Wireless Backpack System for Detection of Radioactive Cesium on Contaminated Soil Using Portable Plastic Scintillator with Efficient Readout Device
<p>The overall schematic illustrations of a wireless mobile system for the detection of radioactive cesium on contaminated soil. (<b>A</b>) Manufacturing of plastic scintillator and optical properties. (<b>B</b>) Radiological measurement using a contaminated soil plate and performance evaluation of QD-based plastic scintillator. (<b>C</b>) Manufacturing and application of mobile and wireless communication systems.</p> "> Figure 2
<p>Manufacturing process of contaminated soil with <sup>137</sup>Cs.</p> "> Figure 3
<p>Absorption and transmittance measurement results of commercial plastics and CdS/ZnS-loaded plastic scintillators: (<b>a</b>) absorbance; (<b>b</b>) transmittance.</p> "> Figure 4
<p>Photoluminescence analysis of plastic scintillators by excitation wavelength (plastic thickness used is 30 mm): (<b>a</b>) excitation at 264 nm; (<b>b</b>) excitation at 316 nm.</p> "> Figure 5
<p>Schematic illustration of the plastic detector system. (<b>a</b>) Drawing of the plastic detector. (<b>b</b>) Detailed drawing of the detection part and signal-processing part. (<b>c</b>) Plastic detector size in detailed drawing.</p> "> Figure 6
<p>Plastic scintillator-based wireless radiation measurement system. (<b>a</b>) Configuration of backpack-typed wireless system. (<b>b</b>) Components of plastic detection system and connection diagram.</p> "> Figure 7
<p>Measurement results using a commercial plastic scintillator (<b>a</b>–<b>c</b>) and CdS/ZnS-loaded plastic scintillator (<b>d</b>–<b>f</b>).</p> "> Figure 8
<p>Comparison of measurement results and MCNP simulation results using 30-mm-thick plastic scintillator. (<b>a</b>–<b>c</b>) Comparison of results by distance with a source using a commercial scintillator. (<b>d</b>–<b>f</b>) Comparison of results by distance with a source using a CdS/ZnS-loaded scintillator.</p> "> Figure 9
<p>Measurement results due to the distance from the contaminated soil sample using a CdS/ZnS-loaded plastic scintillator: (<b>a</b>) 30 mm thickness in a plastic scintillator; (<b>b</b>) 50 mm thickness in a plastic scintillator.</p> "> Figure 10
<p>(<b>a</b>) Wireless radiation detection system of the CdS/ZnS plastic scintillator and commercial plastic scintillator by soil source position (<b>b</b>) and detection efficiency.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Plastic Scintillator
2.2. Manufacture of Radioactive Cesium on Contaminated Soil
2.3. Radiation Measurement
3. Results
3.1. Characterization of Plastic Scintillator Fabricated
3.2. Portable Plastic Detector and Bluetooth-Based Wireless System
3.3. Measurement of Radioactive Cesium on Contaminated Soil
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.-J.; Hyun, Y.-J.; Kim, Y.-J.; Hwang, S.-I. A Study on Effective Management Scheme for Soil and Groundwater Contaminated by Radioactive Materials Due to Nuclear Accidents. J. Soil Groundw. Environ. 2011, 16, 113–121. [Google Scholar] [CrossRef]
- Lee, K.J. Development of a Vehicle-Mounted Large Area Radioactive Contamination Measurement Equipment. Master’s Thesis, Josun University, Gwangju, Korean, 25 February 2020. [Google Scholar]
- Lee, B.C.; Hong, S.B.; Seo, B.K.; Kim, J.H.; Kim, Y.U. Gamma-Ray Spectrometry to Find the Distribution of Diffused Radioactive Sources Underground. New Phys. Sae Mulli 2019, 69, 701–706. [Google Scholar] [CrossRef]
