A 13–33 GHz Wideband Low-Noise Amplifier in 150-nm GaAs Based on Simultaneous Noise- and Input-Matched Gain-Core with R-L-C Shunt Feedback Network
<p>Schematics of conventional common-source topologies for achieving simultaneous noise and input matching: (<b>a</b>) a transistor with a source degeneration inductor (<math display="inline"><semantics> <msub> <mi>L</mi> <mi>s</mi> </msub> </semantics></math>) and a series inductor (<math display="inline"><semantics> <msub> <mi>L</mi> <mi>g</mi> </msub> </semantics></math>) at the gate node, and (<b>b</b>) a transistor with <math display="inline"><semantics> <msub> <mi>L</mi> <mi>s</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>L</mi> <mi>g</mi> </msub> </semantics></math> at the gate node, along with a capacitor (<math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>e</mi> <mi>x</mi> </mrow> </msub> </semantics></math>) added between the gate and source nodes.</p> "> Figure 2
<p>Simulated <math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>m</mi> <mi>a</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>F</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> for varying transistor widths with different numbers of fingers (NoF): (<b>a</b>) NoF = 1, (<b>b</b>) NoF = 2, (<b>c</b>) NoF = 4, and (<b>d</b>) NoF = 6.</p> "> Figure 3
<p>Variation of the gain matching points and noise matching points of transistor with a width of 40 μm and NoF of 6 as frequency changes on a Smith chart.</p> "> Figure 4
<p>Schematic of (<b>a</b>) the gain core with the proposed shunt R-L-C feedback network and (<b>b</b>) its equivalent small-signal model.</p> "> Figure 5
<p>Schematic of the gain core with the R-L-C Shunt feedback and its <span class="html-italic">Y</span>-parameter-based equivalent model.</p> "> Figure 6
<p>Calculated <math display="inline"><semantics> <msub> <mi>G</mi> <mrow> <mi>m</mi> <mi>a</mi> <mo>,</mo> <mi>e</mi> <mi>q</mi> </mrow> </msub> </semantics></math> for variations in <math display="inline"><semantics> <msub> <mi>R</mi> <mi>F</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>L</mi> <mi>F</mi> </msub> </semantics></math> at (<b>a</b>) 15 GHz, (<b>b</b>) 24 GHz, and (<b>c</b>) 33 GHz.</p> "> Figure 7
<p>Variations in the noise matching points with 0.2 dB noise circles and the gain matching points of the gain core with an R-L-C feedback network according to various <math display="inline"><semantics> <msub> <mi>R</mi> <mi>F</mi> </msub> </semantics></math> values: (<b>a</b>) <math display="inline"><semantics> <msub> <mi>R</mi> <mi>F</mi> </msub> </semantics></math> = 100 Ω, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>R</mi> <mi>F</mi> </msub> </semantics></math> = 250 Ω, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>R</mi> <mi>F</mi> </msub> </semantics></math> = 400 Ω, and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>R</mi> <mi>F</mi> </msub> </semantics></math> = 1000 Ω.</p> "> Figure 8
<p>Schematic of the proposed three-stage LNA.</p> "> Figure 9
<p>Layout of the proposed three-stage LNA.</p> "> Figure 10
<p>Simulated (<b>a</b>) <span class="html-italic">S</span>-parameters versus freuquency, (<b>b</b>) noise figure versus frequency, (<b>c</b>) <span class="html-italic">k</span> and <math display="inline"><semantics> <mfenced open="|" close="|"> <mo>Δ</mo> </mfenced> </semantics></math> versus frequency, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>O</mi> <msub> <mi>P</mi> <mrow> <mn>1</mn> <mi>d</mi> <mi>B</mi> </mrow> </msub> </mrow> </semantics></math> and PAE versus frequency of the proposed LNA.</p> "> Figure 11
<p>Simulated S-parameter results from a Monte Carlo analysis with 2000 samples at the center frequency of 24 GHz to evaluate the impact of process, voltage, and temperature (PVT) variations.</p> "> Figure 12
