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Abstract: Upon the advent of the big data era, information processing hardware plat-
forms have undergone explosive development, facilitating unprecedented computational
capabilities while significantly reducing energy consumption. However, conventional
electronic computing hardware, despite significant upgrades in architecture optimization
and chip scaling, still faces fundamental limitations in speed and energy efficiency due
to Joule heating, electromagnetic crosstalk, and capacitance. A new type of information
processing hardware is urgently needed for emerging data-intensive applications such as
face identification, target tracking, and autonomous driving. Recently, integrated photon-
ics computing architecture, which possesses remarkable compactness, wide bandwidth,
low latency, and inherent parallelism, has harvested great attention due to its enormous
potential to accelerate parallel data processing, such as digital image convolution. In this
study, an integrated photonic processor based on a Mach-Zehnder interferometer (MZI)
network is proposed and demonstrated. The processor, being scalable and compatible
with complementary metal oxide semiconductors, facilitates mass production and seamless
integration with other silicon-based optoelectronic devices. An experimental verification
for digital image convolution is also performed, and the result deviations between our
processor and a commercial 64-bit computer are less than 2.3%.

Keywords: photonics computing; optoelectronic integration; artificial intelligence; optical
neural networks; integrated photonics; digital image convolution

1. Introduction

Image processing techniques have been used extensively in many different applications,
such as medical diagnosis [1-4], intelligent driving [5-8], and target identification [9-11].
Digital image convolution is one of the most fundamental processing techniques for ex-
tracting image features [12-15]. This convolution process involves multiplying the image
pixel matrix with a kernel, encompassing numerous parallel multiply-accumulate (MAC)
operations. The increasing demand for real-time and high-quality image processing has
sparked a rapid expansion in custom hardware designed to accelerate MAC operations.
Diverse electronic computing hardware, encompassing field-programmable gate arrays (FP-
GAs) and graphics processing units (GPUs), have been developed to enhance computational
capabilities. Meanwhile, various fast and efficient computing technologies have also been
developed, such as reversible computing [16] and neuromorphic computing [17]. However,
against the backdrop of gradual failure of Moore’s law [18], these electronic schemes still
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encounter bottlenecks in terms of speed and energy efficiency. The enhancement of com-
puting speed heavily depends on the scaling up of hardware, resulting in an annual surge
in data center costs and power consumption. However, even this expansion fails to keep
pace with the explosive development of technologies such as artificial intelligence, cloud
computing, and big data. Furthermore, a multitude of small- and medium-sized unmanned
platforms, including drones and robots, hindered by their restricted payload capacities,
cannot accommodate bulky computing hardware, thereby generating an imperative need
for solutions that offer high computing power with low power consumption. In recent
years, photonic computation, which employs photons as the information carrier instead of
electrons, has been rapidly developed due to its numerous advantages, including intrin-
sically large bandwidth, low latency, and high parallelism. Although a prototype made
up of discrete devices was demonstrated decades ago [19], it remained excessively bulky
and unstable. To address these limitations, photonic integration technology [20-22] was
introduced, offering compactness, scalability, and cost-effectiveness. In 2007, Shen et al.
pioneered the concept of a coherent nanophotonic chip using Mach-Zehnder interferometer
(MZI) meshes for vowel recognition [23], which opened a new era of integrated photonic
computation. Since then, various integrated photonic computing chips have been exten-
sively reported, primarily categorized into two groups: those utilizing MZI meshes [24-27]
and those employing micro-ring (MRR) meshes [28-30]. The former typically utilizes a sin-
gle coherent light source and carries out MAC operations through light interference within
the MZI meshes, while the latter employs multiple light sources with varying wavelengths,
modulated by MRRs operating in distinct states, for loading weights during MAC opera-
tions. Both types of integrated photonic computing chips possess their own advantages and
are widely studied. In this paper, taking into account the consumption of light sources, we
opted for the cascaded MZIs configuration and presented a scalable silicon-based photonic
computing processor capable of executing digital image convolution. The proposed chip,
measuring 1.5 mm X 6 mm, is comprised of 20 MZIs and capable of executing arbitrary
matrix transformations with a dimension of 4 x 4. Along with the off-chip laser source,
photodetector (PD) arrays, and upper computer, a digital image convolution experiment
platform is constructed based on the packaged photonic computing chip. A self-configuring
algorithm based on gradient descent method is utilized for weight training to load convo-
lution kernel. The proposed chip is characterized by comparing with a 64-bit computer in
performing convolution for a digital image with a resolution of 320 x 256, and the relative
computation error is less than 2.3%. Under plausible assumptions, notably the integration
of cutting-edge photonic I/O technology and the realization of substantially larger chip
dimensions, the proposed processor promises remarkable enhancements in both computing
speed and energy efficiency, potentially achieving improvements spanning one to two
orders of magnitude when compared to current top-tier electronic computing devices, such
as NVIDIA’s Al computing cards.