- Ji, Y.Y.; Min, B.I.; Seo, K.S.; Jeong, S.Y.; Kim, K.P.; Park, J.H. Technical status of environmental radiation monitoring using a UAV and its field application to the aerial survey, J. Korea Indust. Inform. Syst. Res. 2020, 25, 31–39. [Google Scholar] [CrossRef]
- Min, S.; Seo, B.; Roh, C.; Hong, S.; Cheong, J. Phoswich Detectors in Sensing Applications. Sensors 2021, 21, 4047. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Cheong, J.-H.; Hong, S.-B.; Seo, B.-K.; Lee, B.C. Study on Development of Embedded Source Depth Assessment Method Using Gamma Spectrum Ratio. J. Nucl. Fuel Cycle Waste Technol. 2020, 18, 51–62. [Google Scholar] [CrossRef]
- Seo, B.K.; Kwon, S.W.; Nam, J.S.; Roh, C.H.; Moon, J.K.; Ahn, B.G.; Yang, H.M.; Lee, G.W.; Lee, I.H.; Jeong, K.H.; et al. Decontamination and Remediation Technology for Nuclear Facilities (No. KAERI/RR-3939/2015); Korea Atomic Energy Research Institute: Daejeon, Korea, 2015. [Google Scholar]
- U.S. NRC; Anigstein, R. Radiological Assessments for Clearance of Materials from Nuclear Facilities; Nuclear Regulatory Commission: Washington, DC, USA, 2003. [Google Scholar]
- Nishizawa, Y.; Yoshida, M.; Sanada, Y.; Torii, T. Distribution of the134Cs/137Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system. J. Nucl. Sci. Technol. 2015, 53, 468–474. [Google Scholar] [CrossRef]
- Cantaluppi, C.; Zannoni, D.; Cianchi, A.; Giacetti, W.; Lovisetto, B.; Pagnin, E.; Favero, T. Methods for radioactivity measurements in drinking water using gamma spectrometry. J. Environ. Radioact. 2021, 232, 106566. [Google Scholar] [CrossRef]
- Hachinohe, M.; Shinano, T. Large-scale sampling and radioactivity analysis of agricultural soil and food during nuclear emergencies in Japan: Variations over time in foodstuffs inspection and sampling. J. Environ. Radioact. 2020, 218, 106262. [Google Scholar] [CrossRef]
- Bae, J.W.; Kim, H.R. Plastic scintillator beta ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil. Nucl. Eng. Technol. 2020, 52, 1259–1265. [Google Scholar] [CrossRef]
- Jones, D.G. Development and application of marine gamma-ray measurements: A review. J. Environ. Radioact. 2001, 53, 313–333. [Google Scholar] [CrossRef]
- Kim, I.; Park, C.; Choi, H. Absolute calibration of 60Co by using sum-peak method and an HPGe detector. Appl. Radiat. Isot. 2003, 58, 227–233. [Google Scholar] [CrossRef]
- Chino, M.; Nakayama, H.; Nagai, H.; Terada, H.; Katata, G.; Yamazawa, H. Preliminary Estimation of Release Amounts of131I and137Cs Accidentally Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere. J. Nucl. Sci. Technol. 2011, 48, 1129–1134. [Google Scholar] [CrossRef]
- Koo, B.T.; Lee, H.C.; Bae, K.; Kim, Y.; Jung, J.; Park, C.S.; Kim, H.-S.; Min, C.H. Development of a radionuclide identification algorithm based on a convolutional neural network for radiation portal monitoring system. Radiat. Phys. Chem. 2021, 180, 109300. [Google Scholar] [CrossRef]
- Sim, H.; Seo, H.; Choi, H.; Kim, H.; Jang, J.; Lee, J. Development of background simulation model for commercial radiation portal monitor using Monte Carlo code. J. Korean Phys. Soc. 2021, 79, 573–581. [Google Scholar] [CrossRef]
- Hu, B.; Ye, H.; Li, F.-L.; Tian, X.Y.; Song, L.-T.; Zhang, Y.; Zhang, X.-J.; Wang, R.-B.; Tang, B. New discrimination algorithm for artificial γ radiation sources based on average energy deposition in plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1010, 165573. [Google Scholar] [CrossRef]
- Attix, F.H. Gamma and X-ray Interactions in Matter, Introduction to Radiological Physics and Radiation Dosimetry; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 124–157. [Google Scholar]