<p>Simulated (<b>a</b>) Rollet’s stability factor and (<b>b</b>) noise figure from a Monte Carlo analysis with 2000 samples at the center frequency of 24 GHz to evaluate the impact of process, voltage, and temperature (PVT) variations.</p> ">
Abstract
:1. Introduction
2. Limitations of Conventional SNIM Techniques
3. Proposed R-L-C Shunt Feedback Network
3.1. Choice of Transistor Size
3.2. R-L-C Feedback Network
3.3. Design of R-L-C Shunt Feedback Network
4. Implementation and Simulation Results of a Three-Stage Low-Noise Amplifier
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Berroth, M.; Bosch, R. High-frequency equivalent circuit of GaAs FETs for large-signal applications. IEEE Trans. Microw. Theory Tech. 1991, 39, 224–229. [Google Scholar] [CrossRef]
- Fukui, H. Optimal noise figure of microwave GaAs MESFET’s. IEEE Trans. Electron Devices 1979, 26, 1032–1037. [Google Scholar] [CrossRef]
- Alessandrello, A.; Brofferio, C.; Camin, D.; Giuliani, A.; Pessina, G.; Previtali, E. On the use of GaAs MESFETs in the realization of low-frequency low-noise amplifiers for applications at cryogenic temperatures. In Proceedings of the 11th Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, San Diego, CA, USA, 22–25 October 1989; pp. 223–226. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, J.; Luo, H.; Gao, S.P.; Guo, Y. A compact 1.0–12.5-GHz LNA MMIC with 1.5-dB NF based on multiple resistive feedback in 0.15-μm GaAs pHEMT technology. IEEE Trans. Circuits Syst. Regul. Pap. 2023, 70, 1450–1462. [Google Scholar] [CrossRef]
- He, D.; Yuan, Y.; Li, J.; Tan, C.; Yu, Z. Analysis and design of a 10–20 GHz simultaneous noise and input matching low-noise amplifier via frequency-dependent negative feedbacks. Electron. Lett. 2023, 59, e12733. [Google Scholar] [CrossRef]
- Feng, J.H.; Ye, Y.F.; Wu, L.S.; Mao, J.F. A Ka-Band Broadband Low Noise Amplifier with Resistive and Inductive Feedback. In Proceedings of the 2022 IEEE 4th International Conference on Circuits and Systems (ICCS), Chengdu, China, 23–26 September 2022; pp. 160–163. [Google Scholar]
- Pantoli, L.; Barigelli, A.; Leuzzi, G.; Vitulli, F. Analysis and design of a Q/V-band low-noise amplifier in GaAs-based 0.1 μm pHEMT technology. IET Microw. Antennas Propag. 2016, 10, 1500–1506. [Google Scholar] [CrossRef]
- Nikandish, G.; Yousefi, A.; Kalantari, M. A broadband multistage LNA with bandwidth and linearity enhancement. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 834–836. [Google Scholar] [CrossRef]
- Sabzi, M.; Medi, A. Analysis and design of multi-stage wideband LNA using simultaneously noise and impedance matching method. Microelectron. J. 2019, 86, 97–104. [Google Scholar] [CrossRef]
- Voinigescu, S.P.; Maliepaard, M.C.; Showell, J.L.; Babcock, G.E.; Marchesan, D.; Schroter, M.; Schvan, P.; Harame, D.L. A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design. IEEE J.-Solid-State Circuits 1997, 32, 1430–1439. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Kim, C.H.; Ihm, G.J.; Yang, M.S.; Lee, S.G. CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microw. Theory Tech. 2004, 52, 1433–1442. [Google Scholar] [CrossRef]
- Razavi, B.; Behzad, R. RF Microelectronics; Prentice Hall: New York, NY, USA, 2012; Volume 2. [Google Scholar]
- Goo, J.S.; Ahn, H.T.; Ladwig, D.J.; Yu, Z.; Lee, T.H.; Dutton, R.W. A noise optimization technique for integrated low-noise amplifiers. IEEE J.-Solid-State Circuits 2002, 37, 994–1002. [Google Scholar]
- Friis, H.T. Noise figures of radio receivers. Proc. IRE 1944, 32, 419–422. [Google Scholar] [CrossRef]