2. Device Design and Experimental Setup

The schematic of the photonic computing chip demonstrated in this work is shown
in Figure 1. The chip consists of five parts. Part (1) is a 1-to-4 power splitter, and Part
(2) is composed of four parallel MZIs, which connect to the respective outputs of the
power splitter. These MZIs are used to load the input signals by modulating the light
intensity. Parts (3), (4), and (5) are all MZI arrays, which can perform an arbitrary matrix
transformation as a whole according to singular value decomposition [31]. Specifically,
Parts (3) and (5) are the same and are composed of six MZIs, respectively, which are
arranged as a rectangular mesh, as reported in Ref. [29]. These two parts can perform
arbitrary unitary matrix transformation. Part (4) has 4 MZIs used for intensity attenuation,
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achieving arbitrary diagonal matrix transformation. The rectangular scheme, rather than
the triangular scheme [32] designed by Reck, is chosen in order to halve the optical depth,
which is important for minimizing transmission loss and reducing chip size. Besides, the
rectangular scheme has a natural symmetry that makes it significantly more robust to
fabrication errors [31]. In general, the chip contains 20 MZIs and 40 phase shifters in total.
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Figure 1. The schematic of the photonic computing chip. The red components signify the in-
put/output optical signals, whereas the purple section represents the silicon waveguide. Positioned
on the waveguide, the blue squares denote the thermal phase shifters. Furthermore, the gold squares
indicate the metal bond pads, which are interconnected to the thermal phase shifters on-chip and
external driving circuit through a wire-bonding process (not illustrated in the figure).

The external light is firstly coupled into the photonic computing chip through a grating
coupler, subsequently divided into four equal beams by Part (1). Following transmission
through Part (2), all of them undergo modulation with corresponding electrical signals,
subsequently being mixed within the MZI network encompassing Parts (3), (4), and (5),
which performs MAC operations in the optical domain through splitting and interference.
Eventually, the four mixed light beams are coupled out of the chip via grating couplers
and captured by four commercial photodetectors. The aforementioned process is capable
of executing matrix-vector multiplication, represented by the equation X:B = A. In this
equation, B denotes a four-dimensional vector determined by the input electrical signals
transmitted to Part (2), X represents the matrix transformation carried out by the MZI
network, and A signifies another four-dimensional vector that is determined by the output
signals collected by the photodetectors.

The photonic computing chip has been crafted on the silicon-on-insulator (SOI) plat-
form, featuring a top Si layer of 220 nm and SiO; cladding of 2 um. The grating coupler
employed is of the focused type [31], with a shallow etch depth of 150 nm. The grating’s
period and duty cycle are designed at 650 nm and 0.5, respectively, optimized for a center
wavelength of 1550 nm. The power splitter in Part (1) is comprised of three cascaded 1 x 2
multimode interference (MMI) couplers, with detailed structures depicted in Figure 2a.
The first MMI stage divides the incident light into two equal parts, and, subsequently, the
second MMI stage further divides this light into four equal components. The dimensions
of the multimode waveguide are specified as L; = 7.9 um in length and W; = 3.2 um in
width. To mitigate abrupt width transitions and minimize reflection losses at the junctions
between single-mode and multimode waveguides, tapered structures with a length of
Lt = 10 um are introduced. We employ a light source with a wavelength of 1550 nm and a
power of 10.6 dBm as the input for the beam splitter, resulting in optical powers of approxi-
mately 4.3 dBm, 4.2 dBm, 4.2 dBm, and 4.2 dBm at its four output terminals, respectively.
Consequently, the beam splitter exhibits an excess loss of approximately 0.4 dB.
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Figure 2. (a) Schematics of the 1-to-4 power splitter. There is one MMI in the first stage and two in
the second. (b) Schematic of an MZI unit.

