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Abstract: Steam traps are essential for industrial systems, ensuring steam quality and
energy efficiency by removing condensate and preventing steam leakage. However, their
failure results in energy loss, operational disruptions, and increased greenhouse gas emis-
sions. This paper proposes a novel predictive maintenance system for steam traps that
integrates statistical time series features and transformer encoder–decoder models for fault
diagnosis and visualization. The proposed system combines IoT sensor data, operational
parameters, open data (e.g., weather information and public holiday calendars), machine
learning, and two-dimensional diagnostic projection to improve reliability and interpretabil-
ity. Experiments were conducted in two industrial plants: an aluminum processing plant
and a food manufacturing plant, and the system achieved superior defect detection ac-
curacy and diagnostic reliability compared to existing methods. The transformer-based
model outperformed traditional methods, including random forest, gradient boosting, and
variational autoencoder, in classification and clustering. The system also demonstrated an
average 6.92% reduction in thermal energy across both sites, highlighting its potential to
improve energy efficiency and reduce carbon emissions. This research highlights the trans-
formative impact of AI-based predictive maintenance technologies in industrial operations
and provides a framework for sustainable manufacturing practices.

Keywords: steam trap diagnostics; predictive maintenance; machine learning; two-
dimensional diagnostic projection; energy efficiency

1. Introduction
1.1. Challenges in Steam Trap Maintenance

Steam traps play a crucial role in industrial steam systems by removing condensate
and preventing steam leakage. Their effective management enhances energy efficiency and
ensures operational reliability. However, failures in steam traps contribute to significant
energy losses, production disruptions, and increased greenhouse gas emissions. Traditional
maintenance practices, which rely on periodic manual inspections and reactive failure
responses, suffer from inherent drawbacks:

• Manual inspections are time-consuming, labor-intensive, and prone to human error.
• Failures often go undetected for extended periods, leading to excessive energy waste.
• Unexpected failures result in production downtime and increased maintenance costs.
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Although predictive maintenance technologies have improved real-time condition
monitoring and automated fault diagnosis, practical challenges persist. These include
sensor standardization issues, accessibility constraints, and maintenance delays caused by
insulation barriers.

First, the lack of standardization among manufacturers complicates maintenance
procedures. Each manufacturer employs different diagnostic methods and design specifica-
tions, making it difficult to establish a unified maintenance protocol [1]. Engineers must
adapt to various diagnostic techniques, increasing training time and operational complexity.

Second, limited accessibility hinders routine inspections and emergency repairs. Many
steam traps are installed in hard-to-reach areas, such as ceilings, underground spaces,
or within dense piping networks. These locations make manual inspections challenging,
delaying fault detection and increasing maintenance costs.

Third, insulation barriers add complexity to maintenance procedures. Most steam
traps are covered with insulation materials to maintain steam quality and energy efficiency.
However, these coverings must be removed for visual inspections, adding extra labor and
downtime to the maintenance process [2].

These challenges underscore the limitations of traditional steam trap maintenance and
highlight the necessity for more efficient, standardized, and automated solutions.

1.2. AI-Based Predictive Maintenance for Steam Trap Monitoring

To overcome the inefficiencies of traditional steam trap maintenance, including time-
consuming manual inspections, undetected failures, limited accessibility, and the lack
of standardized diagnostic protocols, this paper proposes a novel AI-based diagnostic
system that integrates statistical time-series features with a Transformer encoder–decoder
model. The proposed approach enhances fault detection accuracy and improves diagnostic
reliability by leveraging advanced feature extraction and deep learning techniques.

Furthermore, this study introduces a comparative evaluation of various visualization
methods to improve the interpretability of diagnostic results, enabling engineers to make
more informed maintenance decisions.

The effectiveness of the proposed system is validated through real-world experiments
in two industrial environments: an aluminum processing plant and a food manufacturing
plant. The results demonstrate that the system achieves significant energy savings and
enhances predictive maintenance capabilities. These contributions highlight the transfor-
mative potential of AI-driven predictive maintenance systems in optimizing industrial
steam trap management, reducing energy waste, and promoting sustainable manufacturing
practices [2].

1.3. Advancements in AI-Based Predictive Maintenance

Predictive maintenance, driven by AI methodologies, has significantly enhanced
operational efficiency and minimized downtime. Recent advancements have focused on
key areas such as sensor fusion, anomaly detection, and deep learning techniques.

Sensor Fusion: Integrating data from multiple sensors provides a comprehensive
view of equipment health, leading to more accurate fault detection. Recent developments
in AI-based predictive maintenance have focused on key components, trustworthiness,
and future trends [3].

Anomaly Detection: Advanced AI algorithms have improved the identification of
deviations from normal operational patterns, enabling early detection of potential failures.
Recent studies have demonstrated the effectiveness of machine learning techniques in
predictive maintenance, such as the use of deep learning models for anomaly detection
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in smart manufacturing [4], and the application of pattern mining-based algorithms to
identify early signs of machinery malfunctioning [5].

Deep Learning Applications: Deep learning techniques have been extensively utilized
in predictive maintenance to enhance fault detection and diagnosis. For instance, a study
introduced a hybrid deep learning framework combining Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) to improve fault prediction accuracy in
rotating machinery, thereby enhancing operational efficiency and reliability [6].

These advancements collectively contribute to more reliable and efficient maintenance
strategies, leveraging AI to predict and prevent equipment failures proactively.

