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Abstract: With the advancement of dual-carbon goals and the construction of new types
of power systems, the proportion of electric vehicle charging stations (EVCSs) in the
coupling system of power distribution and transportation networks is gradually increasing.
However, the surge in charging demand not only causes voltage fluctuations and a decline
in power quality but also leads to tension in the power grid load in some areas. The
complexity of urban road networks further increases the challenge of charging station
planning. Although laying out charging stations in areas with high traffic flow can better
meet traffic demands, it may also damage power quality due to excessive grid load. In
response to this problem, this paper proposes an optimized layout plan for electric vehicle
charging stations considering the coupling effects of roads and electricity. By using section
power flow to extract dynamic data from the power distribution network and comparing
the original daily load curves of the power grid and electric vehicles, this paper plans
reasonable capacity and charging/discharging schemes for EVCSs. It considers the impact
of the charging and discharging characteristics of EVCSs on the power grid while satisfying
the peak-shaving and valley-filling regulation benefits. Combined with the traffic road
network, the optimization objectives include optimizing the voltage deviation, transmission
line margin, network loss, traffic flow, and service range of charging stations. The Gray Wolf
Optimizer (GWO) algorithm is used for solving, and the optimal layout plan for electric
vehicle charging stations is obtained. Finally, through road–electricity coupling network
simulation verification, the proposed optimal planning scheme effectively expands the
charging service range of electric vehicles, with a coverage rate of 83.33%, alleviating users’
charging anxiety and minimizing the impact on the power grid, verifying the effectiveness
and feasibility of the proposed scheme.

Keywords: electric vehicle charging station; road–electricity coupling; multi-objective
optimization; optimal layout planning

1. Introduction
With the increase in the scale of electric vehicles (EVs) accessing the power grid, the

proportion of electrical vehicle charging stations (EVCSs) accessing the power grid is also
constantly rising [1]. This is bound to cause fluctuations in the power grid load curve
and affect the stable operation of the power grid [2]. Therefore, research on the location
planning of EVCS is of crucial importance. Ref. [3] predicts the spatiotemporal distribution
of urban EV charging loads within a day, and then builds EVCSs at specific nodes based
on the prediction results. Ref. [4] takes the construction cost of the charging station as

Electronics 2025, 14, 135 https://doi.org/10.3390/electronics14010135

https://doi.org/10.3390/electronics14010135
https://doi.org/10.3390/electronics14010135
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8294-4130
https://doi.org/10.3390/electronics14010135
https://www.mdpi.com/article/10.3390/electronics14010135?type=check_update&version=2


Electronics 2025, 14, 135 2 of 31

the objective, divides a certain area into three regions, and uses the 2m Point Estimation
method (2m PEM) to build EVCSs at appropriate locations in each region. Ref. [5] proposes
a charging and discharging scheme to reduce the impact of the disorderly charging of
a large number of EVs on the power grid. Through time-of-use transaction electricity
prices, the charging and discharging periods of EVs are guided to achieve the effect of peak
shaving and valley filling. Ref. [6] addresses the road–electricity coupling network and
EV charging issues, and plans EVCSs with the goal of taking into account the installation
of EVCS operators, the demands of EV users, and reducing the annual social cost of the
distribution network. Ref. [7] takes the minimum total annual cost of the charging station
as the objective and uses an improved immune clone selection algorithm for the capacity
determination and grid connection of EVCSs. Ref. [8] considers the comprehensive cost
of the charging station layout and the penalty measures for violating the power grid
constraints, extracts the best functions of two algorithms (Chicken Swarm Optimization
(CSO) and Teaching–Learning-Based Optimization (TLBO)), and plans the location of
EVCSs. Ref. [9] takes the minimum cost of the charging station and the economic loss
of users as the objective, and conducts location planning of EVCS through an improved
particle swarm algorithm. Ref. [10] aims at maximizing the revenue of the charging station
and minimizing the fluctuation of the interaction power between the charging station and
the distribution network, and dynamically adjusts the electricity price to achieve orderly
charging and discharging of EVs.

Most of the above studies do not consider the energy storage characteristics of EVCSs,
that is, the discharging capacity to the power grid. Refs. [3,4,6–9] all treat EVCSs as loads for
site selection without considering the discharging capacity of EVCSs. Refs. [5,10] consider
the impact of some EV discharging characteristics on the power grid, but they all achieve
orderly charging and discharging of EVs by adjusting the electricity price and use the
interaction of EVs and EVCSs to achieve the goal of peak shaving and valley filling. If
the charging and discharging capacity of an EVCS is only constrained and adjusted by
the electricity price, then the volatility is too large, and the EVCS is not regarded as a
distributed power source, and the impact of the charging station as a power source on the
power grid is not considered. The planning of EVCSs in most of the above studies is mostly
aimed at the lowest economic cost, and less consideration is given to the impact of EVCSs
accessing the power grid.

Through analysis and comparison, the optimal location planning scheme for electric
vehicle charging stations (EVCSs) proposed in this paper comprehensively considers the
coupling effect of the distribution network and the transportation road network. This
scheme not only assesses the impact of EVCS planning on traffic flow and the service
range of the charging station but also regards an EVCS as an energy storage unit and
deeply analyzes its multi-dimensional impact on the power grid from its charging and
discharging behavior, including voltage fluctuation, transmission line margin, network
loss, and the regulation benefit based on peak shaving and valley filling. By using the Gray
Wolf Optimizer (GWO) for optimization and finding a solution, this scheme can efficiently
balance the complex relationship between charging demand and power grid operation and,
finally, obtain a reasonable planning scheme that not only meets the traffic flow demand
but also minimizes the impact on the power grid. The differences between this article and
the conventional methods are presented in Table 1 as follows:
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Table 1. Research and analysis comparison table.

