Exploring the Role of Artificial Intelligence in Wastewater Treatment: A Dynamic Analysis of Emerging Research Trends
<p>PRISMA diagram illustrating the identification, screening, and selection of studies.</p> "> Figure 2
<p>Annual scientific publications and mean citations per article (1985–2024) related to AI in wastewater treatment.</p> "> Figure 3
<p>Geographical distribution of publications in AI-driven wastewater research (1985–2024).</p> "> Figure 4
<p>Top institutions contributing to AI-driven wastewater research (1985–2024).</p> "> Figure 5
<p>Collaboration network of countries in AI-driven wastewater research. This figure illustrates the global collaboration network, with node size representing the centrality and influence of each country. The connections depict collaborative ties between nations, with China serving as the dominant hub connecting various countries. This image can be best visualized in its HTML format, in <a href="#app1-resources-13-00171" class="html-app">Supplementary Material S1</a>.</p> "> Figure 6
<p>Collaboration network of institutions in AI-driven wastewater research. The figure illustrates the institutional collaboration network, with node size representing the influence and centrality of each institution. Colors correspond to different clusters, reflecting distinct communities within the global network. This image can be best visualized in its HTML format, in <a href="#app1-resources-13-00171" class="html-app">Supplementary Material S2</a>.</p> "> Figure 7
<p>Collaboration network of authors in AI-driven wastewater research. The figure illustrates the author collaboration network, with node size representing centrality and influence. Connections indicate collaborative ties, with prominent authors like Qiao J. and Wang Z. serving as major hubs in the global network. This image can be best visualized in its HTML format, in <a href="#app1-resources-13-00171" class="html-app">Supplementary Material S3</a>.</p> "> Figure 8
<p>Intertopic distance map of AI applications in wastewater management: LDA visualization using multidimensional scaling.</p> "> Figure 9
<p>Temporal evolution of research topics in AI-driven wastewater research (1985–2024).</p> "> Figure 10
<p>Heatmap of research topic distribution by country in AI-driven wastewater research.</p> "> Figure 11
<p>Heatmap of research topic distribution by journal in AI-driven wastewater research.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Search Strategy
2.2. Bibliometric Analysis Methodology
2.3. Latent Dirichlet Allocation Methodology
3. Results
3.1. Bibliometric Analysis
3.1.1. Key Factors in AI-Driven Wastewater Research: Countries, Institutions, and Authors (Q1)
3.1.2. Leading Journals in AI-Driven Wastewater Research (RQ2)
3.1.3. Collaborative Social Network Structure Among Institutions, Countries, and Authors in AI-Driven Wastewater Research
3.2. Latent Dirichlet Allocation
3.2.1. Research Topics in AI-Driven Wastewater Research (RQ4)
3.2.2. Evolution of Research Topics in AI-Driven Wastewater Research (RQ5)
3.2.3. Distribution of Research Topics Across Countries and Scientific Journals (RQ6)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naddeo, V. One planet, one health, one future: The environmental perspective. Water Environ. Res. 2021, 93, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Alcamo, J. Water quality and its interlinkages with the Sustainable Development Goals. Curr. Opin. Environ. Sustain. 2019, 36, 126–140. [Google Scholar] [CrossRef]
- Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936. [Google Scholar] [CrossRef] [PubMed]