Recent studies have integrated AI-driven diagnostic frameworks for predictive main-
tenance in complex industrial settings, such as sensor fusion models for anomaly detection
in industrial equipment [3].

These approaches highlight the growing need for advanced fault diagnosis techniques,
particularly in energy optimization for industrial applications. The proposed Transformer-
based diagnostic model builds on this foundation, integrating statistical time-series analysis
with deep learning-based clustering for improved reliability and fault detection.

2. Related Works
Steam trap management is an important part of maintaining the energy efficiency and

safety of industrial facilities. Existing steam trap management has mainly relied on regular
inspections and passive failure response, but these methods make it difficult to implement
preventive measures before a failure occurs. Because of these problems, recent research
has focused on predictive maintenance technologies that can improve the performance of
Steam Traps and prevent failures in advance.

2.1. Existing Steam Trap Management Methods

The management of steam traps presents a significant challenge in industrial envi-
ronments, as incorrect maintenance leads to substantial energy loss and inefficiency [7].
Traditionally, steam trap inspections rely on manual monitoring, which suffers from acces-
sibility issues due to installation locations, inconsistent monitoring cycles, and difficulty
integrating real-time data. Significant research efforts have focused on using sensor-based
monitoring systems to enhance predictive maintenance [2]. However, real-world applica-
tions face two main challenges:

• Heterogeneous sensor data collected from different manufacturers lacks standardiza-
tion, making integration difficult [8].

• Environmental factors such as insulation layers and varying steam pressure complicate
direct fault detection, requiring advanced methods such as infrared thermal imaging-
based diagnostics [9].

These challenges necessitate advanced data processing techniques beyond traditional
statistical methods.

The development of wireless smart sensors powered by thermoelectric generators has
been reported to establish an online monitoring environment for steam traps [10]. This
system diagnosed faults by analyzing whether the measured inlet and outlet temperatures
of the steam trap fell within ranges corresponding to normal operation, blockage, or leak-
age, leading to improved steam energy efficiency. However, continuous operation posed
challenges due to high energy consumption when the communication cycle was short.

A big data-driven prioritization model for steam trap maintenance has also been intro-
duced, utilizing historical maintenance data to calculate failure probabilities and prioritize
maintenance tasks through Failure Modes and Effects Analysis (FMEA) [2]. This system-
atic approach identified potential failure modes, assessed their impact, and prioritized
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corrective actions, resulting in high prediction accuracy and a significant reduction in the
number of unnecessary inspections. Nevertheless, the model faced limitations due to its
heavy reliance on initial data quality and the need for parameter weight adjustments.

2.2. Advancement of Predictive Maintenance Technology

Previous research has demonstrated the effectiveness of predictive maintenance in
industrial applications. For instance, studies have applied Support Vector Machines (SVMs)
for early fault detection in industrial pipelines [11] and leveraged deep learning techniques
for anomaly detection in steam-based systems [12]. However, transferring these methods
to steam trap diagnostics presents three challenges:

While predictive maintenance techniques have shown promise, applying them to
steam trap diagnostics introduces three key challenges:

1. Traditional models, such as PCA and t-SNE, provide dimensionality reduction but
may fail to preserve both local and global structures in high-dimensional data, leading
to suboptimal representation [13].

2. Supervised learning models require extensive labeled datasets, which are not always
available due to the cost of manual annotations. This limitation has been highlighted
in studies addressing data collection and quality challenges in deep learning [14].

3. Transformer-based models have demonstrated superior feature extraction capabilities for
time-series data [15], but their application to steam trap diagnostics remains unexplored.

This paper integrates time-series statistical features with a Transformer encoder–
decoder model for fault detection and visualization to address these gaps. The proposed
approach combines sensor fusion with deep learning, enabling enhanced diagnostic accu-
racy and interpretability.

One notable development in predictive maintenance is the adoption of distributed
AI systems. These systems allow for seamless integration and analysis of data across
manufacturing plants, reducing maintenance costs and increasing fault detection accuracy
through feature selection and real-time monitoring. For instance, research has shown that
distributed frameworks effectively enable plant-wide monitoring and facilitate dynamic
fault diagnostics across various industrial environments [16,17].

In addition, deep learning models have proven to be instrumental in predictive main-
tenance by processing high-dimensional and complex sensor data to identify patterns and
predict equipment failures. Recent studies highlighted the ability of deep learning algo-
rithms to analyze large datasets, prioritize maintenance tasks, and enhance fault detection
rates. This underscores the role of machine learning as a critical enabler of predictive
maintenance, allowing for proactive decision-making and resource optimization [18].

IoT and cloud-based solutions also play a pivotal role in modern predictive mainte-
nance systems. These technologies provide scalable platforms for real-time data collection
and analysis, enabling industries to implement efficient monitoring frameworks across
geographically distributed facilities. By leveraging IoT-enabled sensors and cloud com-
puting, predictive maintenance systems can significantly reduce equipment failures while
improving operational efficiency, as demonstrated in multiple industrial case studies [19].

Distributed systems for predictive maintenance further integrate these technologies
to create unified monitoring platforms capable of handling real-time data from multiple
locations. This comprehensive approach not only enhances equipment health monitoring
but also utilizes advanced machine learning techniques for fault diagnosis and feature
extraction. Such frameworks exemplify the synergy between AI and IoT technologies,
ensuring that the relevant maintenance strategies are data-driven and precise [16,17].

The advancements in predictive maintenance have profoundly impacted industrial
sectors, including manufacturing and process industries, by increasing reliability, reducing
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downtime, and optimizing operational performance. As the integration of AI and IoT
technologies continues to evolve, future research may focus on refining predictive models,
improving computational efficiency, and addressing challenges related to data quality and
system interoperability.