- Cherepy, N.; Martinez, H.P.; Sanner, R.; Beck, P.; Drury, O.; Swanberg, E.; Payne, S.; Hurlbut, C.; Morris, B. New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. In Proceedings of the 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Atlanta, GA, USA, 21–28 October 2017. [Google Scholar] [CrossRef]
- Oksuz, I.; Chuirazzi, W.; Martinez, H.P.; Cherepy, N.; Cao, L. Characterization of Polyvinyl Yoluene (PVT) Scintillators for Fast Neutron Imaging. In Hard X-ray, Gamma-Ray, and Neutron Detector Physics XX; International Society for Optics and Photonics.: Bellingham, WA, USA, 2018; Volume 10762, p. 107620D. [Google Scholar]
- Cherepy, N.J.; Seeley, Z.M.; Payne, S.A.; Swanberg, E.L.; Beck, P.R.; Schneberk, D.J.; Stone, G.; Perry, R.; Wihl, B.; Fisher, S.E.; et al. Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. In Hard X-ray, Gamma-Ray, and Neutron Detector Physics XVII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; p. 95930P. [Google Scholar] [CrossRef]
- Seeley, Z.; Cherepy, N.; Payne, S. Two-step sintering of Gd_03Lu_16Eu_01O_3 transparent ceramic scintillator. Opt. Mater. Express 2013, 3, 908–912. [Google Scholar] [CrossRef]
- Chuirazzi, W.; Oksuz, I.; Kandlakunta, P.; Massey, T.N.; Brune, C.R.; Cherepy, N.; Martinez, H.P.; Cao, L. Evaluation of polyvinyl toluene scintillators for fast neutron imaging. J. Radioanal. Nucl. Chem. 2018, 318, 543–551. [Google Scholar] [CrossRef]
- Cherepy, N.J.; Seeley, Z.; Hok, S.; Schneberk, D.; Kerr, P.; O’Neal, S.; Oksuz, I.; Bisbee, M.; Cao, L.R.; Payne, S.; et al. Scintillators and detectors for MeV X-ray and neutron imaging. In Hard X-ray, Gamma-Ray, and Neutron Detector Physics XXII; International Society for Optics and Photonics: Bellingham, WA, USA, 2020; Volume 11494, p. 114940N. [Google Scholar]
- Kim, D.-G.; Lee, S.; Park, J.; Son, J.; Kim, T.H.; Kim, Y.H.; Pak, K. Performance of 3D printed plastic scintillators for gamma-ray detection. Nucl. Eng. Technol. 2020, 52, 2910–2917. [Google Scholar] [CrossRef]
- Rajakrishna, K.; Dhanasekaran, A.; Yuvaraj, N.; Ajoy, K.; Venkatraman, B.; Jose, M. Effect of high Z materials loading in the performance of polystyrene-based thin-film plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1008, 165454. [Google Scholar] [CrossRef]
- Hamel, M.; Carrel, F. New Insights on Gamma Rays; Maghraby, A., Ed.; InTech Open: London, UK, 2017; pp. 47–66. [Google Scholar]
- Min, S.; Kang, H.; Seo, B.; Roh, C.; Hong, S.; Cheong, J. Integrated and Portable Probe Based on Functional Plastic Scintillator for Detection of Radioactive Cesium. Appl. Sci. 2021, 11, 5210. [Google Scholar] [CrossRef]
- Hajagos, T.J.; Liu, C.; Cherepy, N.J.; Pei, Q. High-Z Sensitized Plastic Scintillators: A Review. Adv. Mater. 2018, 30, e1706956. [Google Scholar] [CrossRef]
- Kishimoto, S.; Toda, A. High-Energy and High-Rate X-ray Measurements Using HfO2 Nanoparticle-Loaded Plastic Scintillator. IEEE Trans. Nucl. Sci. 2021, 68, 165–172. [Google Scholar] [CrossRef]
- Kortan, A.R.; Hull, R.; Opila, R.L.; Bawendi, M.G.; Steigerwald, M.L.; Carroll, P.J.; Brus, L.E. Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J. Am. Chem. Soc. 1990, 112, 1327–1332. [Google Scholar] [CrossRef]
- Bawendi, M.G.; Wilson, W.; Rothberg, L.; Carroll, P.J.; Jedju, T.M.; Steigerwald, M.L.; Brus, L.E. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 1990, 65, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Kagami, K.; Koshimizu, M.; Fujimoto, Y.; Kishimoto, S.; Haruki, R.; Nishikido, F.; Asai, K. High-energy X-ray detection capabilities of Hf-loaded plastic scintillators synthesized by sol–gel method. J. Mater. Sci. Mater. Electron. 2019, 31, 896–902. [Google Scholar] [CrossRef]
