Analysis and Design of Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-Free Power Supply Devices
<p>Functional diagram of the proposed circuit prototype.</p> "> Figure 2
<p>Schematic diagram of the proposed low-power energy-harvesting circuit.</p> "> Figure 3
<p>A detailed schematic of the input stage for the schematic diagram in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>—a full-bridge rectifier with an energy storage element: (<b>a</b>) schematic diagram; (<b>b</b>) typical signal waveforms of the input voltage <span class="html-italic">v<sub>p</sub></span> and the <math display="inline"><semantics> <mrow> <msub> <mi>i</mi> <mrow> <msub> <mi>C</mi> <mi>p</mi> </msub> </mrow> </msub> </mrow> </semantics></math> through the piezoelectric capacitance at resonance operational mode.</p> "> Figure 4
<p>An equivalent circuit of the pulse oscillator (or multivibrator), based on the multivibrator given as a part of the schematic diagram in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>.</p> "> Figure 5
<p>A configuration of the integrating circuit from the schematic diagram in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>.</p> "> Figure 6
<p>Signal waveforms of the input and output voltages for the proposed pulse-width modulator.</p> "> Figure 7
<p>A configuration of the error amplifier and compensator from the schematic diagram in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>.</p> "> Figure 8
<p>A configuration of the low-power driver stage for the synchronous converter from the schematic diagram in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>.</p> "> Figure 9
<p>Signal waveforms at the input and output voltages for the proposed low-power driver stage of the synchronous converter.</p> "> Figure 10
<p>A configuration of the window detector producing the “power-good” signal for the synchronous converter from the schematic diagram in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>.</p> "> Figure 11
<p>The low-power AC-DC converter construction prototype board: (<b>a</b>) variant 1 (top view); (<b>b</b>) variant 2 (top view).</p> "> Figure 12
<p>Captured waveforms from the experimental study (CH1: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>r</mi> </msub> </mrow> </semantics></math>, CH2: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>t</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>, CH3: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>o</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>, and CH4: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>d</mi> </msub> </mrow> </semantics></math> in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>) at the no-load output (<span class="html-italic">R<sub>L</sub></span> → ∞).</p> "> Figure 13
<p>Captured waveforms from the experimental study (CH1: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>r</mi> </msub> </mrow> </semantics></math>, CH2: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>t</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>, CH3: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>o</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>, and CH4: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>d</mi> </msub> </mrow> </semantics></math> in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>) at external load <span class="html-italic">R<sub>L</sub></span> = 3.6 kΩ.</p> "> Figure 14
<p>Captured waveforms from the experimental study (CH1: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>r</mi> </msub> </mrow> </semantics></math>, CH2: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>t</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>, CH3: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>o</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>, and CH4: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>d</mi> </msub> </mrow> </semantics></math> in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>) at external load <span class="html-italic">R<sub>L</sub></span> = 1.8 kΩ.</p> "> Figure 15
<p>Captured waveforms from the experimental study (CH1: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>r</mi> </msub> </mrow> </semantics></math>, CH2: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>t</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>, CH3: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>o</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>, and CH4: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>d</mi> </msub> </mrow> </semantics></math> in <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>) at external load <span class="html-italic">R<sub>L</sub></span> = 900 Ω.</p> "> Figure 16