Dimensionality Reduction and Visualization Techniques

Conventional techniques like Principal Component Analysis (PCA), t-Distributed
Stochastic Neighbor Embedding (t-SNE), and Variational Autoencoder (VAE) have been
widely used in data visualization and representation tasks. PCA focuses on variance maxi-
mization to reduce dimensionality but may overlook subtle diagnostic patterns relevant
to fault detection. t-SNE optimizes local similarity, effectively capturing local structures
in high-dimensional data; however, it struggles to preserve global relationships, limiting
its interpretability in comprehensive diagnostic scenarios. VAE encodes data into latent
spaces that can capture complex patterns but often lacks direct interpretability for specific
diagnostic tasks.

2.3. Transformer Encoder–Decoder Model in Fault Diagnosis

The Transformer encoder–decoder model provides significant advantages for fault
detection and diagnosis in high-dimensional time-series data. Unlike recurrent models,
which process sequences sequentially, the Transformer employs a self-attention mechanism
to simultaneously capture both local and global dependencies, leading to more accurate
and reliable fault detection [20].

The key benefits of the Transformer model in fault diagnosis are as follows:

• It captures both local and global dependencies: The self-attention mechanism enables
the model to effectively preserve both short-term variations and long-term trends in
sensor data, improving fault detection accuracy [20].

• It improves computational efficiency: The parallelized processing of Transformer
models significantly reduces training and inference time compared to recurrent archi-
tectures such as LSTMs, making them well suited for handling large-scale industrial
data [21].

• It enables real-time fault diagnosis: The Transformer’s ability to rapidly analyze
streaming sensor data makes it ideal for industrial IoT applications, where fast re-
sponse times are critical for minimizing system downtime [21].

• It enhances fault pattern separation: The model’s robust feature extraction capabilities
improve fault-clustering performance, as indicated by metrics such as the Adjusted
Rand Index (ARI) and Davies–Bouldin Index (DBI), leading to more interpretable
diagnostic insights [22].

By integrating statistical time-series analysis with Transformer-based architectures, this
study enhances predictive maintenance techniques, improving both fault detection accuracy
and system reliability. The Transformer’s adaptability across various fault scenarios makes
it a valuable tool for modern industrial applications.

3. Our Approaches
The steam trap maintenance system presented in this paper has built three types of

technology to overcome the limitations of existing systems and improve the efficiency
and accuracy of steam trap management. The first is data acquisition and integration
technology that collects sensor data and process information, and the second is a sensor
network configuration that describes two approaches according to the factory network
environment. The third is the development of an AI-based steam trap diagnostic system,
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which describes the diagnostic process and two-dimensional diagnostic projection for the
reliability of diagnostic results.

3.1. Data Acquisition

Our approach monitors the status of steam traps by integrating various types of data.
These data were collected from the steam trap inlet/outlet temperature data using sensors,
asset data recording the Steam Trap’s purpose, specifications, and location, indoor/outdoor
temperature data pertaining to the factory location, work schedule, and calendar data
considering seasonal changes, and used for the steam trap diagnosis. These data were used
to diagnose whether the steam trap was operating normally according to the characteristics
of the process and to check whether the steam was being used efficiently by detecting leaks,
blockages (or closed valves), abnormalities, and signs of disuse.

3.2. Network Configuration

We propose a configuration of a standalone network and a factory intranet-dependent
network, taking into account the factory network environment.

Since most factories lack an intranet, we deployed gateways in power-accessible zones
and installed battery-powered LoRaWAN (Long-Range Wide Area Network) sensor nodes
near steam traps. LoRaWAN is a low-power, long-range wireless communication protocol
designed for IoT applications, enabling efficient data transmission over several kilometers
with minimal energy consumption [23]. These nodes wirelessly collect inlet and outlet
temperature data from the Steam Trap. Each gateway aggregates data from multiple nearby
sensor nodes and transmits it via LTE (Long-Term Evolution) to an external cloud, where
the predictive maintenance system operates. LTE is a widely used cellular communication
standard that provides high-speed wireless data transfer, ensuring reliable and real-time
connectivity for industrial applications [24]. The collected data are then relayed to an
external cloud via LTE, where the predictive maintenance system processes and analyzes it.

The factory intranet-dependent network follows the same communication method as
the standalone network but differs in terms of data transmission. Data from the gateway
are sent to the collection server via the intranet and then forwarded to the external cloud
through an internet network. This method does not incur LTE costs and enables more
lossless and stable data collection, but it has the disadvantage of requiring a separate
collection server due to security policies.

3.3. AI-Based Steam Trap Fault Diagnosis

Two core functions have been implemented for the predictive maintenance of steam
traps: fault diagnosis technology and two-dimensional diagnostic projection for reliability
verification. Each function is explained below.

3.3.1. Steam Trap Fault Diagnosis Technology

The fault diagnosis system is designed to identify potential faults in steam traps
and works by integrating various operational and environmental data. The system also
identifies fault clusters, which group steam traps based on failure types. These clusters
are visualized as part of the diagnostic results, allowing engineers to easily locate critical
failures and prioritize repairs. The spatial distribution of the clusters provides insights into
fault severity and proximity, aiding in efficient resource allocation. The system utilizes the
following data:

• Sensor data: Inlet and outlet temperatures of the steam trap.
• Trap properties: Application, size, model, manufacturer, and steam trap type.
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• Environmental information: Temperature inside the plant, local weather conditions,
work schedules, and seasonal patterns reflected through calendar data.

