A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals
<p>Artifacts in EEG: (<b>a</b>) eye movement, (<b>b</b>) eye blinks, and (<b>c</b>) muscle tension [<a href="#B18-electronics-13-04576" class="html-bibr">18</a>].</p> "> Figure 2
<p>Framework for simultaneous EOG-EMG artifact removal.</p> "> Figure 3
<p>Noisy EEG signal synthesis.</p> "> Figure 4
<p>Example segment of simultaneous EOG- and EMG-corrupted EEG signal and ground-truth EEG signal.</p> "> Figure 5
<p>Network structure for the denoising model.</p> "> Figure 6
<p>EEG signal dimensions in each layer.</p> "> Figure 7
<p>Training and validation loss curves for the proposed model.</p> "> Figure 8
<p>Training and validation loss curves for Complex CNN and Simple CNN.</p> "> Figure 9
<p>Power ratios for various frequency bands for denoised, EOG-EMG-contaminated, and clean EEG signals.</p> "> Figure 10
<p>Temporal representation of denoised, EOG-EMG-contaminated, and clean EEG signals.</p> "> Figure 11
<p>Spectral representation of denoised, EOG-EMG-contaminated, and clean EEG signals.</p> "> Figure 12
<p>A comparison of estimated performance metrics (<math display="inline"><semantics> <mrow> <mi>C</mi> <mi>C</mi> <mo>,</mo> <mo> </mo> <mi>R</mi> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> </mrow> </semantics></math> in time and frequency domains) across different <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </semantics></math> values.</p> "> Figure 13
<p>Comparison of performance between the proposed model and the existing models.</p> ">
Abstract
:1. Introduction
2. Literature Review
2.1. Conventional Methods for Artifact Removal
2.2. Deep Learning-Based Methods for Artifact Removal
3. Methodology
3.1. Problem Definition
3.2. Dataset
3.3. Generation of Contaminated EEG Signals
3.4. Network Structure
3.5. Training and Validation
3.6. Evaluation
4. Results and Discussion
4.1. Training and Validation Losses
4.2. Benchmark Networks
4.3. Temporal and Spectral Evaluation of the Proposed Model
4.4. Evaluation on Different Signal-to-Noise Ratios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahman, M.M.; Jahangir, M.Z.B.; Rahman, A.; Akter, M.; Nasim, M.D.A.A.; Gupta, K.D.; George, R. Breast Cancer Detection and Localizing the Mass Area Using Deep Learning. Big Data Cogn. Comput. 2024, 8, 80. [Google Scholar] [CrossRef]
- Volinsky-Fremond, S.; Horeweg, N.; Andani, S.; Barkey Wolf, J.; Lafarge, M.W.; de Kroon, C.D.; Ørtoft, G.; Høgdall, E.; Dijkstra, J.; Jobsen, J.J. Prediction of recurrence risk in endometrial cancer with multimodal deep learning. Nat. Med. 2024, 30, 1962–1973. [Google Scholar] [CrossRef] [PubMed]
- Khandakar, S. Unveiling Early Detection and Prevention of Cancer: Machine Learning And Deep Learning Approaches. Educ. Adm. Theory Pract. 2024, 30, 14614–14628. [Google Scholar] [CrossRef]
- Niehues, J.M.; Quirke, P.; West, N.P.; Grabsch, H.I.; van Treeck, M.; Schirris, Y.; Veldhuizen, G.P.; Hutchins, G.G.A.; Richman, S.D.; Foersch, S. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study. Cell Rep. Med. 2023, 4, 100980. [Google Scholar] [CrossRef]