<p>Captured waveforms for the pulse-width modulated signal <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mi>d</mi> </msub> </mrow> </semantics></math> (CH1), the non-overlapping pulse signals (<math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>T</mi> <mi>P</mi> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math>(CH2) and <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>T</mi> <mi>P</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> (CH3)) at the gates of the <span class="html-italic">M</span><sub>2</sub> and <span class="html-italic">M</span><sub>1</sub> (see <a href="#electronics-14-00046-f002" class="html-fig">Figure 2</a>), and the level of the output voltage <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>o</mi> </msub> </mrow> </semantics></math> (CH4) from the experimental study at the no-load output.</p> "> Figure 17
<p>Start-up profile of the DC-DC converter circuit from the experimental study using an input sinusoidal generator with a low internal resistance at <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>S</mi> <mi>T</mi> <mi>O</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo> </mo> <mi mathvariant="normal">F</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>o</mi> </msub> <mo>=</mo> <mn>100</mn> <mo> </mo> <mo>μ</mo> <mi mathvariant="normal">F</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>L</mi> </msub> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math> (no-load output) (CH1: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>S</mi> <mi>T</mi> <mi>O</mi> </mrow> </msub> </mrow> </semantics></math> (a yellow curve), CH2: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>o</mi> </msub> </mrow> </semantics></math> (a blue curve), and CH3: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>P</mi> <mi>G</mi> <mi>O</mi> <mi>O</mi> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> (a red curve)).</p> "> Figure 18
<p>Captured waveforms from the experimental study at an initial voltage of <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>S</mi> <mi>T</mi> <mi>O</mi> </mrow> </msub> <mo>=</mo> <mn>1.5</mn> <mo> </mo> <mi mathvariant="normal">V</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>S</mi> <mi>T</mi> <mi>O</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo> </mo> <mi mathvariant="normal">F</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>o</mi> </msub> <mo>=</mo> <mn>100</mn> <mo> </mo> <mo>μ</mo> <mi mathvariant="normal">F</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>L</mi> </msub> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math> (no-load output), and <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>≈</mo> <mn>2</mn> <mi>mA</mi> </mrow> </semantics></math> (CH1: <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>S</mi> <mi>T</mi> <mi>O</mi> </mrow> </msub> </mrow> </semantics></math> (a yellow curve), CH2: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>o</mi> </msub> </mrow> </semantics></math> (a blue curve), and CH3: <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>P</mi> <mi>G</mi> <mi>O</mi> <mi>O</mi> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> (a red curve)).</p> "> Figure 19
<p>Measured overall electrical energy efficiency under various piezoelectric excitation levels <span class="html-italic">V<sub>p</sub></span><sub>,<span class="html-italic">m</span></sub> while the output voltage is <span class="html-italic">V<sub>o</sub></span> = 1.8 V.</p> ">
Abstract
:1. Introduction
2. Functional Diagram for the Proposed Energy Harvester Circuit
3. Circuit Description
3.1. Full-Bridge Rectifier at a Non-Sinusoidal Input Signal—Input Stage
3.2. Step-Down (Buck) Synchronous Converter and Switching Circuit
3.3. Structure of the Error Amplifier and the Compensator
- (1)
- The double poles frequency determined by and in the output port is calculated as follows:
- (2)
- The zero frequency and the pole frequency of the compensating circuit are determined (for the selected circuit configuration of the compensator circuit, the following condition has to be fulfilled: ; otherwise, self-oscillation can occur at the output): and ;
- (3)
- The value of the resistor R5 equal to 560 kΩ ± 1% is selected, and then the required value of the capacitor C3 is calculated as follows:
- (4)
- The required value of the capacity C2 is calculated as follows:
3.4. Structure of a Low-Power Driver Stage for the Synchronous Converter
3.5. Structure of the Window Detector Produces the “Power-Good” Signal
- (1)
- The input bias current of the MAX9020 is below 2 nA, so the current through R8 has to be at least 200 nA to minimize errors caused by the non-idealities of the used active devices. In this case, the resistor R8 is selected with a value of 2.2 MΩ ± 1% standard value (the current through R8 has to exceed 200 nA for the thresholds to be accurate, or R8 = Vref/IR8 = 1.242 V/0.6 μA (the current IR8 is chosen to be 0.6 μA));
- (2)
- The sum of the resistances R6 + R7 is calculated assuming the over-voltage threshold is Voth = 1.89 V, i.e., ;
- (3)
- The resistance R7 is calculated assuming the under-voltage threshold is Vuth = 1.78 V, i.e., (a standard value equal to R7 = 150 kΩ ± 1% is selected);
- (4)
- The resistance R6 is determined: (a standard value equal to R6 = 1 MΩ ± 1% is selected).
4. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Todaro, M.T.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Desmaële, D.; Epifani, G. Biocompatible, Flexible, and Compliant Energy Harvesters Based on Piezoelectric Thin Films. IEEE Trans. Nanotechnol. 2018, 17, 220–230. [Google Scholar] [CrossRef]
- Shuvo, M.M.H.; Titirsha, T.; Amin, N.; Islam, S.K. Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare. Energies 2022, 15, 7495. [Google Scholar] [CrossRef]
- Fu, H.; Jiang, J.; Hu, S.; Rao, J.; Theodossiades, S. A multi-stable ultra-low frequency energy harvester using a nonlinear pendulum and piezoelectric transduction for self-powered sensing. Mech. Syst. Signal Process. 2023, 189, 110034. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K. A Survey of Wearable Devices and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
- Chong, Y.-W.; Ismail, W.; Ko, K.; Lee, C.-Y. Energy Harvesting for Wearable Devices: A Review. IEEE Sens. J. 2019, 19, 9047–9062. [Google Scholar] [CrossRef]
- Khalifa, S.; Lan, G.; Hassan, M.; Seneviratne, A.; Das, S.K. HARKE: Human Activity Recognition from Kinetic Energy Harvesting Data in Wearable Devices. IEEE Trans. Mob. Comput. 2018, 17, 1353–1368. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Luo, G.; Zhao, Y.; Yang, P.; Jiang, Z.; Maeda, R. System level design of wireless sensor node powered by piezoelectric vibration energy harvesting. Sens. Actuators A Phys. 2020, 310, 112039. [Google Scholar] [CrossRef]
- Stefanov, N. Special rectifiers. In Power Supply Devices; Tehnika: Sofia, Bulgaria, 2002; Chapter 2; pp. 43–68. ISBN 9789540305646. [Google Scholar]
- Stefanov, N. Power rectifiers. In Power Supply Devices; Tehnika: Sofia, Bulgaria, 2002; Chapter 4; pp. 84–96. ISBN 9789540305646. [Google Scholar]
- Seifart, M. Stromversorgung. In Analoge Schaltungen, 6th ed.; Technik: Berlin, Germany, 2003; Chapter 22; pp. 591–639. ISBN 978-3341012987. [Google Scholar]
- Marasco, K. How to Apply DC-to-DC Step-Up/Step-Down Regulators Successfully; Analog Devices: Norwood, MA, USA, 2024; Available online: https://www.analog.com/media/en/analog-dialogue/volume-45/number-4/articles/dc-to-dc-step-up-step-down-regulators.pdf (accessed on 6 June 2024).
- Tabesh, A.; Frechette, L.G. A Low-Power Stand-Alone Adaptive Circuit for Harvesting Energy from a Piezoelectric Micropower Gene rator. IEEE Trans. Ind. Electron. 2010, 57, 840–849. [Google Scholar] [CrossRef]
- Romani, A.; Filippi, M.; Tartagni, M. Micropower Design of a Fully Autonomous Energy Harvesting Circuit for Arrays of Piezoelectric Transducers. IEEE Trans. Power Electron. 2014, 29, 729–739. [Google Scholar] [CrossRef]
- Du, S.; Jia, Y.; Zhao, C.; Amaratunga, G.A.J.; Seshia, A.A. A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting. IEEE J. Solid-State Circuits 2019, 54, 1733–1743. [Google Scholar] [CrossRef]
- Chamanian, S.; Muhtaroğlu, A.; Külah, H. A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters. IEEE Trans. Power Electron. 2020, 35, 901–912. [Google Scholar] [CrossRef]
- Fang, S.; Xia, H.; Xia, Y.; Ye, Y.; Shi, G.; Wang, X. An Efficient Piezoelectric Energy Harvesting Circuit with Series-SSHI Rectifier and FNOV-MPPT Control Technique. IEEE Trans. Ind. Electron. 2021, 68, 7146–7155. [Google Scholar] [CrossRef]
- Çiftci, B.; Chamanian, S.; Koyuncuoğlu, A.; Muhtaroğlu, A.; Külah, H. A Low-Profile Autonomous Interface Circuit for Piezoelectric Micro-Power Generators. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1458–1471. [Google Scholar] [CrossRef]
- Edla, M.; Lim, Y.Y.; Mikio, D.; Padilla, R.V. Non-Linear Switching Circuit for Active Voltage Rectification and Ripples Reduction of Piezoelectric Energy Harvesters. Energies 2022, 15, 709. [Google Scholar] [CrossRef]
- Haseeb, A.; Edla, M.; Ucgul, M.; Santoso, F.; Deguchi, M. A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems. Energies 2023, 16, 1631. [Google Scholar] [CrossRef]
- Kamran, M.; Edla, M.; Thabet, A.M.; Haseeb, A.; Mikio, D.; Bui, V. A Self-Powered FBRJT AC-DC Conversion Circuit for Piezoelectric Energy Harvesting Systems. Energies 2023, 16, 1734. [Google Scholar] [CrossRef]
- Costanzo, L.; Lo Schiavo, A.; Vitelli, M. A Self-Supplied Power Optimizer for Piezoelectric Energy Harvesters Operating under Non-Sinusoidal Vibrations. Energies 2023, 16, 4368. [Google Scholar] [CrossRef]
- LTC3588-1; Nanopower Energy Harvesting Power Supply—Datasheet. Analog Devices: Norwood, MA, USA, 2023. Available online: https://www.analog.com/en/products/ltc3588-1.html (accessed on 7 June 2024).