These data were merged to build a machine learning-based fault diagnosis model,
which was designed to classify fault types based on training data and labels. The fault
diagnosis labeling was performed by conducting data analysis with steam trap diagnostic
engineers at some factories and disassembling some of the steam traps suspected of being
faulty for detailed diagnosis, and the labeling was performed based on these data. Based
on these results, the types of failures that can be diagnosed are as follows:

• Sensor malfunction (three types): The sensor is malfunctioning, making accurate
measurement difficult (0: Out of range, 1: Frozen, 2: Inlet and outlet reversed).

• Unused: The steam trap is not currently in use.
• Leaked: The steam trap is not properly closed, causing continuous leakage of steam

or condensate.
• Blocked (or a valve is closed): The trap is blocked or the valve is closed, preventing

condensate discharge.
• Back-pressure: High outlet pressure disrupts the proper operation of the steam trap.
• Normal: The steam trap is operating normally.

3.3.2. Enhanced Two-Dimensional Diagnostic Projection for Steam Trap Fault Diagnosis

The proposed two-dimensional diagnostic projection enhances the interpretability and
reliability of fault diagnosis results, offering clear visual cues for maintenance decision-
making. Unlike traditional methods, our approach focuses on selecting the most infor-
mative attribute pairs based on classification accuracy and applies a KNN-based decision
boundary to align visualizations with actual fault distributions.

This method allows maintenance engineers to distinguish fault clusters and identify
decision boundaries, facilitating more effective maintenance strategies. The visualization
aids in prioritizing high-risk steam traps and assessing the reliability of diagnostic results
with minimal technical complexity.

Key Features of the Visualization:

• Scatter Plot Representation: Each steam trap is represented as a point, with its position
indicating proximity to fault clusters (higher likelihood of failure) or boundaries
(diagnostic uncertainty).

• Fault Proximity Analysis: Facilitates quick identification of steam traps at high risk of
failure or those with lower diagnostic certainty.

• Reliability Assessment: Provides a clear visual representation for assessing the
reliability of diagnostic outcomes.

Rationale for 2D Visualization:

• Interpretability: Two-dimensional visualizations are easier for maintenance engineers
to interpret, offering quick, actionable insights.

• Computational Complexity: Two-dimensional projections reduce computational load
without compromising the clarity of fault clustering.

• Scalability: Scalable results are easily integrated into existing industrial monitoring
dashboards without additional infrastructure.

The two-dimensional diagnostic projection serves as a practical tool for maintenance
engineers, enhancing decision-making by clearly defining fault-prone areas and focusing
maintenance efforts on the most critical equipment.

Table 1 summarizes the statistical time-series features extracted from steam trap
temperature data, which serve as input for the diagnostic model and two-dimensional
diagnostic projection.
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Figure 1 illustrates a five-step process for visualizing steam trap fault diagnosis,
incorporating data preprocessing, statistical time-series transformation, our proposed
model-based latent feature extraction, feature selection, and KNN-based decision bound-
ary application.

1. Data preprocessing to identify and correct outliers

2. Transformation into statistical time-series features

3. Extraction of latent features using a Transformer encoder–decoder model

4. Selection of the most informative attribute pairs based on classification accuracy

5. Visualization of the results using a KNN-based decision boundary

Figure 1. A five-step process for visualizing steam trap fault diagnosis.

Table 1. This table contains the statistics used to generate statistical time-series features. Features are
created by extracting 20 statistics for the inlet and outlet temperatures of the 5-min interval steam
trap collected per day.

Name Formula

Maximum max(x) = maxi(xi)
Minimum min(x) = mini(xi)
Absolute Average absavg(x) = 1

n ∑n
i=1 |xi|

Peak to Peak ptp(x) = max(x)− min(x)
RMS 1 rms(x) =

√
1
n ∑n

i=1 x2
i

Mean mean(x) = 1
n ∑n

i=1 xi

Standard Deviation std(x) =
√

1
n ∑n

i=1(xi − mean(x))2

Skewness skew(x) =
1
n ∑n

i=1(xi−mean(x))3

( 1
n ∑n

i=1(xi−mean(x))2)
3/2

Kurtosis kur(x) =
1
n ∑n

i=1(xi−mean(x))4

( 1
n ∑n

i=1(xi−mean(x))2)
2 − 3

Variance var(x) = 1
n ∑n

i=1(xi − mean(x))2

Wave Factor wf(x) = rms(x)
absavg(x)

Change Coefficient ccoef(x) = std(x)
mean(x)

Median median(x) = P50
Clearance Factor cf(x) = max(|xi |)

rms(x)
Impulse Factor if(x) = max(|xi |)

absavg(x)
Percentile 25 P25(x) = x(⌈ 25(n+1)

100

⌉)
Percentile 50 P50(x) = x(⌈ 50(n+1)

100

⌉)
Percentile 75 P75(x) = x(⌈ 75(n+1)

100

⌉)
Percentile 90 P90(x) = x(⌈ 90(n+1)

100

⌉)
Sum sum(x) = ∑n

i=1 xi
1 RMS: root mean square.
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4. Experiments
This study consists of three sections, which aim to evaluate the performance of the

steam trap predictive maintenance system:

• Data acquisitions.
• Experiment setting.
• Performance evaluation.

