High-Capacity Double-Sided Square-Mesh-Type Chipless RFID Tags
<p>Metallic loading in square open-loop resonator: (<b>a</b>) square open-loop resonator; (<b>b</b>) equally divided small cell grid; (<b>c</b>) geometry of square mesh open-loop resonator.</p> "> Figure 2
<p>Geometry and simulated RCS response of open-loop resonator.</p> "> Figure 3
<p>Modeling of open-loop resonators and their simulated RCS responses at various frequencies: (<b>a</b>) 7.5 GHz; (<b>b</b>) 8 GHz; (<b>c</b>) 8.4 GHz; (<b>d</b>) 8.9 GHz.</p> "> Figure 4
<p>Layout of square mesh open-loop resonators: (<b>a</b>) 7.5 GHz; (<b>b</b>) 8 GHz; (<b>c</b>) 8.4 GHz; (<b>d</b>) 8.9 GHz; (<b>e</b>) 9.5 GHz; (<b>f</b>) 10.06 GHz; (<b>g</b>) 10.37 GHz; (<b>h</b>) 10.89 GHz.</p> "> Figure 5
<p>Current distribution of open-loop resonator: (<b>a</b>) 7.5 GHz; (<b>b</b>) 8.9 GHz; (<b>c</b>) 9.5 GHz; (<b>d</b>) 10.89 GHz.</p> "> Figure 6
<p>Configuration setting of loaded open-loop resonators on front side of the substrate only: (<b>a</b>) Configuration-1 (8 × 1 matrix); (<b>b</b>) Configuration-2 (4 × 2 matrix).</p> "> Figure 7
<p>Simulated RCS response of Configuration-1 and Configuration-2.</p> "> Figure 8
<p>Configuration setting with loaded open-loop resonators on the front and backside of the substrate: (<b>a</b>) Configuration-3 (2 × 2 matrix); (<b>b</b>) Configuration-4 (4 × 1 matrix).</p> "> Figure 9
<p>Simulated RCS response of Configuration-3 and Configuration-4.</p> "> Figure 10
<p>Effect of inter-resonator separation on RCS response of the tag.</p> "> Figure 11
<p>Simulated RCS response of the final proposed tag.</p> "> Figure 12
<p>Effect of substrate thickness on RCS response of tag.</p> "> Figure 13
<p>Simulated RCS response of proposed tag when illuminated from either front or back side.</p> "> Figure 14
<p>Frequency shift coding (FSC) technique to enhance capacity of the proposed chipless RFID tag.</p> "> Figure 15
<p>Simulated RCS response of intermediate loaded open-loop resonator.</p> "> Figure 16
<p>Photographs of the fabricated square mesh CRFID tags.</p> "> Figure 17
<p>Measurement setup: (<b>a</b>) schematic of the bi-static configuration; (<b>b</b>) photograph of the RCS measurement setup inside anechoic chamber.</p> "> Figure 18
<p>Measured and simulated RCS response of final proposed tag (Configuration-4): (<b>a</b>) d = 1 mm; (<b>b</b>) d = 0.2 mm.</p> ">
Abstract
:1. Introduction
2. Tag Design
3. Configuration Setting of Loaded Open-Loop Resonators to Form the Tags
3.1. Effect of Inter-Resonator Separation
3.2. Effect of Substrate Thickness
3.3. Illumination of the Tag from Front and Back Sides
3.4. Frequency Shift Coding (FSC) and Further Capacity Enhancement Using Intermediate Loading
4. The Experimentation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perret, E. Radio Frequency Identification and Sensors: From RFID to Chipless RFID; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Noman, M.; Haider, U.A.; Hashmi, A.M.; Ullah, H.; Najam, A.I.; Tahir, F.A. A Novel Design Methodology to Realize a Single Byte Chipless RFID Tag by Loading a Square Open-Loop Resonator with Micro-Metallic Cells. IEEE J. Microw. 2023, 3, 43–51. [Google Scholar] [CrossRef]
- Khan, M.M.; Tahir, F.A.; Farooqui, M.F.; Shamim, A.; Cheema, H.M. 3.56-bits/cm2 Compact Inkjet Printed and Application Specific Chipless RFID Tag. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1109–1112. [Google Scholar] [CrossRef]
- Noman, M.; Haider, U.A.; Ullah, H.; Tahir, F.A.; Rmili, H.; Najam, A.I. A 32-Bit Single Quadrant Angle-Controlled Chipless Tag for Radio Frequency Applications. Sensors 2022, 22, 2492. [Google Scholar] [CrossRef]
- Haider, U.A.; Noman, M.; Ullah, H.; Tahir, F.A. A Compact L-Shaped 16 Bit Polarization Independent Chipless RFID Tag. In Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, 20–21 August 2020; pp. 1–3. [Google Scholar]