- LTC3255; Wide VIN Range Fault Protected 50mA Step-Down Charge Pump—Datasheet. Analog Devices: Norwood, MA, USA, 2023. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/3255f.pdf (accessed on 7 June 2024).
- TPSM365R6; 3-V to 65-V Input, 1-V to 13-V Output, 0.6-A Synchronous Buck Converter Power Module—Datasheet. Texas Instruments: Dallas, TX, USA, 2023. Available online: https://www.ti.com/lit/gpn/tpsm365r6 (accessed on 7 June 2024).
- ADP5304; Ultralow Power Step-Down Regulator with Input Voltage Monitor and Regulation—Datasheet. Analog Devices: Norwood, MA, USA, 2023. Available online: https://www.analog.com/en/products/adp5304.html (accessed on 10 October 2024).
- Hong, J.; Chen, F.; He, M.; Wang, S.; Chen, W.; Guan, M. Study of a Low-Power-Consumption Piezoelectric Energy Harvesting Circuit Based on Synchronized Switching Technology. Energies 2019, 12, 3166. [Google Scholar] [CrossRef]
- Pandiev, I.; Antchev, H.; Aleksandrova, M. A Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-free Power Supply. In Proceedings of the 2024 31st International Conference on Mixed Design of Integrated Circuits and System (MIXDES), Gdańsk, Poland, 27–38 June 2024; pp. 148–153. [Google Scholar] [CrossRef]
- Research Group “Biomedical Engineering”. The European Union NextGenerationEU, Through the National Recovery and Resilience Plan of the Republic of Bulgaria, Project № BG-RRP-2.004-0005 “Improving Research Capacity and Quality for International Recognition and Sustainability of the TU-Sofia”, Sofia, Bulgaria, 2023. Available online: https://tu-sofia.bg/rTeam/_teamDetails/15 (accessed on 20 August 2024).
- Wang, Z.; Wang, W.; Tang, L.; Tian, R.; Wang, C.; Zhang, Q.; Liu, C.; Gu, F.; Ball, A.D. A piezoelectric energy harvester for freight train condition monitoring system with the hybrid nonlinear mechanism. Mech. Syst. Signal Process. 2022, 180, 109403. [Google Scholar] [CrossRef]
- Ottman, G.K.; Hofmann, H.F.; Bhatt, A.C.; Lesieutre, G.A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 2002, 17, 669–676. [Google Scholar] [CrossRef]
- Tietze, V.; Schenk, C. Power Supplies. In Electronic Circuits, 2nd ed.; Springer: New York, NY, USA, 2008; Chapter 16; pp. 885–928. [Google Scholar] [CrossRef]
- ROHM Semiconductor. Inductor Calculation for Buck Converter IC; Application Note: 12027ECY01; Rohm Semiconductor: San Diego, CA, USA, 2012; pp. 1–5. [Google Scholar]
- Rahimi, A.M.; Parto, P.; Asadi, P. Compensator Design Procedure for Buck Converter with Voltage-Mode Error-Amplifier; Application Note: AN-1162; Infineon Technologies AG: Neubiberg, Germany, 2012; pp. 1–36. [Google Scholar]
- MAX9015–MAX9020: Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference–Datasheet; Analog Devices: Wilmington, MA, USA, 2019.