The MZI serves as the fundamental building block of the photonic computing chip,
consisting of two 3-dB couplers and two phase shifters, as depicted in Figure 2b. The 3-dB
coupler employs a 2 x 2 MMI configuration, featuring dimensions of L, = 31 pm in length
and W, = 5.2 um in width. The phase shifter, utilizing the thermal-optic effect, is achieved
by depositing a 0.1 pm-thick layer of TiN film above the waveguide, serving as a thermal
resistance. The TiN film is designed to exhibit a resistance of 480 (), with dimensions of
100 pm x 2.5 pm.

To drive the proposed photonic computing processor, a custom-designed control
circuit has been developed, utilizing six 8-channel digital-to-analog converters (DACs,
AD5592R, Analog Devices, Wilmington, MA, USA) and an FPGA (XC7Z2020-2CLG484I,
Xilinx, San Jose, CA, USA). Notably, the AD5592R converters possess dual functionality,
serving as both DACs and analogue-to-digital converters (ADCs).

The light source of the system is a laser (SFL1550P, Thorlabs, Newton, NJ, USA)
emitting at 1550 nm with an output power of 10.6 dBm. To enhance the coupling efficiency
between the light source and the chip, a polarization controller (CPC900, Thorlabs, Newton,
NJ, USA) is utilized. The MZI network is pre-configured to perform matrix multiplication
with the control circuit by tuning the output voltage of the DACs. After transmission, the
outputs of the chip are obtained by four photodetectors (DXM20AF, Thorlabs, Newton, NJ,
USA), converted to four photocurrents, and then acquired by the ADCs.

3. Results

The microscope images depicting the photonic computing chip and its crucial compo-
nent, the Mach-Zehnder interferometer, are presented in Figure 3. The chip, with dimen-
sions of 6 mm in length and 1.5 mm in width, is fabricated using a mature CMOS process.
The detailed fabrication procedure is as follows: First, the SOI wafer is cleaned and spin-
coated with a photoresist. Using ultraviolet lithography, the waveguide pattern is formed
on the photoresist. Nest, the waveguide structures are etched using Reactive Ion Etching
(RIE), followed by the deposition of a silicon dioxide cladding via Plasma-Enhanced Chem-
ical Vapor Deposition (PECVD). A TiN film is then formed through magnetron sputtering,
and metal electrical contacts and interconnects are formed using electron beam evaporation.
Another layer of silicon dioxide is deposited as a passivation layer, followed by the final
steps of etching pad opening. In Figure 3b, TiN heaters are fabricated on both arms of the
MZI switch to reduce the loss difference and enhance the extinction ratio of the MZI switch.
Figure 3¢ offers a magnified perspective of the thermal phase shifter, where the two dark
squares represent deep silicon-etched grooves positioned on both sides of the heater. Their
purpose is to minimize thermal crosstalk among phase shifters.
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Figure 3. (a) Microscope images of the fabricated photonic computing chip using the CMOS process.
(b) The fabricated reference MZI switch. When light is introduced through the upper port, the output
port situated above is termed the “Through” port, while the port positioned below is designated as
the “Cross” port. (c) Magnified perspective of the thermal phase shifter.

Prior to testing the entire device, the modulation efficiency and speed of the MZI
unit are initially characterized. Figure 4a,b depicts the measured transmission spectrum
of the MZI unit functioning as an optical switch. Regardless of whether the MZI switch is
in the “ON” or “OFF” state, its excess loss, a metric representing the dB loss of the total
optical power at all output ports compared to the input optical power, remains under 1
dB. Additionally, at the operating wavelength of 1550 nm, the extinction ratio of the MZI
switch surpasses 30 dB, demonstrating excellent performance. Note that 18 mW electrical
power is needed to change the MZI state between “ON" and “OFF”. Figure 4c illustrates
the optical response of the MZI unit when driven by a 10 kHz square wave electrical signal.
The ascending phase of the optical response, which encompasses a transition from 10%
to 90% of its normalized maximum, endures approximately 11us. This indicates that the
modulation speed of the MZI reaches approximately 90 kHz.
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Figure 4. The measured transmission spectra of the MZI switch in (a) the “ON” state and (b) the
“OFF” state. (c) The optical response of the MZI switch when driven by a 10 kHz square wave
electrical signal.