Comparative Dimension Regular Method Method Proposed in This Article

Goals Least economic cost
On the basis of reducing economic cost, meeting

traffic flow demand and minimizing the impact on the
power grid

Characteristics of EVCSs Load Negative energy storage unit

Grid impact
considerations Less

Multi-dimensional impact: voltage fluctuation,
transmission line margin, network loss, peak cutting

and valley filling regulation benefit

EVCS and power grid
interaction

Discharge capacity is not
considered; interaction is mainly

analyzed through electricity
price regulation

Considering the effect of charging and discharging
behavior on the power grid, EVCS is regarded as a

distributed power supply

Planning methods

2m PEM, improved immune
clone selection algorithm, CSO,

TLBO, particle swarm
optimization, etc.

Gray Wolf Optimization (GWO) algorithm

Spatiotemporal
distribution prediction Yes Yes, considering the coupling effect between the

traffic network and distribution network

Economic cost Aims for minimal costs
Considers the cost, but this is not the only goal; pays
more attention to the balance between grid operation

and traffic flow

Economic losses for users Not specifically mentioned Considers user economic losses, with the goal of
minimization

Electricity price
regulation

Achieves orderly charging and
discharging through electricity

price regulation

Dynamic adjustment of electricity price to achieve
orderly charging and discharging, but this is not the

only means

Algorithm optimization

Multiple algorithms, but may
not take into account power

grids and transportation
networks

GWO algorithm, integrated consideration of power
grid and transportation network

2. Electric Vehicle Charging Station Model
The magnitude of charging demand is closely related to traffic flow. Suppose there

are N_JT nodes in the road network, and the traffic flow passing through the road network
node f at time t is 1/S4. The service range of the m-th EVCS is NEVCS_m, and the specific
formulas are described in detail in Sections 3.6 and 3.7. According to the number of nodes
contained in the service range, the total traffic flow of the m-th EVCS can be obtained. Let α

be the penetration rate of electric vehicles in the traffic road network, and the number of
EVs contained within the service range of the m-th EVCS at time t can be obtained through
Equation (1).

Ncar_t_m = α
NEVCS_m

∑
nEVCS_m=1

1
S4,t,nEVCS_m

(1)

where Ncar_t_m is the number of EVs included in the service area of the m-th EVCS at time t,
and S4,t,nEVCS_m is the traffic flow of the nEVCS_m node in the service area of the m-th EVCS
at time t.

In real life, not all Ncar_t_m vehicles need to be charged. In this paper, the travel demand
of EVCSs is calculated based on the travel patterns of various EVs, and EVs are classified.
The specific travel patterns of various vehicles are shown in Table 2 [11].
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Table 2. The initial charging time and SOC of various vehicles.

Initial Charge Time Initial SOC

Electric buses 23:00–5:30 the next day Follow the normal
distribution N (0.5, 0.12)

Electric taxis 23:00–7:00 the next day
11:00–18:00

Follow the normal
distribution N (0.35, 0.12)

Electric official cars and
special vehicles 22:00–5:00 the next day Follow the normal

distribution N (0.6, 0.12)

Electric private cars Working hours: 8:00–17:00
18:00–7:00 the next day

Follow the normal
distribution N (0.7, 0.12)

Using Table 2 and the Monte Carlo sampling process, the number of electric vehicles
connected at time t is defined as follows [12]:

P(nEV,t) =
e−λEV,t × λ

nEV,t
EV,t

nEV,t!
(2)

where λEV,t is the expected value of the number of EVs at time t, and nEV,t is the number of
EVs randomly accessing. The characteristic function is

Ψ(t) = exp
{

λEV,t(eit − 1)
}

(3)

The charging load is calculated at an interval of 10 min, with a total of 144 points in a
day. The total charging load is as follows:

Pt =
N−EV

∑
n=1

Pn,t (4)

where Pt is the total charging power in the t-th time period, where t = 1, 2, . . ., 144; N_EV is
the total number of EVs in the t-th time period; and Pn, t is the charging load of the n-th
vehicle in the t-th time period.

The calculation steps of the EVCS charging load are presented as follows:

(1) Input parameters such as the battery capacity and variance of the EV, and calculate
the number N of EVs at the i-th moment of the EVCS;

(2) Classify the EVs at the i-th moment in accordance with the distribution of the starting
charging time.

(3) Based on the distribution of the initial state of charge (SOC) of various types of EV
batteries, randomly generate the initial SOC, and calculate the required charging
capacity in accordance with Equation (5):

P = C(1 − SOC) (5)

where C is the battery capacity of the EV and P is the charging power of the EV.
(4) Return to the second step and repeat the aforementioned steps to acquire the charging

load of various types of EVs within a day.
(5) Superimpose the EV charging load curves to obtain the total charging load curve of

the EVCS.
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3. Research Scheme of Multi-Objective Optimization for Electric Vehicle
Charging Stations Based on Regulatory Benefits
3.1. EVCS Multi-Objective Optimization Scheme

This paper considers the impact of EVCSs on the grid based on the working hours of
EVCS and divides it into two cases. The multi-objective optimization function is as follows:

SC = k1S1 + k2S2 + k3S3 + k4S4 + k5S5 (6)

SF = k6S1 + k7S2 + k8S3 + k9S4 + k10S5 (7)

S = k11SC + k12SF (8)

where SC and SF represent the target items addressed by the EVCSs at the charging and
discharging instants. S1, . . ., S5 are the sub-targets considered in each target item, and
ultimately, they are planned to be solved as a single target through Formula (8). k1, k2,
. . ., k12 are the proportion coefficients of the sub-targets in the total target, and ac and
af are the weight coefficients, signifying the proportions of the objective functions at the
charging and discharging instants in the total objective function, respectively, which can
be adjusted based on actual requirements. S1, S2, S3, S4, and S5, respectively, denote the
voltage deviation of the bus node, the active power margin level of the AC line, the network
loss level of the entire network, the traffic flow, and the service range of the charging station,
and S is the objective function after considering the charging and discharging capabilities
of the EVCS.