- Peng, Y.; Choo, K.D.; Oh, S.; Lee, I.; Jang, T.; Kim, Y.; Lim, J.; Blaauw, D.; Sylvester, D. An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Sense-and-Set Rectifier. IEEE J. Solid-State Circuits 2019, 54, 3348–3361. [Google Scholar] [CrossRef]
- Li, S.; Roy, A.; Calhoun, B.H. A Piezoelectric Energy-Harvesting System with Parallel-SSHI Rectifier and Integrated MPPT Achieving 417% Energy-Extraction Improvement and 97% Tracking Efficiency. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019. [Google Scholar] [CrossRef]
- Chew, Z.J.; Ruan, T.; Zhu, M. Strain Energy Harvesting Powered Wireless Sensor System Using Adaptive and Energy-Aware Interface for Enhanced Performance. IEEE Trans. Ind. Inform. 2017, 13, 3006–3016. [Google Scholar] [CrossRef]
- Chew, Z.J.; Zhu, M. Adaptive Self-Configurable Rectifier for Extended Operating Range of Piezoelectric Energy Harvesting. IEEE Trans. Ind. Electron. 2020, 67, 3267–3276. [Google Scholar] [CrossRef]
- Chamanian, S.; Çiftci, B.; Muhtaroğlu, A.; Külah, H. A Self-Powered and Area Efficient SSHI Rectifier for Piezoelectric Harvesters. IEEE Access 2021, 9, 117703–117713. [Google Scholar] [CrossRef]
- Huet, F.; Boitier, V.; Seguier, L. Tunable Piezoelectric Vibration Energy Harvester with Supercapacitors for WSN in an Industrial Environment. IEEE Sens. J. 2022, 22, 15373–15384. [Google Scholar] [CrossRef]
- Ben Ammar, M.; Sahnoun, S.; Fakhfakh, A.; Viehweger, C.; Kanoun, O. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting. Sensors 2023, 23, 1830. [Google Scholar] [CrossRef]
- PPA PRODUCTS Datasheet & User Manual. Midé Technology, Midé 200 Boston Avenue, Suite 1000, Medford, MA, USA, 2020. Available online: https://cdn2.hubspot.net/hubfs/3841176/Data-Sheets/ppa-piezo-product-datasheet.pdf (accessed on 27 May 2024).
Parameter | This Work | (Peng et al.) [36] | (Du et al.) [15] | (Li et al.) [37] | (Chew et al.) [38,39] | (Çiftci et al.) [18] | (Chamanian et al.) [40] | (Huet et al.) [41] | (Ben Ammar et al.) [42] | (Costanzo et al.) [22] |
---|---|---|---|---|---|---|---|---|---|---|
Piezoelectric element | ||||||||||
Piezoelectric generator | MIDE PPA-2011 (4) | MIDE PPA-1022 | Custom MEMS harvester 1.0 g | MIDE PPA1021 and PPA1011 | 1 Smart Material MFC8528-P2 | Custom MEMS harvester with a footprint of 36 mm2 | MIDE V22BL | MIDE PPA-1014 | AB4113BLW100-R | MIDE PPA-4011 |
Excitation frequency | 10–30 Hz | 53–85 Hz | 219 Hz | 100–140 Hz | >100 Hz | 450 Hz | 208 Hz | <100 Hz | 1 Hz | 232 Hz |
Maximum average power (or raw power) | 205 μW | >300 μW | 186 μW | 160–200 μW | 0.5 mW | n.a. | n.a. | >5 mW | 85.53 μW (5) | >100 μW |
Piezoelectric capacitance | 190 nF | 7 nF | 1.94 nF | 20 and 100 nF | n.a. | 2 nF | 4.66 nF | 40 nF | 150 nF | 415 nF |
Open circuit voltage amplitude | up to 6 V | 0.85–2.13 V | up to 7 V | 1.6–2.66 V | 1.2–20 V | <3.2 V | 0.87 V | <8 V | 7.2 V | <4 V |
Piezoelectric material | PZT-5H | PZT-5H | N/A | PZT-5H | Micro Fiber Composite material (MFC) | N/A | PZT-5H | PZT-5H | PZT | PZT-5H |
Controlling circuit | ||||||||||