- Marques, L.; Vale, A.; Vaz, P. State-of-the-Art Mobile Radiation Detection Systems for Different Scenarios. Sensors 2021, 21, 1051. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.-W.; Yoo, H.-S.; Jang, S.S.; Kim, J.S.; Yoon, W.-K.; Jun, I.S.; Kim, K.H. Plastic scintillator-based radiation detector for mobile radiation detection system against nuclear/radiological terrorism. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 604, 161–163. [Google Scholar] [CrossRef]
- Ji, Y.-Y.; Lim, T.; Choi, H.-Y.; Chung, K.H.; Kang, M.J. Development and Performance of a Multipurpose System for the Environmental Radiation Survey Based on a LaBr3(Ce) Detector. IEEE Trans. Nucl. Sci. 2019, 66, 2422–2429. [Google Scholar] [CrossRef]
- Hong, S.B.; Hwang, D.S.; Seo, B.K.; Moon, J.K. Practical application of the MARSSIM process to the site release of a Uranium Conversion Plant following decommissioning. Ann. Nucl. Energy 2014, 65, 241–246. [Google Scholar] [CrossRef]
- Sohn, W.; Hong, E.-H. Monte Carlo simulation for verification of nonparametric tests used in final status surveys of MARSSIM at decommissioning of nuclear facilities. Nucl. Eng. Technol. 2021, 53, 1664–1675. [Google Scholar] [CrossRef]
- Setiawan, B.; Iskandar, D.; Nurliati, G.; Sriwahyuni, H.; Mirawaty, M.; Artiani, P.A.; Heriyanto, K.; Ekaningrum, N.E.; Purwanto, Y.; Sumarbagiono, S. Proposed Managements of 137Cs Contaminated Soil: Case Study in South Tangerang City. At. Indones. 2021, 47, 65–76. [Google Scholar] [CrossRef]
- Krstić, D.; Nikezić, D.; Stevanović, N.; Jelić, M. Vertical profile of 137Cs in soil. Appl. Radiat. Isot. 2004, 61, 1487–1492. [Google Scholar] [CrossRef]
- Ji, Y.-Y.; Ochi, K.; Hong, S.B.; Nakama, S.; Sanada, Y.; Mikami, S. Performance of in situ gamma-ray spectrometry in the assessment of radioactive cesium deposition around the Fukushima Daiichi nuclear power plant. Radiat. Phys. Chem. 2021, 179, 109205. [Google Scholar] [CrossRef]
- Yasunari, T.J.; Stohl, A.; Hayano, R.; Burkhart, J.; Eckhardt, S. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc. Natl. Acad. Sci. USA 2011, 108, 19530–19534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.-H. Diagnosis of Radioactivity by a Remote-Controlled Mobile Robot System. J. Korean Inst. Intell. Syst. 2017, 27, 241–246. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lim, H.S. Integrated Safety Management System for Radioisotopes and Radiation Workers. U.S. Patent Application No. 16/096,394, 2016. [Google Scholar]
- Kim, Y.G.; Jeong, J.H. Radiation Monitoring Apparatus. KR20160147577A, 2015. [Google Scholar]
- Kim, J.Y.; Jeong, J.H. Implementing Disaster Forecast System by Using Communications Network—Focusing on Building Safety Crisis Management and Maintenance. Ph.D. Thesis, HANSAE University, Gunpo, Korea, 28 December 2017. [Google Scholar]
- Moon, J.H. Final Report on the Development of a Wireless Monitoring System for Monitoring Soil Contamination fo Sites Around Nuclear Power Plants in the Event of a Radioactive Material Release Accident; Dankook University: Cheonan, Korea, 2020. [Google Scholar]
- Lee, C.; Park, S.-W.; Kim, H.R. Development of mobile scanning system for effective in-situ spatial prediction of radioactive contamination at decommissioning sites. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 966, 163833. [Google Scholar] [CrossRef]