In the site planning of EVCSs presented in this paper, it is essential to take into account
the weights of each objective function in the comprehensive index. In this paper, the
analytic hierarchy process is employed to convert the multi-objective optimization problem
into a decision-making issue of a total objective from both quantitative and qualitative
perspectives. Firstly, a judgment matrix needs to be constructed. The specific construction
method is presented in the following equation:

A =

A1 A2 A3 A4

A1

A2

A3

A4


a11 a12 . . . a1n

a21 a22 . . . a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

 (9)

[A1, A2, . . ., An] represent the n-dimensional second-level sub-objectives, and pairwise
comparisons are carried out in accordance with Table A3. The weight coefficients of each
element are calculated as presented in the following formula:

Ki =

n

√
n
∏
j=1

aij

n
∑

i=1
n

√
n
∏
j=1

aij

(i = 1, 2, · · · , n) (10)

The expression utilized for the consistency check of matrix A is

FCR =
FCI
FRI

=
(λmax − n)
(n − 1)FRI

(11)

where λmax represents the maximum eigenvalue of matrix A, FCR stands for the consistency
ratio, FCI denotes the consistency index, and FRI refers to the random index. The specific
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values are presented in Table A4. If FCR < 0.1, the weight coefficient is deemed reasonable.
If FCR ≥ 0.1, it implies that the judgment matrix A is inconsistent and requires adjustment.
The block diagram of the optimization scheme presented in this paper is depicted in
Figure 1:
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3.2. The Regulatory Benefit Derived from Peak Shaving and Valley Filling

Drawing on Ref. [13], the original daily load data of a regional power grid were
investigated and analyzed. The original daily load curve, as depicted in Figure 2, was
obtained through MATLAB (2020a) simulation verification.

It can be discerned from the aforesaid figure that the troughs of the original daily load
curve of the power grid occur from 2:00 to 7:00 and from 14:00 to 17:00, among which 5:00
and 15:00 represent the lowest points; the peaks are, respectively, from 11:00 to 13:00 and
from 19:00 to 21:00, among which 12:00 and 20:00 are the highest points. After 23:00, the
load curve begins to exhibit a downward trend [14].
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Through the EVCS model constructed in Section 1 and the Poisson distribution adhered
to by the number of EVs and the normal distribution followed by the charging time of EVs,
it can be observed from the aforementioned figure that the troughs of the original daily
load curve of EV charging occur from 7:00 to 12:00 and from 18:00 to 21:00; the peaks are,
respectively, from 13:00 to 16:00 and from 22:00 to 5:00 of the next day. After 21:00, the load
curve begins to exhibit an upward trend. The peak and trough times of the power grid and
the load are presented in Tables A1 and A2. Through Matlab simulation, a comparison
diagram of the daily load curve of the power grid and EVs is obtained, and the results are
as follows:

In Figure 3, the trough of the daily load curve of the power grid and the peak of the
daily load curve of EVs lie within the dotted area indicated by the black arrow, while the
peak of the daily load curve of the power grid and the trough of the daily load curve of
EVs are encompassed within the dotted area indicated by the green arrow. This implies
that the peak electricity consumption time of EVs exhibits a complementary tendency with
the electricity consumption peak of the power grid. Hence, this trend can be exploited to
reduce the peak–valley difference of the power grid load through an effective charging and
discharging scheme of EVCSs.
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Based on the aforementioned analysis, in this paper, during the trough period of the
original daily load curve of the power grid, the EVCS undertakes large-scale charging of
EVs. During the remaining periods, some charging piles are enabled for EV charging. Dur-
ing the peak period, the energy storage power supply [15] within the EVCS is discharged.
In this manner, the charging demand of EVs can be fulfilled, the load curve of the power
grid can be smoothed, and the regulation benefit of the EVCS can also be satisfied, attaining
the objective of peak shaving and valley filling. The state of charge at the discharge time of
the energy storage battery is presented in the following equation:

SOC−F = 1 −
T−c

∑
t=1

Pdisbat−t∆t
Eb

(12)

where SOC_F indicates the state of charge of the energy storage battery during the discharge
period, T_c represents the charging period of the EVCS, Pdisbat_t denotes the discharge
power of the energy storage battery at time period t, ∆t represents the time interval, and Eb

represents the investment capacity of the energy storage system.

3.3. Index of Voltage Deviation at the Bus Node

In the optimization scheme presented in this paper, when an EV is connected to the
distribution network, the bus node voltage should be as proximate as possible to the rated
voltage UN, and the disparity between them is demonstrated as follows [16]:

∆Ubus−i,t = Ubus−i,t − UN (13)

The voltage deviation index proposed in this paper requires considering not only
the voltage deviation level of N nodes at time t, but also the degree of node voltage
fluctuation. Taking the node voltage deviation considering the voltage fluctuation level
as the optimization objective, and ensuring that the voltage deviation of all bus nodes is
minimized, it is defined as objective S1:

S1 =
S1−a
NT

N

∑
i=1

T

∑
t=1

(Ubus−i,t − Ubus−i,t,min)(Ubus−i,t,max − Ubus−i,t)

(UN − Ubus−i,t,min)(Ubus−i,t,max − UN)
(14)

S1−α =
1

NT

N

∑
n=1

T

∑
n=1

∣∣∣∣∣Ubus−i,t

UN
− Ubus−i

∣∣∣∣∣ (15)

Ubus−i =
1
T

T

∑
t=1

∣∣∣∣∣UN − Ubus−i,t

UN

∣∣∣∣∣ (16)

where N represents the number of nodes in the distribution network; t ∈ T, where T is the
hydrogen production time; S1–a is the voltage fluctuation level index; and Ubus−i represents
the average value of the voltage fluctuation level of node i over the calculation period.