- Haider, U.A.; Noman, M.; Ullah, H.; Tahir, F.A. A Compact Chip-less RFID Tag for IoT Applications. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montréal, QC, Canada, 5–10 July 2020; pp. 1449–1450. [Google Scholar]
- Haider, U.A.; Noman, M.; Rashid, A.; Rmili, H.; Ullah, H.; Tahir, F.A. A Semi-Octagonal 40-Bit High Capacity Chipless RFID Tag for future Product Identification. Electronics 2023, 12, 349. [Google Scholar] [CrossRef]
- Noman, M.; Haider, U.A.; Ullah, H.; Tahir, F.A.; Khan, M.U.; Abbasi, Q.H. 12-Bit Chip-less RFID Tag with High Coding Capacity per Unit Area. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 127–128. [Google Scholar]
- Bhattacharyya, R.; Floerkemeier, C.; Sarma, S. Towards tag antenna based sensing—An RFID displacement sensor. In Proceedings of the 2009 IEEE International Conference on RFID, Orlando, FL, USA, 27–28 April 2009; pp. 95–102. [Google Scholar]
- Shrestha, S.; Vemagiri, J.; Agarwal, M.; Varahramyan, K. Transmission line reflection and delay-based ID generation scheme for RFID and other applications. Int. J. Radio Freq. Identif. Technol. Appl. 2007, 1, 401–416. [Google Scholar] [CrossRef]
- Betancourt, D.; Barahona, M.; Haase, K.; Schmidt, G.; Hubler, A.; Ellinger, F. Design of printed chipless-RFID tags with QR-code appearance based on genetic algorithm. IEEE Trans. Antennas Propag. 2017, 65, 2190–2195. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Alshoudokhi, Y.A.; Behairy, H.M.; Alshareef, M.R.; Alshebeili, S.A.; Issa, K.; Fathallah, H. Design and analysis of multi resonators loaded broadband antipodal tapered slot antenna for chipless RFID applications. IEEE Access 2017, 5, 25798–25807. [Google Scholar] [CrossRef]
- Islam, M.A.; Karmakar, N.C. Compact Printable Chipless RFID Systems. IEEE Trans. Microw. Theory Techn. 2015, 63, 3785–3793. [Google Scholar] [CrossRef]
- Polivka, M.; Havlicek, J.; Svanda, M.; Machac, J. Improvement in robustness and recognizability of RCS response of U-shaped strip-based chipless RFID tags. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 2000–2003. [Google Scholar] [CrossRef]
- Noman, M.; Haider, U.A.; Ullah, H.; Hashmi, A.M.; Tahir, F.A. Realization of Chipless RFID Tags via Systematic Loading of Square Split Ring with Circular Slots. IEEE J. Radio Freq. Identif. 2022, 6, 671–679. [Google Scholar] [CrossRef]
- Haider, U.A.; Noman, M.; Ullah, H.; Abutarboush, H.F.; Abbasi, Q.H.; Tahir, F.A. A Fully Passive Ten-Digit Numeric Keypad Sensor Using Chipless RFID Technology. IEEE Sens. J. 2023, 23, 2978–2987. [Google Scholar] [CrossRef]
- Vena, A.; Perret, E.; Tedjini, S. Chipless RFID tag using hybrid coding technique. IEEE Trans. Microw. Theory Tech. 2011, 59, 3356–3364. [Google Scholar] [CrossRef]
- Rance, O.; Siragusa, R.; Lemaître-Auger, P.; Perret, E. Toward RCS magnitude level coding for chipless RFID. IEEE Trans. Microw. Theory Tech. 2016, 64, 2315–2325. [Google Scholar] [CrossRef]
- Ni, Y.; Huang, X.; Lv, Y.; Cheng, C. Hybrid coding chipless tag based on impedance loading. IET Microw. Antennas Propag. 2017, 11, 1325–1331. [Google Scholar] [CrossRef]
- Issa, K.; Ashraf, M.A.; AlShareef, M.R.; Behairy, H.; Alshebeili, S.; Fathallah, H. A Novel L-Shape Ultra Wideband Chipless Radio-Frequency Identification Tag. Int. J. Antennas Propag. 2017, 2017, 2823565. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Su, L. A compact dual-polarized chipless RFID tag by using nested concentric square loops. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1036–1039. [Google Scholar] [CrossRef]
- Wang, L.; Liu, T.; Siden, J.; Wang, G. Design of chipless RFID tag by using miniaturized open-loop resonators. IEEE Trans. Antennas Propag. 2018, 66, 618–626. [Google Scholar] [CrossRef]