- Obaideen, K.; Shehata, N.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Olabi, A.G. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Icke, O.; Van Es, D.M.; de Koning, M.F.; Wuister, J.J.G.; Ng, J.; Phua, K.M.; Koh, Y.K.K.; Chan, W.J.; Tao, G. Performance improvement of wastewater treatment processes by application of machine learning. Water Sci. Technol. 2020, 82, 2671–2680. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, J.; Zhong, N.; Tu, X.; Jia, J.; Wang, J. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Sci. Total Environ. 2020, 699, 134279. [Google Scholar] [CrossRef]
- Cairone, S.; Hasan, S.W.; Choo, K.-H.; Lekkas, D.F.; Fortunato, L.; Zorpas, A.A.; Korshin, G.; Zarra, T.; Belgiorno, V.; Naddeo, V. Revolutionizing wastewater treatment toward circular economy and carbon neutrality goals: Pioneering sustainable and efficient solutions for automation and advanced process control with smart and cutting-edge technologies. J. Water Process Eng. 2024, 63, 105486. [Google Scholar] [CrossRef]
- Fang, F.; Ni, B.; Li, W.; Sheng, G.; Yu, H. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant. Chem. Eng. J. 2011, 174, 635–643. [Google Scholar] [CrossRef]
- Harrou, F.; Dairi, A.; Sun, Y.; Senouci, M. Statistical monitoring of a wastewater treatment plant: A case study. J. Environ. Manag. 2018, 223, 807–814. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. J. Clean. Prod. 2020, 250, 119473. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, T.; Qiao, Z.; Sun, P.; Hao, J.; Yang, Y. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Saf. Environ. Prot. 2020, 133, 169–182. [Google Scholar] [CrossRef]
- Niu, C.; Li, X.; Dai, R.; Wang, Z. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. Water Res. 2022, 216, 118299. [Google Scholar] [CrossRef]
- Baarimah, A.O.; Bazel, M.A.; Alaloul, W.S.; Alazaiza, M.Y.; Al-Zghoul, T.M.; Almuhaya, B.; Khan, A.; Mushtaha, A.W. Artificial intelligence in wastewater treatment: Research trends and future perspectives through bibliometric analysis. Case Stud. Chem. Environ. Eng. 2024, 10, 100926. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, Y.; Chen, W.; Wang, J.; Wang, Y.; Ren, H. Artificial intelligence in wastewater treatment: A data-driven analysis of status and trends. Chemosphere 2023, 336, 139163. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiao, S.; Yan, B.; Shen, S.; Dou, R.; Xu, X. Bibliometric-based analysis of hydrogels in the field of water treatment. Sustainability 2024, 16, 8194. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Duran-Ospina, J.P.; de la Hoz-M, J.; Maddela, N.R.; Lapo-Talledo, G.J.; Siteneski, A.; Montes-Escobar, K. Global research on keratomycosis: New insights from latent Dirichlet allocation and HJ-Biplot-driven knowledge mapping study. Diagn. Microbiol. Infect. Dis. 2024, 110, 116442. [Google Scholar] [CrossRef]
- Montes-Escobar, K.; de la Hoz-M, J.; Castillo-Cordova, P.; Duran-Ospina, J.P.; Bravo-Saltos, R.K.; Lapo-Talledo, G.J.; Siteneski, A. Glioblastoma: A comprehensive approach combining bibliometric analysis, Latent Dirichlet Allocation, and HJ-Biplot. Neurosurg. Rev. 2024, 47, 209. [Google Scholar] [CrossRef]
- Montes-Escobar, K.; De la Hoz-M, J.; Barreiro-Linzán, M.D.; Fonseca-Restrepo, C.; Lapo-Palacios, M.Á.; Verduga-Alcívar, D.A.; Salas-Macias, C.A. Trends in Agroforestry Research from 1993 to 2022: A Topic Model Using Latent Dirichlet Allocation and HJ-Biplot. Mathematics 2023, 11, 2250. [Google Scholar] [CrossRef]
- Escobar, K.M.; Vicente-Villardon, J.L.; de la Hoz-M, J.; Useche-Castro, L.M.; Alarcón Cano, D.F.; Siteneski, A. Frequency of Neuroendocrine Tumor Studies: Using Latent Dirichlet Allocation and HJ-Biplot Statistical Methods. Mathematics 2021, 9, 2281. [Google Scholar] [CrossRef]
- De La Hoz-M, J.; Fernandez-Gómez, M.J.; Mendes, S. Trends and topics in geographically weighted regression research from 1996 to 2019. Area 2022, 54, 105–117. [Google Scholar] [CrossRef]