As previously stated, the MZIs in Part (2) function as intensity modulators and require
pre-calibration to establish a relationship model between optical output and electrical input.
Figure 5 illustrates the normalized optical output power P; (i =1, 2, 3, 4) plotted against the
electric power applied to the MZI; (W;) in Part (2). This relationship can be theoretically
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described by the equation provided below, with W,,;;,, and W,,x representing the electric
power corresponding to the minimal and maximal optical output, respectively:

1 Wi — Wi
Pi==|1—cos| ——1_ 1)
2 Wmux - Wmin
(a) * Experiment (b) * Experiment
1.0 Fitted 1.0 Fitted
08 0.8
35 5
& =
8 06} 8 0.6
el o
g :
5 04 ‘g 04
£ E
o o
Z 02} Z 02
00l 0.0
1 1 1 1 1 1 1 1
0 10 20 30 40 50 0 10 20 30 40 50
Electric Power (mW) Electric Power (mW)
(c) * Experiment (d) * Experiment
10 | Fitted O Fitted

Normalized Output
Normalized Output

1 1 L | 1 L f 1
0 10 20 30 40 50 0 10 20 30 40 50
Electric Power (mW) Electric Power (mW)

Figure 5. (a-d) The relationship between the normalized output of the MZI; (i = 1, 2, 3, 4) in Part (2)
and the electric power applied, respectively.

The red lines depicted in Figure 5 represent the fitting curves utilizing the sine function,
with a correlation ratio exceeding 0.999, thereby indicating an excellent agreement between
the theoretical predictions and experimental observations.

Next, the convolution kernels should be loaded onto Part (3). For this study, we have
selected four different 2 x 2 kernels, designated as K; (i = 1, 2, 3, 4), and integrated them
into a 4 x 4 matrix X, as shown below:

025 025 025 025
X — 05 —-05 05 —05 @
05 05 —-05 —-0.5

1 0 0 -1

Each row of the matrix X represents a convolution kernel. Specifically, the first kernel
can blur the input image, whereas the second and third kernels are designed to extract
vertical and horizontal edges, respectively. The fourth kennel can be regarded as a fusion
of the second and third kennels, which can highlight the oblique outlines. According to the
matrix decomposition principle demonstrated in reference [31], the theoretical retrieval of
every phase delay within the phase shifter in Part (3) is feasible, provided that the objective
matrix is given. Nevertheless, due to the unknown fabrication deviation, the MZI-based
computation network typically remains an enigmatic network, resembling a black box that
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necessitates training. The training process can be denoted as finding solutions for equation
of XB = A when A and B are given. Here, X is the 4 x 4 dimensional matrix needed to
be trained, and A and B are 4 x n dimensional matrices. The equation is rewritten in the
format of column vectors as:

xB, B, ... B,,}:[A1 A ... An} 3)

During the training process, the phase shifters in Part (3) are tuned using a self-
configuring algorithm to manipulate the transmission matrix (Xpar2) towards achieving
Xpart2B = A. B, By, Bg, ..., By, which are defined via a random vector generator and loaded
by Part (2). The corresponding outputs are measured and recorded as Aeypi (i=1,2, ..., n).
In comparison, objective results of X,pjectBi (i =1, 2, ..., n), where X,pject represents the
objective matrix, are recorded as A; (i =1, 2, ..., n). Obviously, when A,y,; = A;, the trained
matrix Xpar2 will be equal to the objective matrix Xopject-

The detailed training process is explained in detail, step by step, as follows.

(a) To characterize the training effect, a cost function (CF) should be initially established.
In this paper, the similarity between the provided matrix A and the experimentally
derived matrix A.yp is defined and can be expressed by the equation below:

_ Ay

CF= —7—"+
A} A |

(4)

“ o

The operation “-” in the numerator denotes the scalar product of two vectors, and “||
I” in the denominator represents the Frobenius norm of a vector or matrix. Evidently, the
CF ranges inclusively between 0 and 1, with CF = 0 or 1 indicating either irrelevance or

consistency between the experimental and theoretical matrices.