Data collection was carried out by building a sensor network in two actual factories and
receiving process data from the factories, and the experiment was conducted by building a
machine learning operations (MLOps) environment. Finally, the performance evaluation
was performed in three ways. First, the fault diagnosis performance of various machine
learning models was measured and compared. Second, the clustering performance of
the two-dimensional diagnostic projection generated by various characteristic factors was
compared. Finally, the experiment was conducted to compare the thermal energy efficiency
of a steam system scheduled for maintenance based on fault diagnosis with that of a steam
system in its existing state and to input the effect of the scheduled maintenance system.

4.1. Data Acquisitions

Data for the experiment were obtained by installing sensors in large-scale aluminum
processing plants and food manufacturing plants and performing precise diagnostics to
secure learning data. Temperature sensors were strategically placed with the assistance of
steam trap maintenance engineers at each plant and external steam trap experts. The train-
ing dataset was created by collecting work schedule data, including factory operating hours
and planned maintenance (PM) dates, as well as temperature and humidity levels inside
the factories, external weather conditions, the steam system configuration, and the purpose
of steam-utilizing facilities. Additionally, temperature sensors were installed in the steam
traps with the help of professional engineers.

We removed and corrected outliers from the sensor data to ensure data quality. Outliers
were primarily identified using the 1.5 × IQR (Interquartile Range) rule, and additional
criteria were applied, such as detecting values that remained unchanged up to the second
decimal place for extended periods. Detected outliers were removed and corrected using
the nearest neighbor interpolation method to maintain data continuity.

Furthermore, during the data validation process, we discovered that due to wire-
less sensor malfunctions, the inlet and outlet temperature values were swapped in some
cases. To address this issue, we carefully analyzed the recorded data, identified incorrect
assignments, and restored the proper order of temperature values. This correction allowed
us to recover and ensure the integrity of the collected data. To improve fault diagnosis
accuracy, we conducted a multi-step validation process. First, a primary fault diagnosis
was performed based on the collected data. For cases where the diagnosis was unclear,
a secondary on-site diagnosis was conducted using a portable thermal imaging camera
in collaboration with factory engineers and external experts. Finally, for certain steam
traps, a detailed inspection was performed by physically disassembling them, verifying the
results of the secondary diagnosis, and completing the labeling of the acquired data.

The training data used for fault diagnosis and reliability assessment are presented in
Table 2; various environmental and operational parameters are included.

Figure 2 illustrates the thermal imaging of steam traps, which provides a visual repre-
sentation of the temperature distribution across the main equipment in the steam system.
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Table 2. This table presents examples of training data used for fault diagnosis and reliability assess-
ment visualization. It contains statistical time-series data, steam trap specifications, internal factory
temperature, external weather information, and calendar data.

Attribute Example 1 Example 2 Attribute Example 1 Example 2
site_id 919 919 outlet_rms 97.79 97.806
dev_id 630 630 outlet_mean 97.79 97.806
dev_size 1 1 outlet_std 0.123 0.218
dev_type 0 0 outlet_skewness 0.082 0.439
dev_manufacturer 0 0 outlet_kurtosis_value −1.18 −0.865
inlet_max 154.27 152.7 outlet_variance 0.015 0.047
inlet_min 147.81 148.53 outlet_wave_factor 1 1
inlet_absolute_average 151.744 150.49 outlet_clearance_factor 0.01 0.01
inlet_ptp 6.46 4.17 outlet_impulse_factor 1.002 1.005
inlet_rms 151.752 150.495 outlet_percentile25 97.7 97.633
inlet_mean 151.744 150.49 outlet_percentile50 97.785 97.81
inlet_std 1.564 1.284 outlet_percentile75 97.91 97.975
inlet_skewness −0.755 −0.013 outlet_percentile90 97.94 98.129
inlet_kurtosis_value −0.018 −1.296 outlet_sum_value 2346.96 2347.35
inlet_variance 2.445 1.648 outlet_median 97.785 97.81
inlet_wave_factor 1 1 env_temp 15.907 17.545
inlet_clearance_factor 0.007 0.007 env_humi 23.669 28.493
inlet_impulse_factor 1.017 1.015 outdoor_humi 67.324 71.406
inlet_percentile25 150.72 149.222 outdoor_temp −1.251 1.013
inlet_percentile50 152.125 150.315 outdoor_feellike −3.367 0.95
inlet_percentile75 152.888 151.538 outdoor_windspeed 1.867 0.779
inlet_percentile90 153.187 152.048 year 2024 2024
inlet_sum_value 3641.85 3611.75 month 1 1
inlet_median 152.125 150.315 day 3 10
outlet_max 98.02 98.26 weekday 3 3
outlet_min 97.6 97.49 operation 1 1
outlet_absolute_average 97.79 97.806 pm 1 0 0
outlet_ptp 0.42 0.77 label 4 4

1 pm: Planned maintenance.

4.2. Experiment Settings

We acquired data from two factories to build experimental data and conducted a
performance experiment on two-dimensional diagnostic projection, which can verify the
reliability of the fault detector and fault diagnostic.

All data were collected online using the Industrial IoT platform. Some data were
extracted from documents and worksheets and stored on the platform. Sensor data collec-
tion was performed at five-minute intervals and the other data were sampled at the same
interval to build a training dataset. Afterwards, factory engineers and external experts
worked on labeling the fault diagnosis and status.

Performance evaluation was performed by measuring the following evaluation indi-
cators using 5-fold stratified cross-validation, where the data were split into folds while
preserving the class distribution.