- De La Hoz-M, J.; Mendes, S.; Fernández-Gómez, M.J.; González Silva, Y. Capturing the Complexity of COVID-19 Research: Trend Analysis in the First Two Years of the Pandemic Using a Bayesian Probabilistic Model and Machine Learning Tools. Computation 2022, 10, 156. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Echchakoui, S. Why and how to merge Scopus and Web of Science during bibliometric analysis: The case of sales force literature from 1912 to 2019. J. Mark. Anal. 2020, 8, 165–184. [Google Scholar] [CrossRef]
- Moya-Anegón, F.G.; Vargas-Quesada, B.; Chinchilla-Rodríguez, Z.; Corera-Álvarez, E.; Munoz-Fernández, F.J.; Herrero-Solana, V. Visualizing the marrow of science. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 2167–2179. [Google Scholar] [CrossRef]
- Gavel, Y.; Iselid, L. Web of Science and Scopus: A journal title overlap study. Online Inf. Rev. 2008, 32, 8–21. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Moed, H.F.; De Bruin, R.E.; Van Leeuwen, T.N. New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. Scientometrics 1995, 33, 381–422. [Google Scholar] [CrossRef]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Networks 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web. In The Web Conference; Technical Report; Stanford Digital Libraries: Stanford, CA, USA, 1999. [Google Scholar]
- Pons, P.; Latapy, M. Computing Communities in Large Networks Using Random Walks; Springer: Berlin/Heidelberg, Germany, 2005; pp. 284–293. [Google Scholar] [CrossRef]
- Kamada, T.; Kawai, S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 1989, 31, 7–15. [Google Scholar] [CrossRef]
- De la Hoz-M, J.; Fernández-Gómez, M.J.; Mendes, S. LDAShiny: An R Package for Exploratory Review of Scientific Literature Based on a Bayesian Probabilistic Model and Machine Learning Tools. Mathematics 2021, 9, 1671. [Google Scholar] [CrossRef]
- McFarland, D.A.; Ramage, D.; Chuang, J.; Heer, J.; Manning, C.D.; Jurafsky, D. Differentiating language usage through topic models. Poetics 2013, 41, 607–625. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 721–741. [Google Scholar] [CrossRef]
- Röder, M.; Both, A.; Hinneburg, A. Exploring the Space of Topic Coherence Measures. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining; ACM: New York, NY, USA, 2015; pp. 399–408. [Google Scholar] [CrossRef]
- Chang, J.; Gerrish, S.; Wang, C.; Boyd-Graber, J.; Blei, D. Reading Tea Leaves: How Humans Interpret Topic Models. In Advances in Neural Information Processing Systems; Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A., Eds.; Curran Associates Inc.: La Jolla, CA, USA, 2009; Available online: https://proceedings.neurips.cc/paper_files/paper/2009/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf (accessed on 1 November 2024).
- Han Lau, J.; Grieser, K.; Newman, D.; Baldwin, T. Automatic Labelling of Topic Models. 2011. 1536–1545. Available online: http://opennlp.sourceforge.net/ (accessed on 1 November 2024).
- Sievert, C.; Shirley, K. LDAvis: A method for visualizing and interpreting topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces; Association for Computational Linguistics: Baltimore, MD, USA, 2014; pp. 63–70. [Google Scholar]
- Xiong, H.; Cheng, Y.; Zhao, W.; Liu, J. Analyzing scientific research topics in manufacturing field using a topic model. Comput. Ind. Eng. 2019, 135, 333–347. [Google Scholar] [CrossRef]
- Avaro, D. La industria de la inteligencia artificial: Una carrera por su liderazgo [The artificial intelligence industry: A race for leadership]. Probl. del Desarro. Rev. Latinoam. Econ. 2023, 54, 105–127. [Google Scholar] [CrossRef]