Type of conversion circuit | Bridge rectifier; DC-DC step-down synchronous converter and power-controlling system | Sense-and- set (SaS) rectifier with a static power of 7 nW | Split-electrode SSHC (SE-SSHC) rectifier | Parallel-SSHI Rectifier; buck-boost DC-DC converter | Voltage doubler; analog control circuit LTC3388-3, buck converter, and LTC2934-2 | SSHC circuit utilizing a flipping inductor; DC-DC converter; LDO | Enhanced SSHI system (used external inductor in the range of μHs) | LTC3588-1 extraction circuit; balancing system ALD810023 for ultra caps | Self-Powered (SP P-SSHI (6)) energy management circuit | Energy Harvester Power Optimizer (EHPO) |
Type of realization | Discrete components | Process: 180 nm CMOS; Chip-area: 0.47 mm2 | Process: 180 nm CMOS; Chip-area: 3.9 mm2 | Process: 130 nm CMOS; Chip-area: 1.07 mm2 | Discrete components | Process: 180 nm CMOS; Chip-area: 1.23 mm2 | Process: 180 nm CMOS; Chip-area: 0.28 mm2 | Discrete components | Discrete components | Discrete components |
Power consumption | ≈30 μW | ≈10 μW (1) | ≈2.9 μW (1) | 5 μW (1) | ≤80 μW | ≈18 μW (1) | 3.84–26.37 μW | 50 μW | n.a. | n.a. |
Output DC voltage | 1.8 V ± 5 mV | up to 2 V | up to 6 V | ≤3 V | ≤3.3 V | ≤3 V | 2.68 V optimum value | 2.8–3.6 V | 3.6 V | up to 4 V |
Output power | 3.6 mW | 15 μW | 16.1 μW | 120–200 μW | 2.43 mW | 24.2 μW | 3.84 μW | 213.2 mW | 3.6 mW | 2.81 mW |
FoM (3) | >10 | up to 7.8 | n.a. | 8.47 | 4.86 | 2.62 | up to 5.23 | n.a. | n.a. | 1.9 (5) |
Maximum overall electrical energy efficiency | 78% | 42% | >80% | 78% | 75.6% | 83% (L = 100 μH) | 93% (L = 820 μH) | 36% | 83.02% | n.a. |
Start-up requirements | Self-powered; supercapacitor 1 F/7.5 V at the output of the rectifier (2) | Self-powered; battery at the output port (2) | Self-powered; storage capacitor at the output port (2) | Self-powered; supercapacitor 4.7 mF at the output port (2) | Self-powered; supercapacitor 22 mF at the output port (2) | Self-powered; storage capacitor 453 nF at the output port (2) | Self-powered; storage capacitor 449 nF at the output port (2) | Self-powered; supercapacitors 8 × 1 F at the output of the rectifier (2) | Self-powered; ML 2032 cell Lithium battery at the output port (2) | Self-powered; aluminum electrolytic capacitors at the output port |
Year | 2024 | 2019 | 2019 | 2019 | 2020 | 2021 | 2021 | 2022 | 2023 | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandiev, I.; Antchev, H.; Kurtev, N.; Tomchev, N.; Aleksandrova, M. Analysis and Design of Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-Free Power Supply Devices. Electronics 2025, 14, 46. https://doi.org/10.3390/electronics14010046
Pandiev I, Antchev H, Kurtev N, Tomchev N, Aleksandrova M. Analysis and Design of Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-Free Power Supply Devices. Electronics. 2025; 14(1):46. https://doi.org/10.3390/electronics14010046
Chicago/Turabian StylePandiev, Ivaylo, Hristo Antchev, Nikolay Kurtev, Nikolay Tomchev, and Mariya Aleksandrova. 2025. "Analysis and Design of Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-Free Power Supply Devices" Electronics 14, no. 1: 46. https://doi.org/10.3390/electronics14010046
APA StylePandiev, I., Antchev, H., Kurtev, N., Tomchev, N., & Aleksandrova, M. (2025). Analysis and Design of Low-Power Piezoelectric Energy Harvesting Circuit for Wearable Battery-Free Power Supply Devices. Electronics, 14(1), 46. https://doi.org/10.3390/electronics14010046