3.4. Active Power Margin Level of AC Power

The active power margin level of alternating current is a crucial indicator for measuring
the stable operation of the power system. In this paper, the variance is obtained to reflect
the degree of dispersion of the power flow in each line, minimizing the variance of each
node as much as possible. The variance value considering power fluctuation and maximum
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power deviation is taken as the optimization objective and defined as objective S2, as shown
in the following equation:

S2 = S2−a

√√√√ 1
TK

T

∑
t=1

K

∑
k=1

(PEV,t − Pk,t)

2

(17)

S2−a =
a

TK

T

∑
t=1

K

∑
k=1

(Pk,t − PEV,t) +
b

TK

T

∑
t=1

K

∑
k=1

(
Pk−max − Pk,t

Pk−max
) (18)

PEV =

T
∑

t=1

K
∑

k=1
Pk,t

TK
(19)

where PEV,t represents the average power of the AC line connected to node i at time t; Pk,t

represents the active power level of line k connected to node i at time t; S2–a represents the
influence coefficient considering the power fluctuation and the maximum power deviation
on the objective function, where a and b, respectively, represent the weights of the power
fluctuation and the maximum power deviation in the influence coefficient; Pk-max represents
the transmission power upper limit of line k connected to node i at time t, with k ∈ K; and
K represents the total number of AC lines connected to node i.

3.5. The Extent of Power Loss Across the Entire Network

In the operation of power grids, excessive network loss will result in the loss of
electrical energy and the waste of energy. Reducing network loss is an important economic
objective. The line loss of the system is calculated by the Newton–Raphson method, and
the active network loss is expressed as follows [17]:

S3 =
NL

∑
i=1

Gij

(
U2

i + U2
j − 2UiUj cos(θi − θj)

)
(20)

where S3 represents the network loss of the system, where Ui and Uj denote the voltage
amplitudes of nodes i and j; Gij stands for the conductance of the branch between nodes
i and j; nl ∈ NL, and NL is the set of transmission lines; and θi and θj signify the voltage
phase angles of nodes i and j.

3.6. Traffic Flux

The layout of EVCS requires considering not only the influence on the power grid but
also the constraints of the traffic network in actual circumstances. One of the main entities
served by EVCSs is EV users. Hence, the planning scheme of EVCSs needs to capture the
traffic flow to the greatest extent possible to meet the actual demands of users. The traffic
flow objective function is presented as follows:

S4 = 1/
L

∑
l=1

FiFj

1.5dEVCS− l
∀i, j ∈ N, i ̸= j (21)

where S4 indicates the objective function of traffic flow, where Fi and Fj are the weights of
the two nodes, namely the starting point i and the ending point j of the line, and dEVCS_l

represents the length of the path l in the traffic network.

3.7. The Scope of Services Provided by the Charging Station

In the planning scheme presented in this paper, the attractiveness of EVCSs to users
should be maximized to the greatest extent possible. Apart from factors such as electricity
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price and distance, the disparities of each node will also have certain influential factors
interfering with the choices of EV users. Therefore, in this paper, the introduction of weight
coefficients is employed to reflect the influence of other factors on users. The objective
function of the charging range of EVCSs proposed in this paper is presented in the following
equation:

S5 =
M

∑
m=1

√
1
M

M
∑

m=1

(
Sm−cs −

1
M

M
∑

m=1
Sm−cs

)2

Sm−cs −
1
M

M
∑

m=1
Sm−cs

(22)

where Sm_CS denotes the attractiveness of the m-th charging station to EV users. The
charging range of EVCSs is preferably larger. In this paper, the planning scheme will be
solved by means of GWO. To adapt to the algorithm rules, S5 represents the reciprocal of
the charging range of EVCSs, that is, the smaller S5 is, the larger the charging range. The
attractiveness of the m-th charging station to EV users is presented as follows:

Sm−cs =
PEVCS−m

λi

(
L
∑

l=1
dEVCS− lEEV PEV

) (23)

where PEVCS_m denotes the charging power of the m-th EVCS, λi represents the influence
weight of other factors at node i, dEVCS_l represents the length of the path l for an electric
vehicle to reach the EVCS, EEV represents the power consumption per unit distance, and
PEV represents the electricity price of the EVCS.

NEVCS_m =
N_JT

S5
× 100% (24)

where NEVCS_m indicates the number of nodes encompassed within the influence scope
of the m-th EVCS, and N_JT represents the total number of nodes in the transporta-
tion network.

3.8. Constraint Conditions

(1) Voltage constraints at nodes:

Ui,tmin ≤ Ui,t ≤ Ui,tmax (25)

where Ui,tmax and Ui,tmin represent the maximum and minimum values of the voltage
at node i at time t.

(2) Constraints on branch capacity:

P2
ij + Q2

ij ≤ S2
ijmax (26)

where Pij and Qij represent the active and reactive powers on the branch, and Sijmax is
the maximum capacity permitted for the branch.

(3) Constraints on the quantity of EV charging and total demand:

NEV−m ≤ NEVCS−m (27)

V

∑
v=1

SCDZ ≥
NEV

∑
n=1

SEV (28)

where NEV_m represents the charging quantity of EVs in the m-th EVCS, NEVCS_m

indicates the number of permitted charging stations in the m-th EVCS, V stands for
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the quantity of charging piles in the EVCS, SCDZ denotes the capacity of the charging
piles, and SEV represents the capacity of the EVs.

(4) Constraint of the power balance equation:
Pi + PDGi = PLi + Ui

N
∑

j=1
Uj

(
Gij cos θij + Bij sin θij

)
Qi + QDGi = QLi + Ui

N
∑

j=1
Uj

(
Gij sin θij − Bij cos θij

) (29)

where Pi and Qi represent the active and reactive power input at node i; PLi and QLi

denote the active and reactive power of the load at node i; Gij and Bij signify the
conductance and susceptance of the branch; Ui and Uj stand for the node voltages at
nodes i and j; PDGi and QDGi indicate the active and reactive power injected by the
DG to node i; and θij represents the phase angle difference of the voltage.

(5) Constraints regarding the number of charging stations:

ni−EVCS = 1 (30)

where ni_EVCS represents the number of EVCSs at node i. During the planning process,
only one EVCS can be constructed at each road network node.