- Singh, N.K.; Yadav, M.; Singh, V.; Padhiyar, H.; Kumar, V.; Bhatia, S.K.; Show, P.L. Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems. Bioresour. Technol. 2023, 369, 128486. [Google Scholar] [CrossRef]
- Oruganti, R.K.; Biji, A.P.; Lanuyanger, T.; Show, P.L.; Sriariyanun, M.; Upadhyayula, V.K.K.; Gadhamshetty, V.; Bhattacharyya, D. Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. Sci. Total Environ. 2023, 876, 162797. [Google Scholar] [CrossRef]
- Llano-Alonso, F.H. Ética(s) de la Inteligencia Artificial y Derecho. Consideraciones a propósito de los límites y la contención del desarrollo tecnológico [Ethics(s) of artificial intelligence and law. Considerations on the limits and containment of technological developmen]. DERECHOS Lib. Rev. Filos. Derecho Derechos Hum. 2024, 51, 177–199. [Google Scholar] [CrossRef]
- Lombana-Bermudez, A. La evolución de las brechas digitales y el auge de la Inteligencia Artificial (IA) [The evolution of digital breaches and the rise of Artificial Intelligence]. Rev. Mex. Bachill. a Distancia 2018, 10, 17–25. [Google Scholar] [CrossRef]
- Andía-Mejía, C.R. El rol de las políticas de datos en la adopción de la inteligencia artificial en países emergentes [The role of data policies in the adoption of Artificial Intelligence in emerging countries]. Política Int. 2023, 134, 9–28. [Google Scholar] [CrossRef]
- Vitola-Quintero, M.; Ballestas-Campo, N.J.; Pérez-Cerro, J.D.; Forbes-Santiago, R.N. Implicaciones Éticas, Sociales y Ambientales de la Inteligencia Artificial para el Desarrollo Sostenible: Una Revisión de la Literatura [Ethical, Social and Environmental Implications of Artificial Intelligence for Sustainable Development: A Review of the. Rev. Científica Anfibios 2024, 7, 72–81. [Google Scholar] [CrossRef]
- Terrones-Rodríguez, A.L. Sustainable artificial intelligence and constructive ethical assessment [Inteligencia artificial sostenible y evaluación ética constructiva]. Isegoria 2022, 67, 1–9. [Google Scholar] [CrossRef]
- Martín-Jiménez, F.J. Inteligencia artificial y ética: Hacia una aplicación de los principios éticos en el ámbito de la UE [Artificial intelligence and ethics: Towards an application of ethical principles in the EU]. Cuad. Eur. Deusto 2023, 68, 89–115. [Google Scholar] [CrossRef]
- Denis, G.; Hermosilla, M.P.; Aracena, C.; Sánchez-Ávalos, R.; Alarcón-González, N.; Pombo, C. Responsible Use of AI for Public Policy: Project Formulation Manual; Inter-American Development Bank: Washington, DC, USA, 2021; 96p. [Google Scholar] [CrossRef]
ID | Research Question (RQ) | Supporting Sections |
---|---|---|
RQ1 | What key factors (authors, institutions, and countries) are driving advances in research on the use of artificial intelligence in wastewater treatment? | Section 3.1.1 |
RQ2 | Which journals and publications serve as epicenters for innovative studies on the use of artificial intelligence in wastewater treatment? | Section 3.1.2 |
RQ3 | How is the social network of collaboration structured among countries, authors, and institutions in this field of research? | Section 3.1.3 |
RQ4 | What are the main research topics in this field? | Section 3.2.1 |
RQ5 | How do these research topics evolve? | Section 3.2.2 |
RQ6 | What is the distribution of these topics across countries and scientific journals? | Section 3.2.3 |
Bibliographic Database | Search Date | Search String | Results |
---|---|---|---|
Scopus | 17 September 2024 | TITLE-ABS-KEY (“wastewater treatment” OR “wastewater management” OR “sewage treatment” OR “effluent treatment”) AND TITLE-ABS-KEY (“artificial intelligence” OR ai OR “machine learning” OR “deep learning” OR “neural network *” OR “fuzzy logic” OR “genetic algorithm *” OR “supervised learning” OR “unsupervised learning” OR “reinforcement learning” OR “support vector machines” OR “decision trees” OR “convolutional neural network *” OR “random forests” OR “predictive modeling” OR “data mining” OR “computer vision” OR “optimization algorithm *”) AND PUBYEAR > 1984 AND PUBYEAR < 2025 AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)) AND (LIMIT-TO (SRCTYPE, “j”)) | n = 3693 |