- Hu, J.; Ma, K.; Mou, S.; Meng, F. Analysis and design of a 0.1–23 GHz LNA MMIC using frequency-dependent feedback. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1517–1521. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering: Theory and Techniques; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Taibi, A.; Trabelsi, M.; Slimane, A.; Saadi, A.A.; Belaroussi, M.T. Efficient UWB low noise amplifier with high out of band interference cancellation. IET Microw. Antennas Propag. 2017, 11, 98–105. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, D.; Li, Z.; Zhou, P.; Chen, Z.; Chen, J.; Hong, W. A linearity-enhanced 18.7–36.5-GHz LNA with 1.5–2.1-dB NF for radar applications. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 972–975. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Pham, B.L.; Pham, T.; Pham, A.V. A 14–31 GHz 1.25 dB NF enhancement mode GaAs pHEMT low noise amplifier. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honolulu, HI, USA, 4–9 June 2017; pp. 1961–1964. [Google Scholar]
- Polli, G.; Vittori, M.; Ciccognani, W.; Colangeli, S.; Costanzo, F.; Salvucci, A.; Limiti, E. Ka-/V-band self-biased LNAs in 70 nm GaAs/InGaAs Technology. In Proceedings of the 2018 14th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2–5 July 2018; pp. 197–200. [Google Scholar]
- Galante-Sempere, D.; Khemchandani, S.L.; Del Pino, J. A 2-V 1.4-dB NF GaAs MMIC LNA for K-Band Applications. Sensors 2023, 23, 867. [Google Scholar] [CrossRef]
- Cuadrado-Calle, D.; George, D.; Fuller, G. A GaAs Ka-band (26–36 GHz) LNA for radio astronomy. In Proceedings of the 2014 IEEE International Microwave and RF Conference (IMaRC), Bangalore, India, 15–17 December 2014; pp. 301–303. [Google Scholar]
Process | Topology | Frequency (GHz) | Bandwidth * (GHz) | Gain ** (dB) | Noise Figure (dB) | (mW) | Area (mm2) | FOM *** | |
---|---|---|---|---|---|---|---|---|---|
[19] (measured) | GaAs 100 nm | 2-stage CS with R-L-C shunt feedback | 18.7–36.5 | 17.8 | 15.9 | 1.5–2.1 | 66 | 0.96 | 4.08 |
[7] (simulated) | GaAs 150 nm | 3-stage CS with R-L-C shunt feedback | 24.25–33 | 8.75 | 19.8 | 2.2–2.8 | - | 1.24 | - |
[20] (measured) | GaAs 150 nm | 3-stage CS with resistive feedback | 15–25 | 10 | 30 | 1.25–2 | 212 | 1.87 | 4.47 |
[21] (measured) | GaAs 70 nm | 2-stage CS with self-based network | 26.5–31.5 | 5 | 18 | 1.3–1.7 | 115 | 3.6 | 0.99 |
[22] (simulated) | GaAs 100 nm | 4-stage CS | 23–29 | 6 | 33 | 1.4–2 | 118.2 | 5.94 | 5.96 |
[23] (simulated) | GaAs 100 nm | 4-stage CS | 26–36 | 10 | 33 | 1.5–1.8 | - | 3.64 | - |
This Work (simulated) | GaAs 150 nm | 3-stage CS with R-L-C shunt feedback | 13–33 | 20 | 18.6 | 1.05–2.1 (15–33 GHz) 1.05–2.8 (13–33 GHz) | 99 | 3.3 | 6.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.; Kang, D.; Lee, Y.; Park, D.-W. A 13–33 GHz Wideband Low-Noise Amplifier in 150-nm GaAs Based on Simultaneous Noise- and Input-Matched Gain-Core with R-L-C Shunt Feedback Network. Electronics 2025, 14, 450. https://doi.org/10.3390/electronics14030450
Hwang S, Kang D, Lee Y, Park D-W. A 13–33 GHz Wideband Low-Noise Amplifier in 150-nm GaAs Based on Simultaneous Noise- and Input-Matched Gain-Core with R-L-C Shunt Feedback Network. Electronics. 2025; 14(3):450. https://doi.org/10.3390/electronics14030450
Chicago/Turabian StyleHwang, Seonyeong, Dongwan Kang, Yeonggeon Lee, and Dae-Woong Park. 2025. "A 13–33 GHz Wideband Low-Noise Amplifier in 150-nm GaAs Based on Simultaneous Noise- and Input-Matched Gain-Core with R-L-C Shunt Feedback Network" Electronics 14, no. 3: 450. https://doi.org/10.3390/electronics14030450
APA StyleHwang, S., Kang, D., Lee, Y., & Park, D.-W. (2025). A 13–33 GHz Wideband Low-Noise Amplifier in 150-nm GaAs Based on Simultaneous Noise- and Input-Matched Gain-Core with R-L-C Shunt Feedback Network. Electronics, 14(3), 450. https://doi.org/10.3390/electronics14030450