(6) Constraints on the service scope of electric vehicle charging stations:

2 ≤ NEVCS−m ≤ 10 (31)

where NEVCS_m represents the number of nodes encompassed within the influence
range of the m-th EVCS.

(7) Constraints on the degree of coincidence of EVCSs:∣∣NEVCS−m ∩ NEVCS−s
∣∣∣∣NEVCS−m

∣∣ ≤ ξ m ̸= s,
∣∣NEVCS−m

∣∣ ̸= 0 (32)

where NEVCS_m and NEVCS_s represent the quantities of nodes encompassed within
the influence range of the m-th and s-th EVCSs, respectively, that is, the service range
of EVCSs, and ξ indicates the number of identical nodes within the service ranges of
the two EVCS, namely, the degree of overlap. In the planning scheme of this paper,
the degree of overlap of each EVCS should not be overly high.

(8) Constraint regarding the investment capacity of the energy storage system:

Emin
b ≤ Eb ≤ Emax

b (33)

where Emin
b and Emax

b represent, respectively, the lower limit and upper limit of the
investment capacity Eb of the energy storage system.

4. Dynamic Data Extraction of the Distribution Network Based on
Time-Segmented Power Flow

Against the backdrop of the new energy revolution, along with the addition of various
variables represented by EVs, it has become gradually more difficult to meet the actual
demands of deterministic power flow [18]. Hence, in this paper, the Monte Carlo simulation
method is employed. Through MATLAB, the fluctuation of the random variable is set at
30%. A large number of samplings of the random variable are conducted, and the sampling
results are substituted into the power flow calculation, thereby obtaining the power flow
data after considering the load fluctuation.
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According to the multi-objective optimization scheme proposed in Section 2, it is
necessary to extract the power flow data of the distribution network after accessing the
EVCS. In real life, the power flow data of the distribution network are constantly changing.
If calculated based on the traditional deterministic power flow, there will be a certain
deviation from the actual result. In this paper, the dynamic data of the distribution network
is extracted by solving the tidal current in various time periods, and the results are presented
in Figure 4 as follows:
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Figure 4. Data extraction of segmented power flow.

Take area A in the above figure as an example, namely, where the EVCS charges the
EV. At this juncture, the EVCS is connected to the distribution network as a load. Through
the Newton–Leibniz formula, supposing that the distance between each dotted line is ∆X,
the more the area A is divided by the dotted lines, the smaller ∆X becomes. When the
number of divisions approaches the limit, the curve value corresponding to ∆X at this time
can be approximately regarded as invariant.

The actual power flow is subject to dynamic variations. Nevertheless, when the time is
narrowed to a specific value, the power flow data at that time can be approximately treated
as a deterministic power flow. In this paper, the charging and discharging time of the EVCS
is segmented at one-minute intervals. At this juncture, extracting the dynamic data of the
distribution network can significantly reduce the error. Based on the segmentation results,
there are 60 sets of power flow data within one hour. Integrating and averaging all the
data can yield a set of power flow data considering load fluctuations. A reasonable EVCS
location optimization scheme can be optimized via the gray wolf algorithm.

However, conducting only one segmentation might result in certain deviations. Hence,
through a large number of cycles, the most reasonable optimization scheme is selected
from the data after the cycles. This scheme can greatly minimize the error and be closer to
the actual situation. The probabilistic power flow calculation of the distribution network
with EVCS and taking into account its charging and discharging capacity is presented in
Figure 5.
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5. Solution to Optimization Scheme of Electric Vehicle Charging Stations
Based on Gray Wolf Algorithm
5.1. The Classification of Wolves Within a Group

In GWO, each solution is associated with a wolf. The leading wolf α represents the
current optimal solution, while the wolves β and δ representing the suboptimal solutions,
and the remaining solutions are the ω wolves. α, β, and δ jointly determine the search
direction [19].

5.2. Surrounding the Quarry

In the wolf pack, the positions of α, β, and δ have an impact on the subsequent
movement of each wolf. In the GWO algorithm, this process is presented as follows:

D = |CXP(u)− X(u)| (34)

X(u + 1) = XP(u)− AD (35)

where A and C represent coefficient vectors; Xp(u) indicates the orientation of α, β, and δ;
and X(u) and X(u + 1), respectively, denote the orientations of any solution before and after
being influenced by Xp(u) [20].

5.3. Aggressive Behavior

In the GWO algorithm, the attacking direction can be represented as

X(u + 1) =
X1 + X2 + X3

3
(36)

where X1, X2, and X3 represent the moving directions of each wolf and are, respectively,
influenced by α, β, and δ, and the three jointly determine the new directions of each
wolf [21].
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5.4. Solution of the Optimization Scheme for Electric Vehicle Charging Stations Based on the Gray
Wolf Algorithm

Once the EVCS is connected to the distribution network, the influence of the EVCS
on the distribution network subsequent to the connection is minimized by optimizing
the access location of the EVCS. In accordance with the scheme proposed herein, the
location planning of M EVCSs in a road–electricity coupling network consisting of N nodes
is conducted. The constraint conditions are intricate and the computational volume is
substantial. Hence, this paper employs the gray wolf algorithm to solve the proposed
scheme presented in this paper. The solution steps are as follows [22–25]:

Step 1: Input the load of each node, the impedance level of each branch, the power
supply level, and so on.

Step 2: Initialize the capacity of the electric vehicle charging station and the positions
of each wolf pack in accordance with the model parameters and constraint conditions,
namely, the initial positions of M EVCSs.

Step 3: Based on the positions of the initialized wolf packs, calculate the value of the
objective function by means of the dynamic data extraction method of the distribution
network proposed in Section 3.

Step 4: Conduct optimization judgment based on the computed results. The optimal
solution is regarded as the leading wolf. Update a and the synergy coefficient vector A, and
concurrently update the random weight C of the current solution’s influence on the prey.

Step 5: Based on the calculation and comparison outcomes of the initial position of
the EVCS, update the classification of the wolf pack and the moving direction of each wolf
pack, and determine the new position of the wolf pack.