Web of Science | 17 September 2024 | TS = (“wastewater treatment” OR “wastewater management” OR “sewage treatment” OR “effluent treatment”) AND TS = (“artificial intelligence” OR ai OR “machine learning” OR “deep learning” OR “neural network *” OR “fuzzy logic” OR “genetic algorithm *” OR “supervised learning” OR “unsupervised learning” OR “reinforcement learning” OR “support vector machines” OR “decision) trees” OR “convolutional neural network *” OR “random forests” OR “predictive modeling” OR “data mining” OR “computer vision” OR “optimization algorithm *”) | n = 2728 |
Indicator/Algorithm | Description | Purpose | Application in Analysis |
---|---|---|---|
Node | Represents a single entity in the network, such as an author, country, or institution. | To identify individual entities and their roles within the network. | Used to map and analyze each entity’s position and connections. |
Cluster | Refers to a group of nodes that are more densely connected to each other than to other nodes. | To determine communities or groups within the network. | Helps in identifying collaborative groups or clusters within the network. |
Betweenness Centrality [31] | Measures the extent to which a node lies on the shortest paths between other nodes. | To identify nodes that act as bridges within the network. | Highlights nodes that facilitate information flow between other nodes. |
Closeness Centrality [32] | Measures how close a node is to all other nodes in the network. | To determine nodes that can reach others more quickly. | Assesses nodes’ accessibility and their potential influence. |
PageRank [33] | A ranking system that assigns scores to nodes based on their connectivity and importance. | To assess the influence and importance of nodes within the network. | Evaluates the significance of nodes based on their connections. |
Walktrap Algorithm [34] | Uses random walks to calculate distances between vertices, aiding in detailed information capture and community detection. | To identify communities within the network. | Facilitates the detection of network communities and clusters. |
Kamada–Kawai Method [35] | Arranges undirected graphs to reflect theoretical distances between vertices for better visualization. | To visualize and interpret the structure of the network. | Provides a visual layout of the network, reflecting the theoretical distances. |
Description | Results |
---|---|
MAIN INFORMATION ABOUT DATA | |
Timespan | 1985–2024 |
Sources (Journals) | 1271 |
Documents | 4335 |
Annual Growth Rate (%) | 15.92 |
Document Average Age | 6.31 |
Average citations per doc | 19.3 |
DOCUMENT CONTENTS | |
Keywords Plus (ID) | 15,993 |
Author’s Keywords (DE) | 9848 |
AUTHORS | |
Authors | 10,172 |
Authors of single-authored docs | 111 |
AUTHOR COLLABORATION | |
Single-authored docs | 122 |
Co-Authors per Doc | 4.52 |
International co-authorships (%) | 16.29 |
DOCUMENT TYPES | |
Article | 4085 |
Review | 250 |
Country | Articles | TC | SCP | MCP |
---|---|---|---|---|
China | 1324 | 18,455 | 1164 | 160 |
India | 330 | 4782 | 282 | 48 |
Iran | 265 | 6593 | 224 | 41 |
USA | 223 | 9391 | 194 | 29 |
Spain | 204 | 4734 | 172 | 32 |
South Korea | 152 | 3140 | 122 | 30 |
Canada | 99 | 1847 | 71 | 28 |
Turkey | 98 | 2603 | 92 | 6 |
Malaysia | 92 | 2578 | 67 | 25 |
Poland | 87 | 1320 | 73 | 14 |
Italy | 80 | 2331 | 68 | 12 |
United Kingdom | 80 | 3639 | 52 | 28 |
Brazil | 78 | 1175 | 68 | 10 |