(b) To initiate the process, randomly apply voltages to all the phase shifters in Part (2)
and subsequently compute the initial CF.
(¢) Tune the first phase shifter to change its phase delay from 61 to 61 + A®.

If CF(81 + AB) > CF(61), replace 01 with 61 + AB, refresh CF with CF(61 + AB), and turn to
step (d).
If CF(61 + AB) < CF(01), first replace 61 with 81 — A6 and calculate CF(61 — A®), then
compare the value of CF(61 — AB8) and CF(01). If CF(61 — A8) > CF(01), replace 61 with
01 — A0 and refresh the CF as CF(01 — AB), else, remain the phase delay to 61 and turn to
step (d).

(d) Repeat step (c) for all phase shifters in Part (2) sequentially. This is called a round
of iteration.

(e) Repeat step (c) and (d) until the CF is converged or reaches target value. Record
voltage values loaded on all phase shifters.

During the training process, it is quite significant to choose a proper phase delay step
AB. Too great a step makes the CF difficult to converge, while too small a step could be
time-consuming and fall into local convergence. In this paper, first we choose a slightly
larger AB to accelerate iteration speed, then gradually reduce A6 until the CF is converged.
Before the 100th round of iteration, A8 is set as 0.08 V, and then is reduced by half every
50 rounds of iteration to 0.01 V. The CF is converged over 0.999 after 200 rounds of iteration,
which indicates a strong correlation between A and Aeyp.

The digital image convolution function is demonstrated using the experimental setup
shown in Figure 6. The continuous-wave laser at 1550 nm is sent into the photonic computer
chip after being manipulated by a polarization controller. The original digital image is
transmitted from the upper computer to the control circuit and loaded, pixel by pixel, in
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a certain order on Part (2) of the photonic computing chip through DACs. To simplify
the experiment, an 8-bit grayscale image with 320 x 256 pixel resolution is selected, with
every pixel value between 0 and 255, where 0 means black and 255 means white. Part (3) of
the chip is pre-trained to perform four kennels and remain stable during the convolution
process. The four outputs of the chip are obtained by photodetectors and sent to the
control circuits for analog to digital conversion. The four converted digital signals are then
reconstructed to four convolution images and displayed on the upper computer. In order
to prove the convolution effects, we introduce a control group, which is the convolution
result from the 64-bit upper computer. Figure 7 demonstrates the original image and
convolution images from two different kinds of computing system. It is easy to see that
both kinds of computing system can perform image convolution and extract outlines
correctly. However, the difference between two results is hard to distinguish by human
eye. To further quantitatively characterize the convolution process, the relative error RE is
defined using the equation below:

o 1 N bexpi - bcomi z
RE=—,|} <b> ©)

comi

N i=1

1550nm
Laser

Polarization ADC/DAC
controller module

Upper
computer

PD array

Figure 6. Experimental setup of the digital image convolution function verification platform. PD:
photodetector; ADC/DAC: analog to digital converter/digital to analog converter.

64bit upper computer

Blurring Extract vertical edges Extract horizontal edges  Enhance oblique edges
Photonic computing chi

Figure 7. The image convolution results of the 64-bit upper computer and photonic computing chip.
The operations in the figure, from left to right, are blurring, extracting vertical edges, extracting
horizontal edges, and enhancing oblique edges.
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Here, N is the pixel number of the output image. b,yp; and bc,,; are the ith pixel value
of the output image from photonic computing chip and 64-bit upper computer, respectively.
The calculated RE is less than 2.3%, indicating a good validity of the proposed photonic
computing chip.

Due to the relatively low computational complexity in the experiment, the computing
time for both cases is less than one second, making it difficult to measure. Instead of focusing
on computation time, it is more insightful to examine the computation capabilities of both
systems. The commercial computer, equipped with a single Intel CPU (i5 12400), offers
a computing capability of 240 GFLOPS (FLOPS, floating point operations per second), as
outlined in Intel’s official documentation (APP Metrics for Intel® Microprocessors—Intel®
Core™ Processor). As for the proposed photonic processor, its computing capability can
be expressed by 2 x 4 x 4 x BW, where BW represents the lower value between the
modulator’s and detector’s bandwidth [23]. In order to reduce fabrication costs, four
thermal-optic modulators with constrained modulation bandwidth were employed, which
subsequently limits the computation capability (~2.88MFLOPS). If the latest photonic I/O
technology were adopted, the modulation/detection bandwidth could potentially soar to
100 GHz [33,34], thereby elevating the computing capability to 3.2TFLOPS. Furthermore,
with the expansion of the photonic integration scale, the computation capability of the
photonic processor could witness substantial enhancements.