- Subramani, S.; Varshney, N.; Vijay Anand, M.; Soudagar, M.E.M.; Al-Keridis, L.A.; Upadhyay, T.K.; Alshammari, N.; Saeed, M.; Subramanian, K.; Anbarasu, K.; et al. Cardiovascular Diseases Prediction by Machine Learning Incorporation with Deep Learning. Front. Med. 2023, 10. [Google Scholar] [CrossRef]
- Ma, Z.; Hua, H.; You, C.; Ma, Z.; Guo, W.; Yang, X.; Qiu, S.; Zhao, N.; Zhang, Y.; Ho, D.; et al. FlexiPulse: A Machine-Learning-Enabled Flexible Pulse Sensor for Cardiovascular Disease Diagnostics. Cell Rep. Phys. Sci. 2023, 4, 101690. [Google Scholar] [CrossRef]
- Illakiya, T.; Karthik, R. Automatic detection of Alzheimer’s disease using deep learning models and neuro-imaging: Current trends and future perspectives. Neuroinformatics 2023, 21, 339–364. [Google Scholar]
- Dutta, A.K.; Raparthi, M.; Alsaadi, M.; Bhatt, M.W.; Dodda, S.B.; Sandhu, M.; Patni, J.C. Deep learning-based multi-head self-attention model for human epilepsy identification from EEG signal for biomedical traits. Multimed. Tools Appl. 2024, 83, 80201–80223. [Google Scholar] [CrossRef]
- Minopoulos, G.M.; Memos, V.A.; Stergiou, K.D.; Stergiou, C.L.; Psannis, K.E. A Medical Image Visualization Technique Assisted with AI-Based Haptic Feedback for Robotic Surgery and Healthcare. Appl. Sci. 2023, 13, 3592. [Google Scholar] [CrossRef]
- Goodman, E.D.; Patel, K.K.; Zhang, Y.; Locke, W.; Kennedy, C.J.; Mehrotra, R.; Ren, S.; Guan, M.; Zohar, O.; Downing, M. Analyzing surgical technique in diverse open surgical videos with multitask machine learning. JAMA Surg. 2024, 159, 185–192. [Google Scholar] [CrossRef]
- Kandel, E.R. Principles of Neural Science; Mcgraw-Hill Education: New York, NY, USA, 2021. [Google Scholar]
- Avitan, L.; Teicher, M.; Abeles, M. EEG Generator—A Model of Potentials in a Volume Conductor. J. Neurophysiol. 2009, 102, 3046–3059. [Google Scholar] [CrossRef] [PubMed]
- Jenke, R.; Peer, A.; Buss, M. Feature Extraction and Selection for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2014, 5, 327–339. [Google Scholar] [CrossRef]
- Fink, A.; Grabner, R.H.; Benedek, M.; Reishofer, G.; Hauswirth, V.; Fally, M.; Neuper, C.; Ebner, F.; Neubauer, A.C. The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Hum. Brain Mapp. 2009, 30, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Alhussein, M.; Muhammad, G.; Hossain, M.S. EEG Pathology Detection Based on Deep Learning. IEEE Access 2019, 7, 27781–27788. [Google Scholar] [CrossRef]
- Shaffer, M.A. Problem Record of the Month, No. 3: Asymmetrical Eye-Blink Artifact. Am. J. EEG Technol. 1970, 10, 153–156. [Google Scholar] [CrossRef]
- Sweeney, K.T.; Ward, T.E.; McLoone, S.F. Artifact Removal in Physiological Signals—Practices and Possibilities. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 488–500. [Google Scholar] [CrossRef]
- Bos, D.P.-O. Automated Artifact Detection in BrainStream An Evaluation of An Online Eye and Muscle Artifact Detection Method. 2008. Available online: https://api.semanticscholar.org/CorpusID:13841013 (accessed on 1 August 2024).