Step 6: Approach and encircle the optimal deployment points of EVCSs.
Step 7: According to Step 2, during the encircling process, solve the result of each

hunting, retain the optimal solution, and determine whether the stop condition is fulfilled.
If it is fulfilled, the hunting terminates; otherwise, return to Step 2 and continue the solution.

Step 8: Until the optimal solution is obtained or the maximum convergence number is
reached, output the optimal deployment planning scheme of EVCSs.

The specific algorithm flow is presented in Figure 6 below.
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6. Simulation Analysis
To validate the efficacy of the proposed scheme, in this paper, the working conditions

of an EVCS on a typical working day are chosen for simulation. The EVCS encompasses
charging interfaces for all types of EVs. The EV charging simulation period ranges from
00:00 to 24:00, with a time interval of ten minutes, and the extraction time of segmented
power flow data is from 00:00 to 24:00, with a time interval of one minute. The battery
capacity of various EVs is presented in Table 3 as follows:

Table 3. Table showing the battery capacity of various EVs.

EV Types Capacity Size

Electric bus 55 kWh
Electric taxi 45 kWh

Electric official cars and special vehicles 35 kWh
Electric private car 35 kWh

The specific weights of each element calculated based on the Analytic Hierarchy
Process are presented in Table 4 as follows:

Table 4. The weight of each element in the objective function.

Weights Value Weights Value

K1 0.217 K7 0.217
K2 0.217 K8 0.217
K3 0.217 K9 0.166
K4 0.166 K10 0.183
K5 0.183 K11 0.586
K6 0.217 K12 0.414

For the sake of facilitating our research, the following assumptions are made prior to
the calculation in this paper:

(1) The number of EVs has attained a certain scale, and the EVCS can perpetually remain
in normal operation.

(2) The IEEE-30 node standard example is adopted herein, and the data are in accordance
with the example.

(3) Based on the simulation results of the EV daily load curve, the capacity of the EVCS is
1.3 MW; the backup energy storage power supply is 1.3 MW; for the charging time and
the discharging time, the output is 1.3 MW; the expected SOC is 1; and the charging
pile efficiency η is taken as 0.95.

(4) The charging process in this paper is simplified to the constant power characteristic,
and the conventional charging power is taken as 3 KW and the fast charging power is
taken as 48 KW.

This paper employs the coupling framework of the IEEE 30 distribution network
and 30 road network nodes for simulation analysis [26,27]. The corresponding coupling
framework of the distribution network and the transportation network is depicted in
Figure 7. The unit distance between nodes in the figure is 1 KM. The corresponding
charging station locations are indicated by yellow nodes, and in the subsequent figure,
the number of charging stations is taken as M = 3, for instance. The nodes connected by
the dotted lines in the figure are defined as the coupling nodes of the power grid and the
transportation network.
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The weight of the influence factors of each node can be seen in Table A5.

6.1. Planning Scheme for Single-Charge Station

In the IEEE-30 node standard example, nodes 1, 2, 5, 8, 11, and 13 are reference nodes
and PV nodes, which typically represent power plants and power stations. Consequently,
they are not regarded as planning nodes for EVCSs. When M = 1, six schemes are devised
for simulation verification. Scheme 6 is the optimal one identified by GWO. The various
schemes are presented in Table 5 as follows:

Table 5. Single-seat charging station plan table.

Scheme Nodes Scheme Nodes

Scheme 1 7 Scheme 4 24
Scheme 2 12 Scheme 5 30
Scheme 3 19 Scheme 6 17

When the single EVCS is connected to the road-electricity coupling network in accor-
dance with the planning scheme proposed in this paper, the traffic flow and service scope
of each scheme are presented in Table 6 as follows:
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Table 6. The factor table of the road network for the single-seat EVCS.

Scheme Node Traffic Flow S5 objective Function Value Scope of Service

Option 1 110.875 10.564 3 nodes
Scheme 2 34.001 8.231 4 nodes
Scheme 3 24.298 5.215 6 nodes
Scheme 4 22.700 1.061 10 nodes
Scheme 5 8.3467 4.103 7 nodes
Scheme 6 8.3328 3.213 9 nodes

It can be discerned from Section 3.6 that the establishment of the objective function
value for traffic flow is to fulfill the optimization of the GWO algorithm and is configured
in the reciprocal form. That is, the smaller the objective function value, the larger the traffic
flow at this node. Hence, it can be observed from the aforementioned table that the traffic
flow of Scheme 6 surpasses that of the other schemes. The number of service range nodes
of Scheme 4 is set to 10 service nodes due to the constraint of Equation (31). The node
diagrams of the service scope of Schemes 1–5 can be seen in Figures A1–A5. Moreover, the
optimization data of the objective functions SC and SF are acquired through GWO. The
data comparison of each scheme is depicted in Figures A6 and A7. By combining the values
of the objective functions SC and SF, when a single EVCS is connected to the distribution
network, the optimization data of the six schemes are obtained, and the corresponding
optimization results are shown in Figure 8:
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Figure 8. Comparison of objective function S schemes.

It can be observed from the aforementioned figure that the objective function values of
Schemes 5 and 6 are conspicuously superior to those of the other four schemes, and we can
also see the optimization process and efficacy of GWO. In combination with Table 6 and
the data comparison, it can be ascertained that the objective function value corresponding
to Scheme 6 is the optimum. Hence, the index corresponding to the single EVCS connected
to Node 17 will be more favorable. Figures A8 and A9 present the power margin of each
node within 24 h when the EVCS is connected to the distribution network as a load and
power source.

The service scope of Scheme 6 is presented in Figure 9 as follows:
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From the aforementioned simulation outcomes, it can be discerned that in accordance
with the optimization scheme put forward in this paper, when a solitary EVCS is connected
to the road–electricity coupling network, it is capable of maximizing the service scope while
fulfilling the charging requirements, and can effectively mitigate the impact of EVCSS on
the power grid and stabilize the operation of the power grid.