4. Discussion

The deviations in the demonstration were mainly caused by calibration errors of
Part (2) while configuring the MZIs to pure intensity modulator since the redundant
phase modulation would impact the matrix building in Part (3). In the digital image
convolution demonstration, the outputs of the photonic chip were actually squared because
the photodetector array can only acquire light intensity, which equals the square of the light
field. Although we had extracted the square root in the final results presented in Figure 7,
the sign signal was missing. A feasible method to retrieve sign signal of convolution
results is the adoption of coherent detection with balanced PDs, which was reported in
reference [27].

Once the computation mode of the chip is configured, the calculation process is
executed through passive optical transmission. Notably, each thermo-optic phase shifter
requires an average power of only ~9 mW to stabilize its state. Given the chip’s small
scale, which encompasses just 40 phase shifters, the total power consumption is 360 mW.
This is significantly lower than the power consumption of other off-chip devices and
circuits, which typically range in the tens of watts, primarily due to the light source’s power
requirements. In this study, we focus solely on the chip’s power consumption. When
integrated with photonic I/O technology boasting a bandwidth of 100 GHz, the chip attains
a computing power of 3.2TFLOPS. Consequently, the energy efficiency ratio is calculated
as 3.2TFLOPS/360 mW = 8.9TFLOPS/W. For comparison, NVIDIA’s Tesla T4 GPU has an
energy efficiency ratio of 0.87TFLOPS/W, which is an order of magnitude lower than that
of the photonic computing approach presented in this paper. Furthermore, the utilization of
non-volatile phase-change materials allows the phase to be stabilized without consuming
energy, further enhancing the chip’s energy efficiency.

The proposed solution, while facing process cost constraints, undeniably presents
certain limitations, including a relatively slow data loading speed for the thermo-optic
modulator, a restricted chip size, and the reliance on off-chip lasers and detectors. However,
these challenges can be tackled by incorporating ultra-high-speed electro-optic modula-
tors [33], on-chip silicon-germanium detectors [35], heterogeneously integrated lasers [36],
and employing low-loss waveguides to augment the chip’s dimensions.
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5. Conclusions

In conclusion, we have proposed a CMOS-compatible photonic computing chip for ac-
celerating MAC operations and using it to perform digital image convolution. The working
principle of the device is first elucidated, and then a proof-of-concept device is fabricated on
an SOl wafer. Afterwards, the chip is packaged and applied in a convolution demonstration
platform, along with the commercial laser source, photodetector array, and home-build
drive circuits. A self-configuration algorithm is introduced to train the fabricated chip to
perform convolution kernel. Experimental results show a good convolution effect by com-
paring it with a conventional 64-bit computer. The proposed CMOS-compatible photonic
computing chip is scalable and can be integrated with other silicon-based devices, showing
enormous potential for large-scale photonic computing.

Our proposed solution directly simulates the computational process using the passive
propagation of light beams, harnessing the vast bandwidth of optics to attain high com-
putational frequencies. Additionally, it efficiently executes large-scale matrix operations,
capitalizing on the parallel nature of light propagation. If the latest photonic I/O technol-
ogy can be incorporated, it could achieve a computing capability of 3.2TFLOPS with an
energy efficiency of 8.9TFLOPS/W. As the chip size scales up, it is anticipated to reach
computational power in the hundreds of TFLOPS range, potentially even higher. This
would enable it to rival the computation capabilities of advanced GPUs while surpassing
them in energy efficiency by a factor of one to two orders of magnitude. Furthermore,
the fabrication of photonic chips does not necessitate the most cutting-edge lithography
technology, such as extreme ultraviolet (EUV) lithography. This reduction in technical
complexity and associated costs paves the way for future large-scale industrialization,
making it more feasible and accessible.
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