- Kang, J.-S.; Ojha, A.; Lee, G.; Lee, M. Difference in brain activation patterns of individuals with high and low intelligence in linguistic and visuo-spatial tasks: An EEG study. Intelligence 2017, 61, 47–55. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Q.; Hu, B.; Li, J.; Jiang, H.; Lin, W.; Li, Y.; Zhou, S.; Peng, H. A method of removing Ocular Artifacts from EEG using Discrete Wavelet Transform and Kalman Filtering. In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016. [Google Scholar] [CrossRef]
- Yin, J.; Liu, A.; Li, C.; Qian, R.; Chen, X. Frequency Information Enhanced Deep EEG Denoising Network for Ocular Artifact Removal. IEEE Sens. J. 2022, 22, 21855–21865. [Google Scholar] [CrossRef]
- Mashhadi, N.; Zargari, A.; Heidari, M.; Khaledyan, D. Deep learning denoising for EOG artifacts removal from EEG signals. In Proceedings of the 2020 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 29 October–1 November 2020. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Munich, Germany, 2015; pp. 234–241. [Google Scholar]
- Zhang, H.; Zhao, M.; Wei, C.; Mantini, D.; Li, Z.; Liu, Q. EEGdenoiseNet: A benchmark dataset for deep learning solutions of EEG denoising. J. Neural Eng. 2021, 18, 056057. [Google Scholar] [CrossRef]
- Comon, P. Independent component analysis, A new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Gauba, H.; Kumar, P.; Roy, P.P.; Singh, P.; Dogra, D.P.; Raman, B. Prediction of advertisement preference by fusing EEG response and sentiment analysis. Neural Netw. 2017, 92, 77–88. [Google Scholar] [CrossRef]
- Harender; Sharma, R.K. EEG signal denoising based on wavelet transform. In Proceedings of the 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 20–22 April 2017; Volume 1, pp. 758–761. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.; Hamid Bin Mohd Ali, S.; Ahmad, S.; Islam, M.; Escudero, J. Automatic Artifact Removal in EEG of Normal and Demented Individuals Using ICA–WT during Working Memory Tasks. Sensors 2017, 17, 1326. [Google Scholar] [CrossRef] [PubMed]
- Correa, A.G.; Laciar, E.; Patiño, H.D.; Valentinuzzi, M.E. Artifact removal from EEG signals using adaptive filters in cascade. J. Phys. Conf. Ser. 2007, 90, 012081. [Google Scholar] [CrossRef]
- Shahabi, H.; Moghimi, S.; Zamiri-Jafarian, H. EEG eye blink artifact removal by EOG modeling and Kalman filter. In Proceedings of the 2012 5th International Conference on BioMedical Engineering and Informatics, Chongqing, China, 16–18 October 2012; pp. 496–500. [Google Scholar] [CrossRef]
- Somers, B.; Francart, T.; Bertrand, A. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter. J. Neural Eng. 2018, 15, 036007. [Google Scholar] [CrossRef]
- van Driel, J.; Olivers, C.N.L.; Fahrenfort, J.J. High-pass filtering artifacts in multivariate classification of neural time series data. J. Neurosci. Methods 2021, 352, 109080. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, X.; Nguyen, X.A.; Shi, Q.; Lin, F.; Chauhan, S.; Ge, Z.; Cheng, W. Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors. Nat. Nanotechnol. 2023, 18, 889–897. [Google Scholar] [CrossRef]
- Hossain, M.S.; Reaz, M.B.I.; Chowdhury, M.E.H.; Ali, S.H.M.; Bakar, A.A.A.; Kiranyaz, S.; Khandakar, A.; Alhatou, M.; Habib, R. Motion Artifacts Correction From EEG and fNIRS Signals Using Novel Multiresolution Analysis. IEEE Access 2022, 10, 29760–29777. [Google Scholar] [CrossRef]
- Wang, G.; Teng, C.; Li, K.; Zhang, Z.; Yan, X. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition. IEEE J. Biomed. Health Inform. 2016, 20, 1301–1308. [Google Scholar] [CrossRef]