6.2. Schemes for Planning Multiple Charging Stations

When M equals 3, the location planning of the road–electricity coupling network is
conducted in accordance with the scheme proposed in this paper. As stated in Section 5.1,
six schemes are set for simulation verification. The specific plan is presented in Table 7 as
follows:

Table 7. Multi-seat charging station plan table.

Scheme Nodes

Scheme 1 17, 7, 28
Scheme 2 22, 21, 29
Scheme 3 22, 13, 23
Scheme 4 20, 7, 13
Scheme 5 30, 15, 11
Scheme 6 17, 21, 18

Combined with the transportation network and solved by GWO, when EVCS is
connected in accordance with the above schemes, the traffic flow and service scope of each
scheme are presented in Table 8:

Table 8. The factor tables of the road networks of multiple charging stations.

Scheme Node Traffic
Flow

S5 Objective Function Value Scope of Service
(Number of Nodes)S5.1 S5.2 S5.3

Scheme 1 134.220 4.165 10.242 4.043 7 3 7
Option 2 44.361 10.242 1.940 7.075 3 10 4
Option 3 23.742 20.537 2.250 14.554 2 10 3
Option 4 19.286 3.970 1.940 8.085 7 10 4
Scheme 5 15.914 4.063 3.464 8.768 7 9 3
Scheme 6 15.093 4.043 3.995 3.995 8 8 8

As depicted in the aforementioned table, the traffic flow at the node where the EVCS
is situated in Scheme 6 is superior to that in the other schemes. Owing to the constraint of
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Formula (31) in Schemes 3–5, the minimum is Node 2 and the maximum is Node 10. The
node diagrams of the service scope of specific Schemes 1–5 can be found in Figures A10–A14

When the EVCS is connected to the road–electricity coupling network as a load, the
optimized data of each scheme are compared as depicted in the following figure:

As depicted in the figure above, the objective function of Scheme 6 is conspicuously
superior to that of the other five schemes. Nevertheless, the planning scheme proposed in
this paper has to take into account not only the load characteristics of the EVCS but also the
energy storage characteristics of the EVCS. The optimization data of the objective function
SF of each scheme when multiple EVCSs are connected to the road–electricity coupling
network as power sources are presented in Figure 10. When the EVCS is connected to
the coupling network as a power source, each objective function of Scheme 6 is also the
optimum. By combining the values of the objective functions SC and SF, when multiple
EVCS were connected to the road–electricity coupling network, the optimization data of
the six schemes were obtained, and the corresponding optimization results are presented
in Figure 10.
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Combining Table 8 and the comparison among the abovementioned schemes, it can
be ascertained that the objective function value corresponding to Scheme 6 is the most
optimal. When EVCS functions as a load, the voltage deviations of each node within 24 h
are presented in Figure 11, and the power margin is depicted in Figure A15:
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The power margin of each node when the EVCS is connected to the distribution
network as a power source is presented in Figure A16. The service scope of Scheme 6 is
presented in Figure 12 as follows:
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The information table of the service scope of each plan is presented in Table 9
as follows:

Table 9. Service scope information table.

Scheme Scope
Coverage

Number of Nodes
with No Coverage

Coincidence
Ratio

Percentage of
No Overlay

Scheme 1 50.00% 15 16.67% 50.00%
Option 2 36.67% 19 23.33% 63.33%
Option 3 50.00% 15 10.00% 50.00%
Option 4 73.33% 8 6.67% 26.67%
Scheme 5 73.33% 8 0% 26.67%
Scheme 6 83.33% 5 13.33% 16.67%

It can be discerned from the aforementioned table that Scheme 6 possesses the widest
coverage range. Within the entire road–electricity coupling network, Scheme 6 has the
fewest uncovered nodes. Although its service area overlap rate is marginally higher than
those of Schemes 3–5, by comparing Figures 12 and A10–A14, the number of uncovered
nodes in Scheme 3 is too large to satisfy the requirements of EV users. Although Schemes 4
and 5 have an edge in the service area overlap degree, the locations of EVCSs in them are
inferior to that of Scheme 6. The nodes where EVCSs are located in Scheme 4 are slightly
inclined towards the front section of the road–electricity coupling network, and the nodes
where EVCSs are located in Scheme 5 are more inclined towards the end of the network.
The location in Scheme 6 can optimally meet the needs of EV users. To conclude, Scheme 6
is the most optimal scheme compared to the other schemes.

6.3. Simulation of Regulatory Benefits Based on Peak Shaving and Valley Filling

After the EVCS is connected to the road–electricity coupling network in accordance
with the scheme proposed in this paper, it can effectively reduce the peak load and fill the
trough load. The trough of the daily load curve of the power grid after regulation with a
single EVCS is presented in Figure 13 as follows:
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The peak of the daily load curve of the power grid after the regulation with the
participation of a single EVCS is depicted in Figure 14:
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Figure 14. Single EVCS peak-clipping and valley-filling diagram (wave crest).

The above figure depicts the partial daily load curve of the power grid. Once the
EVCSs adjusted the daily load curve of the power grid in accordance with the scheme
proposed herein, an evident trend of peak shaving and valley filling could be witnessed.
Owing to capacity constraints, the regulation of the distribution network load curve by the
EVCSs in this paper is not substantial. Nevertheless, based on the optimization scheme
put forward in this paper, the daily load curve of the power grid after the participation
of the EVCS group in the regulation when the number of EVCSs attains a certain scale is
presented in Figure 15:
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Figure 15. The daily load curve of the power grid after the EVCS participates in regulation.

As depicted in the above figure, the fluctuation of the daily load curve is conspicuously
suppressed. Hence, it can be observed that when the EVCS operates optimally in accordance
with the charging and discharging scheme proposed herein, it can efficaciously regulate the
daily load curve of the power grid, fulfill the goal of peak shaving and valley filling, and
enhance the reliability of the power supply. This also fully substantiates the effectiveness
of the EVCS planning scheme investigated in this paper.