Australia | 64 | 911 | 43 | 21 |
Saudi Arabia | 63 | 728 | 43 | 20 |
Germany | 53 | 1325 | 46 | 7 |
Mexico | 52 | 471 | 41 | 11 |
France | 46 | 1131 | 41 | 5 |
Portugal | 38 | 515 | 34 | 4 |
Romania | 38 | 437 | 28 | 10 |
Egypt | 37 | 1077 | 22 | 15 |
Japan | 37 | 504 | 30 | 7 |
Greece | 33 | 728 | 31 | 2 |
Algeria | 32 | 328 | 26 | 6 |
South Africa | 29 | 472 | 19 | 10 |
Denmark | 20 | 899 | 16 | 4 |
Iraq | 20 | 140 | 16 | 4 |
Morocco | 20 | 164 | 12 | 8 |
Netherlands | 19 | 446 | 15 | 4 |
Sweden | 19 | 627 | 13 | 6 |
Author | h_Index | TC | NP | PY_Start |
---|---|---|---|---|
Qiao J. | 33 | 3563 | 191 | 2004 |
Han H. | 26 | 2203 | 119 | 2007 |
Wang Y. | 16 | 1064 | 89 | 2006 |
Liu Y. | 17 | 1138 | 78 | 2006 |
Wang X. | 16 | 963 | 69 | 1999 |
Li X. | 18 | 1147 | 67 | 2006 |
Li Y. | 16 | 872 | 65 | 1999 |
Wang J. | 15 | 822 | 58 | 2007 |
Li J. | 17 | 1005 | 57 | 2002 |
Li W. | 16 | 885 | 54 | 2009 |
Zhang Y. | 13 | 648 | 54 | 2006 |
Zhang J. | 9 | 301 | 53 | 2005 |
Wang Z. | 14 | 883 | 50 | 2005 |
Liu H. | 16 | 787 | 50 | 2003 |
Zhang L. | 14 | 880 | 48 | 2005 |
Wang H. | 16 | 761 | 46 | 2008 |
Liu Z. | 15 | 677 | 46 | 2005 |
Yang C. | 10 | 409 | 44 | 2016 |
Zhang X. | 11 | 517 | 41 | 1998 |
Chen Z. | 13 | 714 | 40 | 2005 |
Source | Iso Abbreviation | h_Index | TC | NP | PY_Start |
---|---|---|---|---|---|
Water Research | Water Res. | 39 | 4000 | 118 | 1991 |
Journal of Environmental Management | J. Environ. Manage. | 30 | 2927 | 118 | 2004 |
Chemical Engineering Journal | Chem. Eng. J. | 29 | 2049 | 50 | 2004 |
Science of the Total Environment | Sci. Total Environ. | 28 | 2725 | 104 | 2004 |
Journal of Cleaner Production | J. Clean. Prod. | 27 | 1976 | 59 | 2008 |
Water Science and Technology | Water Sci. Technol. | 27 | 2412 | 139 | 1991 |
Chemosphere | Chemosphere | 26 | 2082 | 97 | 1998 |
Bioresource Technology | Bioresour. Technol. | 25 | 3007 | 59 | 2008 |
Journal of Hazardous Materials | J. Hazard. Mater. | 24 | 2396 | 47 | 2005 |
Environmental Modelling and Software | Environ. Model. Softw. | 20 | 2038 | 22 | 1999 |
Computers and Chemical Engineering | Comput. Chem. Eng. | 19 | 855 | 24 | 2000 |
Journal of Water Process Engineering | J. Water Process Eng. | 19 | 1185 | 108 | 2014 |
Environmental Science and Pollution Research | Environ. Sci. Pollut. Res. | 16 | 979 | 79 | 2012 |
Process Safety and Environmental Protection | Process Saf. Environ. Prot. | 16 | 1282 | 35 | 2015 |
Expert Systems with Applications | Expert Syst. Appl. | 15 | 885 | 24 | 2002 |
Industrial and Engineering Chemistry Research | Ind. Eng. Chem. Res. | 15 | 762 | 25 | 1992 |
Engineering Applications of Artificial Intelligence | Eng. Appl. Artif. Intell. | 14 | 695 | 29 | 1994 |
Environmental Science and Technology | Environ. Sci. Technol. | 14 | 1081 | 22 | 1999 |
Journal of Environmental Chemical Engineering | J. Environ. Chem. Eng. | 14 | 580 | 40 | 2014 |
Journal of Supercritical Fluids | J. Supercrit. Fluids | 14 | 627 | 22 | 2010 |
Water (Switzerland) | Water | 14 | 656 | 34 | 2015 |
Desalination and Water Treatment | Desalination Water Treat. | 13 | 523 | 91 | 2012 |
Environmental Monitoring and Assessment | Environ. Monit. Assess. | 13 | 533 | 29 | 2007 |
Environmental Research | Environ. Res. | 13 | 823 | 38 | 2009 |
Journal of Hydrology | J. Hydrol. | 13 | 489 | 14 | 2009 |
Applied Soft Computing | Appl. Soft Comput. | 12 | 610 | 18 | 2011 |
Environmental Science and Technology | Environ. Sci. Technol. | 12 | 804 | 24 | 2007 |
Journal of Process Control | J. Process Control | 12 | 352 | 17 | 2004 |
Separation and Purification Technology | Sep. Purif. Technol. | 12 | 498 | 22 | 2004 |
Water | Water | 12 | 525 | 49 | 2013 |
T | Top_Terms | Label | NP |
---|---|---|---|