- Marino, M.; Liu, Q.; Koudelka, V.; Porcaro, C.; Hlinka, J.; Wenderoth, N.; Mantini, D. Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci. Rep. 2018, 8, 8902. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, W.; Vergult, A.; Vanrumste, B.; Van Paesschen, W.; Van Huffel, S. Canonical Correlation Analysis Applied to Remove Muscle Artifacts From the Electroencephalogram. IEEE Trans. Biomed. Eng. 2006, 53, 2583–2587. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Q.; Zhang, Y.; Wang, Z.J. A Novel EEMD-CCA Approach to Removing Muscle Artifacts for Pervasive EEG. IEEE Sens. J. 2019, 19, 8420–8431. [Google Scholar] [CrossRef]
- Luo, T.; Fan, Y.; Chen, L.; Guo, G.; Zhou, C. EEG Signal Reconstruction Using a Generative Adversarial Network With Wasserstein Distance and Temporal-Spatial-Frequency Loss. Front. Neuroinformatics 2020, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Fahimi, F.; Dosen, S.; Ang, K.K.; Mrachacz-Kersting, N.; Guan, C. Generative Adversarial Networks-Based Data Augmentation for Brain–Computer Interface. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4039–4051. [Google Scholar] [CrossRef]
- Sawangjai, P.; Trakulruangroj, M.; Boonnag, C.; Piriyajitakonkij, M.; Tripathy, R.K.; Sudhawiyangkul, T.; Wilaiprasitporn, T. EEGANet: Removal of Ocular Artifacts From the EEG Signal Using Generative Adversarial Networks. IEEE J. Biomed. Health Inform. 2022, 26, 4913–4924. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, C.; Zhao, M.; Liu, Q.; Wu, H. A Novel Convolutional Neural Network Model to Remove Muscle Artifacts from EEG. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 1265–1269. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, X.; Rong, X.; Iwata, M. A Novel Multimodule Neural Network for EEG Denoising. IEEE Access 2022, 10, 49528–49541. [Google Scholar] [CrossRef]
- Sun, W.; Su, Y.; Wu, X.; Wu, X. A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals. Neurocomputing 2020, 404, 108–121. [Google Scholar] [CrossRef]
- Yang, B.; Duan, K.; Zhang, T. Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter. Neurocomputing 2016, 214, 1053–1060. [Google Scholar] [CrossRef]
- Wang, B.; Deng, F.; Jiang, P. EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network. Comput. Biol. Med. 2024, 177, 108626. [Google Scholar] [CrossRef]
- Saha, P.; Ansaruddin Kunju, A.K.; Majid, M.E.; Bin Abul Kashem, S.; Nashbat, M.; Ashraf, A.; Hasan, M.; Khandakar, A.; Shafayet Hossain, M.; Alqahtani, A.; et al. Novel multimodal emotion detection method using Electroencephalogram and Electrocardiogram signals. Biomed. Signal Process. Control 2024, 92, 106002. [Google Scholar] [CrossRef]
- Qu, H.; Fan, Z.; Cao, S.; Pang, L.; Wang, H.; Zhang, J. A Study on Sensitive Bands of EEG Data under Different Mental Workloads. Algorithms 2019, 12, 145. [Google Scholar] [CrossRef]
- Hossain, M.S.; Mahmud, S.; Khandakar, A.; Al-Emadi, N.; Chowdhury, F.A.; Mahbub, Z.B.; Reaz, M.B.I.; Chowdhury, M.E.H. MultiResUNet3+: A Full-Scale Connected Multi-Residual UNet Model to Denoise Electrooculogram and Electromyogram Artifacts from Corrupted Electroencephalogram Signals. Bioengineering 2023, 10, 579. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Asadi-Aghbolaghi, M.; Azad, R.; Fathy, M.; Escalera, S. Multi-level Context Gating of Embedded Collective Knowledge for Medical Image Segmentation. arXiv 2020, arXiv:2003.05056. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar] [CrossRef]
Model | |||
---|---|---|---|
Complex CNN | 0.56 | 0.56 | 0.85 |
Simple CNN | 0.65 | 0.65 | 0.82 |