- Nijas, C.M.; Deepak, U.; Vinesh, P.V.; Sujith, R.; Mridula, S.; Vasudevan, K.; Mohanan, P. Low-cost multiple-bit encoded chipless RFID tag using stepped impedance resonator. IEEE Trans. Antennas Propag. 2014, 62, 4762–4770. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Jiang, T.-Y.; Lai, F.-P. Automatic Topology Generation of 21 Bit Chipless Radio Frequency Identification Tags Using a Noniterative Technique. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 293–297. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Sheta, A.-F.A. Four-State Coupled Line Resonator for Chipless RFID Tags Application. Electronics 2019, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Jiang, Y. High-Density 3D Printable Chipless RFID Tag with Structure of Passive Slot Rings. Sensors 2019, 19, 2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svanda, M.; Havlicek, J.; Machac, J.; Polivka, M. Polarisation independent chipless RFID tag based on circular arrangement of dual-spiral capacitively-loaded dipoles with robust RCS response. IET Microw. Antennas Propag. 2018, 12, 2167–2171. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Malhotra, S.; Hashmi, M. Slot Resonator Based Novel Orientation Independent Chipless RFID Tag Configurations. IEEE Sens. J. 2019, 19, 5153–5160. [Google Scholar] [CrossRef]
- Tariq, N.; Riaz, M.A.; Shahid, H.; Khan, M.J.; Khan, M.S.; Amin, Y.; Loo, J.; Tenhunen, H. Orientation Independent Chipless RFID Tag Using Novel Trefoil Resonators. IEEE Access 2019, 7, 122398–122407. [Google Scholar] [CrossRef]
- Babaeian, F.; Karmakar, N.C. Compact multi-band chipless RFID resonators for identification and authentication applications. Electron. Lett. 2020, 56, 724–727. [Google Scholar] [CrossRef]
- Tijeri-Mofrad, S.; Mohammad-Ali-Nezhad, S.; Zarif, A.H.; Khorramizadeh, M. Design of a Low-profile Chipless RFID tag Using a Grounded Wall. IETE J. Res. 2021. [Google Scholar] [CrossRef]
Ref. No. | Operating Frequency (GHz) | Tag Size (mm2) | Bits Per Resonator | Code Density (bits/cm2) | Spectral Efficiency (bits/GHz) |
---|---|---|---|---|---|
[17] | 2.5–7.5 | 20 × 40 | 4.58 | 2.86 | 4.58 |
[18] | 2–5 | 30 × 40 | 3 | 1.25 | 5 |
[19] | 3–9 | 30 × 30 | 3 | 2.63 | 3.95 |
[20] | 4.8–10 | 15 × 10 | 2 | 12 | 3.46 |
[21] | 8–14 | 13.8 × 13.8 | 2.25 | 9.45 | 3 |
[22] | 2.8–6 | 6.6 × 10.8 | 3.56 | 4.99 | 1.11 |
[23] | 3.1–10.6 | 30 × 25 | 2 | 1.06 | 1.06 |
[24] | 1.7–4.7 | 66 × 36 | 3 | 0.88 | 7 |
[25] | 5–8 | 60.3 × 11 | 2 | 1.1 | 7 |
[26] | 2–9 | 35 × 35 | 1 | 0.98 | 1.9 |
[27] | 1.8–3.6 | 55 × 55 | 1 | 0.7 | 12.5 |
[28] | 3–6 | 20 × 20 | 1 | 4 | 5.33 |
[29] | 5.4–10.4 | 13.55 × 13.55 | 1 | 5.44 | 2 |
[30] | 4.5–7.5 | 17 × 14 | 1 | 5.88 | 4.66 |
[31] | 2–7 | 15 × 30 | 1 | 1.77 | 1.6 |
Proposed Tag | 5.9–10.5 | 16.2 × 4.2 | 2 | 23.51 | 3.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noman, M.; Haider, U.A.; Ullah, H.; Ikram, M.; Rmili, H.; Tahir, F.A. High-Capacity Double-Sided Square-Mesh-Type Chipless RFID Tags. Electronics 2023, 12, 1371. https://doi.org/10.3390/electronics12061371
Noman M, Haider UA, Ullah H, Ikram M, Rmili H, Tahir FA. High-Capacity Double-Sided Square-Mesh-Type Chipless RFID Tags. Electronics. 2023; 12(6):1371. https://doi.org/10.3390/electronics12061371
Chicago/Turabian StyleNoman, Muhammad, Usman A. Haider, Hidayat Ullah, Muhammad Ikram, Hatem Rmili, and Farooq A. Tahir. 2023. "High-Capacity Double-Sided Square-Mesh-Type Chipless RFID Tags" Electronics 12, no. 6: 1371. https://doi.org/10.3390/electronics12061371
APA StyleNoman, M., Haider, U. A., Ullah, H., Ikram, M., Rmili, H., & Tahir, F. A. (2023). High-Capacity Double-Sided Square-Mesh-Type Chipless RFID Tags. Electronics, 12(6), 1371. https://doi.org/10.3390/electronics12061371