- Nam, J.S.; Kim, Y.U.; Hong, S.B.; Seo, B.K.; Kim, K.H. Performance Evaluation of a Plastic Scintillator for Making a In-situ Beta Detector. New Phys. Sae Mulli 2017, 67, 1080–1085. [Google Scholar] [CrossRef]
- Min, S.; Kim, Y.; Ko, K.-H.; Seo, B.; Cheong, J.; Roh, C.; Hong, S. Optimization of Plastic Scintillator for Detection of Gamma-Rays: Simulation and Experimental Study. Chemosensors 2021, 9, 239. [Google Scholar] [CrossRef]
- Peng, Z.A.; Peng, X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc. 2001, 123, 183–184. [Google Scholar] [CrossRef]
- Talapin, D.V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, A.O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals. J. Phys. Chem. B 2004, 108, 18826–18831. [Google Scholar] [CrossRef]
- Adegoke, O.; Nyokong, T.; Forbes, P.B.C. Deposition of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shells around CdSeTe alloyed core quantum dots: Effects on optical properties. Luminescence 2016, 31, 694–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.; Min, S.; Seo, B.; Roh, C.; Hong, S.; Cheong, J. Preliminary Studies of Perovskite-Loaded Plastic Scintillator Prototypes for Radioactive Strontium Detection. Chemosensors 2021, 9, 53. [Google Scholar] [CrossRef]
- Lee, D.U.; Kim, D.H.; Choi, D.H.; Kim, S.W.; Lee, H.S.; Yoo, K.-H.; Kim, T.W. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots. Opt. Express 2015, 24, A350–A357. [Google Scholar] [CrossRef] [PubMed]
- Moszyński, M.; Kapusta, M.; Mayhugh, M.; Wolski, D.; Flyckt, S. Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 1997, 44, 1052–1061. [Google Scholar] [CrossRef] [Green Version]
Item | Description | |
---|---|---|
General | Size | ~340 × 250 × 450 (H) mm |
Weight | 6 kg (including backpack cover) | |
Detection | Detector | Plastic scintillator |
Energy range | ~3000 keV | |
System | Power consumption | 10 W |
MCA | 100,000 cps throughput Pulse-integral gate: 100~200 ns | |
Power supply | Commercially available Li-Po battery ~3.85 V, 20,000 mA |
Total Counts (cps) | Commercial 30 mm-th | Commercial 50 mm-th | QD-Loaded Plastic 30 mm-th | QD-Loaded Plastic 50 mm-th |
---|---|---|---|---|
Distance 20 mm | 104.4 | 125.3 | 137.6 | 165.2 |
Distance 50 mm | 92.1 | 110.5 | 113.5 | 136.2 |
Distance 100 mm | 74.3 | 89.2 | 90.9 | 109.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, S.; Ko, K.-H.; Seo, B.; Cheong, J.; Roh, C.; Hong, S. Wireless Backpack System for Detection of Radioactive Cesium on Contaminated Soil Using Portable Plastic Scintillator with Efficient Readout Device. Electronics 2021, 10, 2833. https://doi.org/10.3390/electronics10222833
Min S, Ko K-H, Seo B, Cheong J, Roh C, Hong S. Wireless Backpack System for Detection of Radioactive Cesium on Contaminated Soil Using Portable Plastic Scintillator with Efficient Readout Device. Electronics. 2021; 10(22):2833. https://doi.org/10.3390/electronics10222833
Chicago/Turabian StyleMin, Sujung, Kwang-Hoon Ko, Bumkyung Seo, JaeHak Cheong, Changhyun Roh, and Sangbum Hong. 2021. "Wireless Backpack System for Detection of Radioactive Cesium on Contaminated Soil Using Portable Plastic Scintillator with Efficient Readout Device" Electronics 10, no. 22: 2833. https://doi.org/10.3390/electronics10222833
APA StyleMin, S., Ko, K.-H., Seo, B., Cheong, J., Roh, C., & Hong, S. (2021). Wireless Backpack System for Detection of Radioactive Cesium on Contaminated Soil Using Portable Plastic Scintillator with Efficient Readout Device. Electronics, 10(22), 2833. https://doi.org/10.3390/electronics10222833