Proposed | 0.35 | 0.35 | 0.94 |
Frequency Band | Delta | Theta | Alpha | Beta | Gamma |
---|---|---|---|---|---|
Clean EEG Signal | 0.383637 | 0.420987 | 0.104761 | 0.071334 | 0.019281 |
Denoised EEG Signal | 0.376995 | 0.449792 | 0.097245 | 0.059614 | 0.016354 |
EOG-EMG-Contaminated EEG Signal | 0.294029 | 0.187648 | 0.056777 | 0.101412 | 0.360134 |
Model | |||||||||
---|---|---|---|---|---|---|---|---|---|
Evaluation Metric | (dB) | Proposed Model | Complex CNN | Simple CNN | MultiResUNet3+ [50] | LinkNet [51] | MCGUNet [52] | UNet [23] | FPN [53] |
−7 | 0.677 | 1.033 | 1.0411 | 0.783 | 0.7989 | 0.7235 | 0.8122 | 0.8198 | |
−6 | 0.599 | 0.974 | 0.932 | 0.7446 | 0.7638 | 0.6873 | 0.7755 | 0.7758 | |
−5 | 0.543 | 0.869 | 0.839 | 0.6883 | 0.7088 | 0.6479 | 0.7189 | 0.7247 | |
−4 | 0.462 | 0.751 | 0.779 | 0.544 | 0.6532 | 0.5688 | 0.6524 | 0.6706 | |
−3 | 0.405 | 0.673 | 0.677 | 0.5675 | 0.5994 | 0.5222 | 0.6017 | 0.6108 | |
−2 | 0.374 | 0.557 | 0.555 | 0.5108 | 0.537 | 0.4476 | 0.5458 | 0.5438 | |
−1 | 0.357 | 0.480 | 0.468 | 0.448 | 0.4821 | 0.4526 | 0.4736 | 0.4871 | |
0 | 0.312 | 0.395 | 0.393 | 0.3821 | 0.4143 | 0.4054 | 0.4207 | 0.4338 | |
1 | 0.322 | 0.327 | 0.326 | 0.3375 | 0.361 | 0.4183 | 0.3603 | 0.3664 | |
2 | 0.266 | 0.274 | 0.278 | 0.2867 | 0.3107 | 0.3744 | 0.3118 | 0.3159 | |
−7 | 0.677 | 1.03 | 1.0411 | 0.7017 | 0.7447 | 0.6894 | 0.7903 | 0.8202 | |
−6 | 0.599 | 0.974 | 0.932 | 0.6587 | 0.7399 | 0.6364 | 0.7429 | 0.7842 | |
−5 | 0.543 | 0.869 | 0.839 | 0.5879 | 0.6578 | 0.569 | 0.7088 | 0.7222 | |
−4 | 0.462 | 0.751 | 0.779 | 0.4401 | 0.5969 | 0.4865 | 0.5999 | 0.6812 | |
−3 | 0.405 | 0.673 | 0.677 | 0.4768 | 0.5559 | 0.4545 | 0.5341 | 0.6136 | |
−2 | 0.374 | 0.557 | 0.555 | 0.4188 | 0.4972 | 0.3698 | 0.5027 | 0.5216 | |
−1 | 0.357 | 0.480 | 0.468 | 0.3577 | 0.4262 | 0.3625 | 0.4287 | 0.4701 | |
0 | 0.312 | 0.395 | 0.393 | 0.2934 | 0.3576 | 0.3196 | 0.3763 | 0.3945 | |
1 | 0.322 | 0.327 | 0.326 | 0.2542 | 0.3048 | 0.3374 | 0.3134 | 0.3289 | |
2 | 0.266 | 0.274 | 0.278 | 0.2142 | 0.2622 | 0.2722 | 0.2635 | 0.2716 | |
−7 | 0.758 | 0.620 | 0.618 | 0.6152 | 0.5987 | 0.663 | 0.5856 | 0.5771 | |
−6 | 0.807 | 0.654 | 0.670 | 0.6582 | 0.6512 | 0.7113 | 0.6355 | 0.637 | |
−5 | 0.849 | 0.705 | 0.719 | 0.7188 | 0.7052 | 0.7449 | 0.7039 | 0.6932 | |
−4 | 0.889 | 0.751 | 0.753 | 0.8191 | 0.7576 | 0.8009 | 0.7565 | 0.7507 | |
−3 | 0.915 | 0.804 | 0.802 | 0.8245 | 0.801 | 0.8388 | 0.8003 | 0.7982 | |
−2 | 0.928 | 0.856 | 0.858 | 0.858 | 0.8431 | 0.8819 | 0.8428 | 0.8423 | |
−1 | 0.934 | 0.889 | 0.895 | 0.8934 | 0.878 | 0.8832 | 0.8803 | 0.8757 | |
0 | 0.950 | 0.922 | 0.923 | 0.9228 | 0.9098 | 0.9094 | 0.9084 | 0.9025 | |
1 | 0.948 | 0.946 | 0.946 | 0.9411 | 0.9332 | 0.91 | 0.9325 | 0.9308 | |
2 | 0.964 | 0.962 | 0.961 | 0.9579 | 0.9506 | 0.9277 | 0.9504 | 0.9496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azhar, M.; Shafique, T.; Amjad, A. A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals. Electronics 2024, 13, 4576. https://doi.org/10.3390/electronics13224576
Azhar M, Shafique T, Amjad A. A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals. Electronics. 2024; 13(22):4576. https://doi.org/10.3390/electronics13224576
Chicago/Turabian StyleAzhar, Maryam, Tamoor Shafique, and Anas Amjad. 2024. "A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals" Electronics 13, no. 22: 4576. https://doi.org/10.3390/electronics13224576
APA StyleAzhar, M., Shafique, T., & Amjad, A. (2024). A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals. Electronics, 13(22), 4576. https://doi.org/10.3390/electronics13224576