• Area Under Curve (AUC).
• Classification accuracy (CA).
• F-score (F1).
• Precision.
• Recall.
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Figure 2. This figure shows thermal images of the main equipment in the steam system at an
aluminum processing plant and a food manufacturing plant. Most of the steam pipes are insulated
with heat insulators, while equipment that can be manually set (such as steam traps) is not insulated.

In this paper, the Transformer model and the machine learning and deep learning
models below were compared with regard to their performance with the training data
under the same conditions.

A performance evaluation of the two-dimensional diagnostic projection was conducted
by comparing the distance between clusters and the dispersion of clusters, using the
following cluster performance measurement indicators:

• Within-Cluster Sum of Squares (WCSS): Measures the compactness of clusters by
calculating the sum of squared distances between each data point and the centroid of
its assigned cluster. Lower values indicate tighter, well-defined clusters.

• Bayesian Information Criterion (BIC): Evaluates the trade-off between model com-
plexity and goodness of fit. Lower values indicate better clustering performance with
minimal overfitting.

• Davies–Bouldin Index (DBI): Assesses cluster separation and compactness by com-
paring intra-cluster dispersion with inter-cluster distances. Lower values indicate
better-defined clusters.

• Adjusted Rand Index (ARI): Measures clustering accuracy by comparing the agree-
ment between predicted clusters and ground truth labels. Higher values indicate
stronger alignment with actual fault patterns.

• Calinski–Harabasz Index (CHI): Computes the ratio of between-cluster dispersion
to within-cluster variance. Higher values indicate well-separated clusters with mini-
mal overlap.
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Table 3 presents the hyperparameter settings for the models utilized in our experi-
ments. The optimal hyperparameters for each model were determined using RGHL (Rapid
Genetic Exploration with Random-Direction Hill-Climbing for Linear Exploitation), a hy-
perparameter optimization technique that combines genetic algorithms with local search
strategies to efficiently explore and exploit the hyperparameter space. This approach en-
ables rapid convergence to near-optimal solutions while maintaining a balance between
exploration and exploitation. The optimized values for each model are summarized in
Table 3 [25].

Table 3. Hyperparameter settings for the models used in the experiments.

Model Hyperparameter Value

Random Forest (RF) Number of Trees 100
Attributes Considered per Split 5

Gradient Boost (GB)
Number of Trees 100

Learning Rate 0.1
Max Depth per Tree 3

Adaptive Boosting (AdaBoost)

Number of Estimators 50
Learning Rate 1.0

Classification Algorithm SAMME.R
Regression Loss Function Linear

Multi-layer Perceptron (MLP)
Network Structure 50 × 50 × 50

Activation Function ReLU
Optimizer Adam

Transformer (Ours)

Input Dimension 52
Hidden Dimension 8
Output Dimension 52
Number of Layers 4

Attention Heads 8
Intermediate Size 32 (Hidden Dim × 4)

Dropout Probability 0.1
Max Sequence Length 512

Optimizer Adam (lr = 10−4)
Loss Functions MSE (Reconstruction), BCE (Classification)

4.3. Performance Evaluation

The performance evaluation of the fault diagnosis was conducted using a merged
dataset, which integrates data from both the aluminum processing plant and the food
manufacturing plant. To ensure unbiased evaluation, attributes that could identify the
factory, such as the factory name, were removed before conducting the experiment.

Table 4 compares fault diagnosis performance across models using AUC, CA, F1-
score, Precision, and Recall. The Transformer model outperforms all others, achieving the
highest AUC (0.927), CA (0.932), and F1-score (0.938), demonstrating its superior diagnostic
capability. While AdaBoost and Gradient Boosting perform well, they fall short of the
Transformer, confirming the effectiveness of deep learning-based fault detection.

Table 4. Fault diagnosis model performance evaluation. The best scores for each metric are high-
lighted in bold.

Model AUC CA F1 Precision Recall

RF 0.890 0.875 0.875 0.875 0.875
MLP 0.902 0.895 0.898 0.900 0.899
GB 0.906 0.887 0.886 0.888 0.887
AdaBoost 0.915 0.901 0.902 0.901 0.902
Transformer 0.927 0.932 0.938 0.916 0.914
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Figure 3 illustrates the Receiver Operating Characteristic (ROC) curves for the
Transformer-based fault diagnosis model, evaluating its ability to classify steam trap
conditions into four categories: Unused (Class 0), Leaked (Class 1), Normal (Class 2),
and Blocked (or closed valve) (Class 3).

Each solid line represents the ROC curve of an individual class, with the area under
the curve (AUC) values indicated in the legend. The model achieves high AUC scores for
all classes, with Class 0 and Class 1 reaching 0.93, while Class 2 and Class 3 achieve 0.91,
indicating strong classification performance.

Figure 3. Receiver Operating Characteristic (ROC) Curve of a Transformer-based fault diagno-
sis model.

Additionally, the micro-average ROC curve (AUC = 0.92) and the macro-average ROC
curve (AUC = 0.93) provide aggregated performance metrics, showcasing the model’s over-
all classification effectiveness across multiple fault types. The diagonal dashed line (y = x)
represents the random classifier baseline, against which the model’s superior predictive
capability is evident.

This result demonstrates the robustness of the Transformer model in identifying
different fault conditions in steam traps, aiding in effective predictive maintenance and
operational optimization.

While the current model demonstrates stable performance across different cross-
validation folds, we anticipate that as more data become available, the stability of cross-
validation results will further improve. This expectation is based on well-established
statistical principles in machine learning, where larger datasets tend to reduce variance in
model performance across different subsets of data.