6.4. Comparison of Optimization Algorithms: A Comprehensive Study

This paper performs a sensitivity analysis and a robustness test on the model, taking
into account the impact of random fluctuations of parameters on the solution. Figure 16
presents the robustness simulation diagram of the model.
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The GWO algorithm is chosen as the heuristic approach for the location optimization
issue of electric vehicle charging stations because of its strengths in global search capability
and convergence speed. Compared with the gradient algorithm, the GWO algorithm
holds more advantages when dealing with such complex optimization problems. Table 10
presents the comparison of algorithm characteristics.
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Table 10. Algorithm comparison information table.

Characteristics GWO PSO Gradient Algorithm

Heuristic type Swarm intelligence Swarm intelligence Gradient-based

Speed of convergence Fast Faster Depends on function
properties

Global search capability Strong Strong Weak
Parameter quantity Less Less Less

Applicability Complex optimization
problems Extensive Simple optimization problems

Sensitivity to initial solutions Low Low High

This paper conducts a comparison between the optimization processes and results
of the Gray Wolf Optimizer (GWO) and particle swarm optimization (PSO), and the
comparison outcomes are presented in Figure 17:
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As depicted in the figure above, the optimization processes of GWO and PSO for
multiple objective functions are compared. Within the 500-iteration range, GWO attains
the optimal value earlier than PSO and reaches the convergence condition. Concerning
the location optimization problem of electric vehicle charging stations in this paper, the
comparison results of the two algorithms are presented in Table 11 as follows:

Table 11. Comparison table of solution plans.

Algorithm
Optimization

Scheme
(X1, X2, X3)

Composite
Indicators

Grid Indicators
(S1, S2, S3)

Road Network
Indicators

(S4, S5)

Convergence
(500 Times)

GWO (17, 21, 18) 18.532 (3.41, 57.48, 15.66) (15.09, 1.05) Yes
PSO (19, 16, 23) 26.92 (3.53, 91.27, 15.62) (23.74, 0.44) No

Compared with the PSO algorithm in the location optimization of electric vehicle
charging stations, GWO, using coefficient vector A in Formula (35) to balance the ability of
global search and local search, acquires the smallest comprehensive index. Both GWO’s
power grid index and road network index are superior to the results of the PSO algorithm,
and it outperforms the PSO algorithm in terms of convergence speed and solution accuracy,
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reflecting the reliability of the optimal location planning scheme of EVCS based on GWO
in this paper.

7. Conclusions
This paper examines the complementary features of the load curves of the power grid

and EVCSs and investigates the influence of EVCSs, both as a load and a power source
accessing the distribution network, on the power grid and transportation network. By
optimizing the location of EVCSs, the regulation benefit based on peak shaving and valley
filling is optimal after EVCSs are connected to the road–electricity coupling network, and
the power quality of the distribution network, traffic flow, and service scope of EVCSs
reach their best state. Meanwhile, the EVCS layout planning scheme proposed in this study
enables the number of charging stations to be preset and optimized on this basis, enhancing
the adaptability and practicability of the scheme and better meeting actual demands.

This paper thoroughly discusses the dual role of EVCSs as a power source and load in
the power grid and their impact, and makes an initial plan for their internal backup energy
storage power source. However, energy storage can also achieve peak load transfer through
energy transfer, frequency regulation, etc. Based on this, future research can further deepen
the study of the energy storage characteristics of EVCSs, including their energy storage
capacity and response speed, and refine the charging and discharging strategy proposed in
this study to optimize the charging and discharging scheme of EVCSs.
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Appendix A

Table A1. Peak and valley timetable of grid load curve.

Valley Peak Valley Peak

Grid 2:00–7:00 11:00–13:00 14:00–17:00 19:00–21:00

Table A2. Peak and valley timetable of EV load curve.

Peak Valley Peak Valley

EVCS 22:00–5:00 the
next day 7:00–12:00 13:00–16:00 18:00–21:00

Table A3. Importance level and assignment.

Factor i over Factor j Quantization Value a

Equally important 1
Slightly important 3

Stronger importance 5
Strongly important 7

Extremely important 9
The middle of the above adjacency

importance 2, 4, 6, 8
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Table A4. Consistency check.

Matrix Order n 1 2 3 4 5 6 7 8 9 10

FRI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Table A5. Impact factor weight table.

Nodes Impact Factors Nodes Impact Factors Nodes Impact Factors

1 1.3 11 0.8 21 0.9
2 1.4 12 1.0 22 0.7
3 1.5 13 1.2 23 1.4
4 1.3 14 1.3 24 1.2
5 0.7 15 1.3 25 1.1
6 0.9 16 1.1 26 1.0
7 0.7 17 0.9 27 0.9
8 0.6 18 0.7 28 0.7
9 1.2 19 1.2 29 0.6
10 1.1 20 1.2 30 0.2

Table A6. Node coordinates and traffic flow of each road network.

Network
Node Coordinates Vehicle

Flow/Vehicles
Network

Node Coordinates Vehicle
Flow/Vehicles

1 (77, 135) 3164 16 (77, 135) 1458
2 (208, 98) 2145 17 (405, 221) 2394
3 (156, 205) 4265 18 (268, 412) 3179
4 (284, 177) 2210 19 (372, 414) 4380
5 (349, 52) 6154 20 (420, 341) 5250
6 (485, 177) 3201 21 (706, 426) 6101
7 (501, 92) 3155 22 (551, 389) 1122
8 (663, 107) 4290 23 (333, 497) 2443
9 (664, 234) 3371 24 (551, 498) 3158

10 (515, 261) 1233 25 (794, 497) 5186
11 (668, 326) 1387 26 (901, 422) 1281
12 (183, 410) 2288 27 (746, 259) 3449
13 (29, 262) 2295 28 (775, 149) 1273
14 (73, 390) 1304 29 (908, 206) 5308
15 (171, 451) 4486 30 (828, 313) 2578
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Figure A17. Spatial distribution of charging demand.
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