; Erdogmus, D.; Principe, J.C. Entropy minimization for supervised digital communications channel equalization. IEEE Trans. Signal Process. 2002, 50, 1184–1192. [Google Scholar] [CrossRef]
- Wang, G.; Chen, B.; Yang, X.; Peng, B.; Feng, Z. Numerically stable minimum error entropy Kalman filter. Signal Process. 2021, 181, 107914. [Google Scholar] [CrossRef]
- Dang, L.; Chen, B.; Wang, S.; Ma, W.; Ren, P. Robust power system state estimation with minimum error entropy unscented Kalman filter. IEEE Trans. Instrum. Meas. 2020, 69, 8797–8808. [Google Scholar] [CrossRef]
- Li, M.; Jing, Z.; Leung, H. Robust minimum error entropy based cubature information filter with non-Gaussian measurement noise. IEEE Signal Process. Lett. 2021, 28, 349–353. [Google Scholar] [CrossRef]
- He, J.; Wang, G.; Peng, B.; Sun, Q.; Feng, Z.; Zhang, K. Mixture quantized error entropy for recursive least squares adaptive filtering. J. Frankl. Inst. 2022, 359, 1362–1381. [Google Scholar] [CrossRef]
- Sahoo, P.; Wilkins, C.; Yeager, J. Threshold selection using Renyi’s entropy. Pattern Recognit. 1997, 30, 71–84. [Google Scholar] [CrossRef]
- Kwak, N.; Choi, C.-H. Input feature selection by mutual information based on Parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 1667–1671. [Google Scholar] [CrossRef]
- Zhao, J.; Mili, L. A robust generalized-maximum likelihood unscented Kalman filter for power system dynamic state estimation. IEEE J. Sel. Top. Signal Process. 2018, 12, 578–592. [Google Scholar] [CrossRef]
Dataset | Index | UKF | IMMCUKF | MEE-UKF | VB-MEE-UKF | VB-MMEE-UKF |
---|---|---|---|---|---|---|
Simulation Case 1 | ARMSE (m) | 39.3204 | 19.8785 | 22.3001 | 12.8648 | 12.4200 |
Accuracy (%) | 4.8843 | 2.7633 | 3.9110 | 2.4968 | 2.1740 | |
Maximum Computation Time (ms/step) | 0.35600 | 0.82750 | 1.37840 | 2.92680 | 3.03880 | |
Simulation Case 2 | ARMSE (m) | 38.9074 | 18.1321 | 20.6798 | 16.0513 | 15.0144 |
Accuracy (%) | 5.1228 | 2.7919 | 3.4021 | 2.5431 | 2.2656 | |
Maximum Computation Time (ms/step) | 3.51070 | 2.40890 | 4.10970 | 4.40250 | 5.16800 | |
Simulation Case 3 | ARMSE (m) | 47.5603 | 24.0384 | 24.7017 | 12.9302 | 11.0266 |
Accuracy (%) | 6.1058 | 3.4090 | 4.1856 | 2.3592 | 1.8028 | |
Maximum Computation Time (ms/step) | 8.27660 | 9.46210 | 9.13080 | 11.61540 | 12.85530 |
Sensor | Performances | Output Frequency |
---|---|---|
INS | Fiber optic gyro zero-bias stability at full temperature ≤ 0.2°/h Accelerometer full temperature bias stability ≤ 5 mg | 50 Hz |
DVL | 20 Hz | |
GPS | 10 Hz | |
PS | 10 Hz |
Dataset | UKF | IMMCUKF | MEE-UKF | VB-MEE-UKF | VB-MMEE-UKF | |
---|---|---|---|---|---|---|
Sea Trial Data 1 | ARMSE (m) | 53.2629 | 38.0862 | 43.7214 | 32.4313 | 28.4781 |
Accuracy (%) | 4.0884 | 2.8286 | 3.4016 | 2.5275 | 2.2767 | |
Maximum Computation Time (ms/step) | 0.20730 | 0.61820 | 0.61160 | 1.62420 | 1.79840 | |
Sea Trial Data 2 | ARMSE (m) | 38.4857 | 26.1115 | 31.0729 | 25.9684 | 22.6687 |
Accuracy (%) | 3.5189 | 2.2217 | 2.7840 | 2.0104 | 1.7536 | |
Maximum Computation Time (ms/step) | 0.75770 | 0.83040 | 0.88520 | 0.90030 | 0.88910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, B.; Sun, X.; Chen, P.; Wang, S.; Song, S.; He, B. An Integrated Navigation Algorithm for Underwater Vehicles Improved by a Variational Bayesian and Minimum Mixed Error Entropy Unscented Kalman Filter. Electronics 2024, 13, 4727. https://doi.org/10.3390/electronics13234727
Ji B, Sun X, Chen P, Wang S, Song S, He B. An Integrated Navigation Algorithm for Underwater Vehicles Improved by a Variational Bayesian and Minimum Mixed Error Entropy Unscented Kalman Filter. Electronics. 2024; 13(23):4727. https://doi.org/10.3390/electronics13234727
Chicago/Turabian StyleJi, Binghui, Xiaona Sun, Peimiao Chen, Siyu Wang, Shangfa Song, and Bo He. 2024. "An Integrated Navigation Algorithm for Underwater Vehicles Improved by a Variational Bayesian and Minimum Mixed Error Entropy Unscented Kalman Filter" Electronics 13, no. 23: 4727. https://doi.org/10.3390/electronics13234727
APA StyleJi, B., Sun, X., Chen, P., Wang, S., Song, S., & He, B. (2024). An Integrated Navigation Algorithm for Underwater Vehicles Improved by a Variational Bayesian and Minimum Mixed Error Entropy Unscented Kalman Filter. Electronics, 13(23), 4727. https://doi.org/10.3390/electronics13234727