Future research will aim to verify this hypothesis by incorporating additional sensor
data from multiple industrial sites, analyzing the relationship between training data size
and cross-validation robustness.

Figure 4 shows a visualization of the performance evaluation of the two-dimensional
diagnostic projection, illustrating different methods from (a) to (f). (a) represents the
visualization using simple statistics, providing a basic statistical perspective on the data
distribution; (b) applies Principal Component Analysis (PCA) to reduce dimensionality
while maintaining the overall variance of the dataset; (c) utilizes t-Distributed Stochastic
Neighbor Embedding (t-SNE) to highlight local relationships within the data; (d) employs
a Variational Autoencoder (VAE) to extract latent representations and project them into
two dimensions; (e) presents the Transformer-based diagnostic projection, which shows a
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more stable distribution and clear decision boundaries between clusters compared to other
visualizations, minimizing overlap between clusters. Finally, (f) combines all the properties
from (a) to (e) to create a comprehensive visualization.

Figure 5 provides a detailed view of the overlapping regions in panel e of Figure 4,
showing that the normal (green) and leaked (blue) clusters are relatively well separated.
While some overlap between the normal and leaked clusters with the unused clusters is ob-
served, it is considered negligible, as it does not significantly impact the diagnostic results.

Figure 4. Comparison of 2D diagnostic projection with statistical and machine learning methods.

Figure 5. Magnified view of cluster overlapping in Transformer-based 2D diagnostic projection.
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Table 5 demonstrates that the Transformer model delivers the best overall clustering
quality, achieving the lowest DBI, a high ARI, and the highest CHI, ensuring that clusters
are well separated and cohesive. The All Features model has the highest ARI but struggles
with cluster separation, and the VAE model performs well in terms of compactness (WCSS)
but lacks separation (low CHI). These results highlight the effectiveness of our proposed
model for fault diagnosis in steam trap predictive maintenance.

Figure 6 is referenced from the Miyawaki Inc. Steam Trap description article [26] and
shows the structure of the steam trap and the temperature measurement location. It shows
the temperature (Tinitial) inside the steam pipe, the temperature (Tin) at the input of the
steam trap, and the temperature (Tout) at the output of the steam trap in the steam system.

Table 5. Comparison of clustering quality metrics for fault diagnosis models. The best scores for each
metric are highlighted in bold.

Model WCSS BIC DBI ARI CHI

Simple stats. 1 212,077 212,077 2.6145 0.7671 5392
PCA 169,806 103,608 2.2582 0.7479 5146
t-SNE 12,083,970 217,808 1.7633 0.8868 3579
VAE 7117 −33,338 1.8366 0.7421 1862
Transformer 19,700 74,711 0.8808 0.9195 14,558
All Features 8,638,854 161,006 4.1308 0.9256 11,738

1 Simple stats.: Simple statistics.

Figure 6. Schematic of steam trap structure with temperature measurement points.

The thermal energy efficiency (η) is calculated as the ratio of the useful energy output
to the total energy input, as shown in Equation (1):

η =
Useful Energy (Output)

Total Energy (Input)
× 100 (1)

In the case of a steam system, the thermal energy efficiency can be expressed as follows:

η =
Tinitial − Tout

Tinitial
× 100 (2)
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To evaluate the impact of the predictive maintenance system, we define the thermal
energy efficiencies before (Eb) and after (Ea) the system’s implementation. These are
calculated as follows:

Eb =
1
t
·

t

∑
i=1

Tinitial − Tout,i

Tinitial
, (3)

Ea =
1

n − (t + α + 1)
·

n

∑
i=t+α+1

Tinitial − Tout,i

Tinitial
. (4)

Here, the variables are defined as follows:

• Tinitial : Initial steam temperature at 1 atmosphere of pressure.
• Tout,i: Discharge temperature at the steam trap for the i-th measurement.
• t: The time point when the predictive maintenance system is introduced.
• α: The installation period for the predictive maintenance system.
• n: The total number of data points.

The thermal energy efficiency before (Eb) is calculated using the average efficiency
over the data collected prior to the system’s implementation. Similarly, the thermal en-
ergy efficiency after (Ea) is computed using the data collected after the installation and
stabilization period (t + α + 1). By comparing Eb and Ea, the effectiveness of the predictive
maintenance system can be quantitatively evaluated.

Esaving = (Ea − Eb) · 100 ≈ Ea − Eb
max(Ea, Eb)

· 100 (5)

We measured the thermal energy savings with the data obtained before and after
the introduction of the predictive maintenance system at the two plants. The aluminum
processing plant achieved an energy-saving rate of 7.2%, and the food manufacturing plant
achieved 5.772%, for an average energy saving rate of 6.92%.

4.4. Computational Efficiency Analysis

To evaluate the computational efficiency of our Transformer-based fault diagnosis
model for steam traps, we analyzed both training and inference times on different hard-
ware configurations. This section presents a comparative analysis of CPU and GPU per-
formance, highlights potential optimization strategies, and discusses the implications for
large-scale deployment.

4.4.1. Dataset and Experimental Setup

We used training data collected from 50 steam traps in two industrial plants over
one year, generating statistical time-series features daily. This resulted in approximately
180,000 data points. Execution time measurements were recorded during training.

Each experiment was repeated 100 times to ensure robustness and response times
were analyzed with a confidence interval of 95%.