t_1 | effluent, wastewat, cod, oxygen, plant, demand, chemic, concentr, oxygen_demand, paramet, bod, nitrogen, influent, solid, wastewat_plant | Wastewater Quality Parameters | 242 |
t_2 | model, predict, learn, data, machin, wwtp, machin_learn, perform, accuraci, approach, wastewat, support, vector, term, forecast | AI for Effluent Prediction | 417 |
t_3 | flow, rate, temperatur, extract, flow_rate, transfer, condit, supercrit, heat, mathemat, pressur, design, experiment, fluid, estim | Supercritical Fluid Modeling | 134 |
t_4 | remov, adsorpt, effici, concentr, dye, surfac, experiment, initi, time, adsorb, condit, respons, kinet, rsm, solut | Pollutant Adsorption | 497 |
t_5 | sludg, activ, product, reactor, anaerob, activ_sludg, microbi, rate, scale, oper, increas, commun, digest, load, bacteria | Microbial Sludge Treatment | 234 |
t_6 | process, wastewat, industri, degrad, oxid, reaction, effici, remov, condit, paramet, fenton, effect, industri_wastewat, organ, textil | Advanced Oxidation Processes | 87 |
t_7 | wastewat, analysi, sampl, identifi, sourc, potenti, risk, contamin, health, human, type, level, resist, includ, environ | Contaminant Detection and Risk | 176 |
t_8 | model, predict, ann, error, perform, artifici, input, artifici_neural, data, paramet, variabl, valu, develop, ann_model, squar | Neural Networks for Wastewater | 413 |
t_9 | control, fuzzi, process, propos, base, simul, oper, wwtp, strategi, wastewat, design, perform, adapt, improv, paper | Fuzzy Control in Treatment | 518 |
t_10 | network, neural, neural_network, algorithm, function, method, model, structur, layer, propos, paramet, train, nonlinear, paper, network_model | Neural Network Design | 216 |
t_11 | optim, algorithm, energi, oper, consumpt, cost, genet, genet_algorithm, effici, multi, reduc, energi_consumpt, solut, improv, emiss | Energy Optimization | 214 |
t_12 | applic, wastewat, technologi, environment, develop, challeng, techniqu, intellig, review, advanc, industri, wast, includ, enhanc, provid | Environmental Tech for Wastewater | 264 |
t_13 | water, qualiti, sewag, water_qualiti, pollut, plant, discharg, river, standard, urban, manag, increas, factor, level, sewag_plant | Water Quality Monitoring | 170 |
t_14 | water, wastewat, decis, system, manag, develop, cost, resourc, approach, econom, evalu, requir, select, plant, support | Water Resource Management | 320 |
t_15 | membran, organ, foul, coagul, separ, mbr, turbid, flux, process, compound, membran_foul, perform, filtrat, oil, molecular | Membrane Filtration | 94 |
t_16 | method, data, process, monitor, measur, base, propos, time, sensor, real, detect, soft, wastewat, real_time, variabl | Real-Time Process Monitoring | 339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Hoz-M, J.; Ariza-Echeverri, E.A.; Vergara, D. Exploring the Role of Artificial Intelligence in Wastewater Treatment: A Dynamic Analysis of Emerging Research Trends. Resources 2024, 13, 171. https://doi.org/10.3390/resources13120171
De la Hoz-M J, Ariza-Echeverri EA, Vergara D. Exploring the Role of Artificial Intelligence in Wastewater Treatment: A Dynamic Analysis of Emerging Research Trends. Resources. 2024; 13(12):171. https://doi.org/10.3390/resources13120171
Chicago/Turabian StyleDe la Hoz-M, Javier, Edwan Anderson Ariza-Echeverri, and Diego Vergara. 2024. "Exploring the Role of Artificial Intelligence in Wastewater Treatment: A Dynamic Analysis of Emerging Research Trends" Resources 13, no. 12: 171. https://doi.org/10.3390/resources13120171
APA StyleDe la Hoz-M, J., Ariza-Echeverri, E. A., & Vergara, D. (2024). Exploring the Role of Artificial Intelligence in Wastewater Treatment: A Dynamic Analysis of Emerging Research Trends. Resources, 13(12), 171. https://doi.org/10.3390/resources13120171