4.4.2. Hardware Specifications

The computational experiments were conducted using the hardware specifications
listed in Table 6. The training and inference processes were tested on both a high-
performance CPU (Intel Core i9-10920X) and a multi-GPU system (dual NVIDIA GeForce
RTX 3090).
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Table 6. Hardware specifications for computational efficiency measurement.

CPU Specifications GPU Specifications
Model Intel Core i9-10920X Model NVIDIA GeForce RTX 3090 (x2)
Architecture x86_64 (64-bit) CUDA Cores 10,496 per GPU
Cores/Threads 12 Cores/24 Threads Memory 24 GB GDDR6X per GPU
Base Clock 3.50 GHz Memory Bandwidth 936.2 GB/s
Max Clock 4.80 GHz Base Clock 1.40 GHz
L1 Cache 384 KiB Boost Clock 1.70 GHz
L2 Cache 12 MiB TDP 350 W per GPU
L3 Cache 19.3 MiB CUDA Version 12.1
TDP 165 W Driver Version 530.30.02
SIMD Extensions AVX512, SSE4.2, FMA3
Virtualization VT-x Supported

4.4.3. Training and Inference Performance

Table 7 presents the training and inference response times along with their 95% con-
fidence intervals. The GPU setup demonstrated a significant reduction in training time
compared to the CPU setup, resulting in a 29.9% improvement. Similarly, inference speed
was improved by 28.7%, which is particularly beneficial for real-time fault diagnosis in
industrial environments.

Table 7. Training and inference response times with 95% confidence interval.

Device Train (s) Inference (s)

CPU 5.250 ± 0.057 0.0153 ± 0.00038
GPU 3.682 ± 0.029 0.0109 ± 0.00032

The improved performance of GPUs can be attributed to their parallel process-
ing capabilities, which accelerate matrix multiplications and self-attention operations in
Transformer-based architectures. However, it is important to note that CPU-based inference
may still be a viable option for edge computing applications when GPUs are unavailable.

4.4.4. Scalability and Optimization Strategies

Based on the results from Table 7, several optimization strategies can be considered
for large-scale deployment:

• Mixed-Precision Training: Leveraging FP16 computations using NVIDIA’s Auto-
matic Mixed Precision (AMP) can further reduce memory consumption and improve
training speed.

• Model Pruning and Quantization: Reducing model size by removing redundant
parameters or converting weights to less precise formats (e.g., INT8) can enhance
efficiency, especially for embedded systems.

• Distributed Training: Using multi-GPU training strategies such as model parallelism
and data parallelism can scale up training for large industrial datasets.

5. Conclusions
This study proposed a deep learning model-based fault diagnosis framework for

steam trap monitoring, demonstrating superior clustering performance and enhanced
interpretability compared to traditional methods. By leveraging statistical time-series
transformation and latent feature extraction, the model improves diagnostic accuracy and
reliability through effective fault pattern identification.

Extensive experiments were conducted in two distinct industrial environments—an
aluminum processing plant and a food manufacturing plant—where the system exhibited
strong adaptability and robustness. The results indicated average thermal energy savings
of 6.92% across both sites, underscoring its potential to reduce energy consumption and
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greenhouse gas emissions. Additionally, the implementation of a two-dimensional diag-
nostic projection significantly improved interpretability, enabling maintenance engineers to
prioritize repairs more effectively and ensure operational reliability.

While the results are promising, several limitations must be addressed:

• Data Availability: The model requires a large labeled dataset, which may not always
be feasible in industrial environments.

• Energy Consumption Variability: External factors such as production schedules,
seasonal changes, and maintenance activities may impact energy savings. Additional
studies are needed to analyze these influences.

• Sensor Dependency: The current approach primarily relies on temperature data,
limiting applicability to diverse steam trap configurations. Future work should explore
multimodal sensor integration (e.g., pressure and acoustic signals).

• Model Comparison: While the proposed Transformer-based model outperformed
traditional machine learning methods, this study did not include a direct comparison
with self-supervised learning approaches. Future work will explore the integration of
self-supervised models, which can leverage unlabeled data to reduce labeling costs
and enhance scalability. Comparing these models will provide insights into their
relative performance, computational efficiency, and cost-effectiveness.

• Cost–Benefit Analysis: Although this study analyzed the energy-saving potential
of the proposed system, a comprehensive cost–benefit analysis was not conducted.
Future research will incorporate an economic assessment that considers installation
and operational costs alongside energy savings to evaluate the financial feasibility of
this AI-driven predictive maintenance system.

Moving forward, we plan to expand this approach in several key areas. One potential
direction is domain adaptation, which will allow us to deploy the model across diverse
industrial settings with varying steam trap configurations. Conducting tests in multiple
factories will help assess its generalizability and adaptability. Additionally, integrating
multimodal sensor data will reduce dependency on a single sensor type, enhancing reliabil-
ity in complex industrial environments. Lastly, extending this framework beyond steam
traps to other industrial equipment will validate its applicability to broader predictive
maintenance applications. These advancements will contribute to a more scalable and
practical predictive maintenance system.

In conclusion, while the proposed method significantly improves fault diagnosis
and energy efficiency, further research is needed to refine its adaptability, validate long-
term energy savings, and enhance its applicability across diverse industrial conditions.
Moreover, incorporating a cost–benefit analysis will be crucial to assess the method’s
economic feasibility and promote its adoption in real-world industrial applications. Future
studies will also investigate self-supervised models to reduce the reliance on labeled data
and improve scalability, offering a broader perspective on model efficiency and deployment
in a range of industrial settings.
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