How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia
<p>Oyster farming area in (scale 143 m/cm). (<b>a</b>) Northwest Italy and (<b>b</b>) the gulf of La Spezia, (scale 1:600) [modified from Google Earth, 2024].</p> "> Figure 2
<p>Scheme (plan view) of a single module in the longline plant.</p> "> Figure 3
<p>Contribution (%) of farming phases (<b>a</b>) and processes (<b>b</b>) involved in S0, considering 1 kg of oysters as the functional unit.</p> "> Figure 3 Cont.
<p>Contribution (%) of farming phases (<b>a</b>) and processes (<b>b</b>) involved in S0, considering 1 kg of oysters as the functional unit.</p> "> Figure 4
<p>Impact variation (%) in scenarios S1, S2, S3, and S4 in relation to scenario S0 (the asterisk indicates a value more than 100%).</p> "> Figure 5
<p>Impact variation (%) in scenarios S5 and S6 in relation to scenario S0 (the asterisks indicate a value more than 100%).</p> "> Figure 6
<p>Impact variation (%) in scenario S7 in relation to scenario S0.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Goal and Scope, Functional Unit, and System Boundaries
- -
- Current farming practices as a baseline (S0);
- -
- The replacement of virgin HDPE for pouches and lanterns with PLA (polylactic acid) (S1), PHA (polyhydroxyalkanoates) (S2), Bio-PET (bio-based polyethylene terephthalate) (S3), and recycled HDPE (S4);
- -
- The replacement of nylon rope with hemp fiber (S5) and cotton fiber (S6);
- -
- The replacement of wooden boxes for packaging with PP (polypropylene) nets (S7).
2.3. Life Cycle Inventory (LCI)
2.3.1. Original Scenario (S0) Inventory
2.3.2. Alternative Scenarios (S1–S7) Inventory
2.4. Life Cycle Impact Assessment (LCIA) and Uncertainty Analysis
3. Results
3.1. Baseline Scenario (S0)
3.2. Alternative Scenarios (S1–S7)
Uncertainty Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Security: Assessing Its Characteristics From a Future Food Perspective. Front. Mar. Sci. 2021, 8, 654897.
- McClements, D.J. Future Foods: Is It Possible to Design a Healthier and More Sustainable Food Supply? Nutr. Bull. 2020, 45, 341–354. [Google Scholar] [CrossRef]
- Wijsman, J.; Troost, K.; Fang, J.; Roncarati, A. Global Production of Marine Bivalves. Trends and Challenges. In Goods and Services of Marine Bivalves; Springer: Cham, Switzerland, 2019; pp. 7–26. [Google Scholar]
- Garlock, T.; Asche, F.; Anderson, J.; Bjørndal, T.; Kumar, G.; Lorenzen, K.; Ropicki, A.; Smith, M.D.; Tveterås, R. A Global Blue Revolution: Aquaculture Growth Across Regions, Species, and Countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116. [Google Scholar] [CrossRef]
- Ramos, C.d.O.; da Silva, F.C.; Gomes, C.H.A.d.M.; Langdon, C.; Takano, P.; Gray, M.W.; de Melo, C.M.R. Effect of Larval Density on Growth and Survival of the Pacific Oyster Crassostrea Gigas in a Recirculation Aquaculture System. Aquaculture 2021, 540, 736667. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, S.; Zhang, H.; Pang, D.; Yang, Q.; Jiang, R.; Lin, Y.; Mu, Y.; Zhu, Y. The Oyster Fishery in China: Trend, Concerns and Solutions. Mar. Policy 2021, 129, 104524. [Google Scholar] [CrossRef]
- Botta, R.; Asche, F.; Borsum, J.S.; Camp, E.V. A Review of Global Oyster Aquaculture Production and Consumption. Mar. Policy 2020, 117, 103952. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- Filgueira, R.; Strohmeier, T.; Strand, Ø. Regulating Services of Bivalve Molluscs in the Context of the Carbon Cycle and Implications for Ecosystem Valuation. In Goods and Services of Marine Bivalves; Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 231–251. ISBN 978-3-319-96775-2. [Google Scholar]
- Sorensen, R.M.; Jovanović, B. From Nanoplastic to Microplastic: A Bibliometric Analysis on the Presence of Plastic Particles in the Environment. Mar. Pollut. Bull. 2021, 163, 111926. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yang, Z.; Yu, X.; Jia, Z.; Rosso, M.; Dedman, S.; Zhu, J.; Xia, Y.; Zhang, G.; Yang, J.; et al. Can We Quantify the Aquatic Environmental Plastic Load from Aquaculture? Water Res. 2022, 219, 118551. [Google Scholar] [CrossRef]
- Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Seaweed-Based Polymers from Sustainable Aquaculture to “Greener” Plastic Products. In Sustainable Global Resources of Seaweeds Volume 1: Bioresources, Cultivation, Trade and Multifarious Applications; Ranga Rao, A., Ravishankar, G.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 591–602. ISBN 978-3-030-91955-9. [Google Scholar]
- Cucina, M.; de Nisi, P.; Tambone, F.; Adani, F. The Role of Waste Management in Reducing Bioplastics’ Leakage into the Environment: A Review. Bioresour. Technol. 2021, 337, 125459. [Google Scholar] [CrossRef]
- Piemonte, V. Bioplastic Wastes: The Best Final Disposition for Energy Saving. J. Polym. Environ. 2011, 19, 988–994. [Google Scholar] [CrossRef]
- Pavia, F.C.; Brucato, V.; Mistretta, M.C.; Botta, L.; La Mantia, F.P. A Biodegradable, Bio-Based Polymer for the Production of Tools for Aquaculture: Processing, Properties and Biodegradation in Sea Water. Polymers 2023, 15, 927. [Google Scholar] [CrossRef]
- Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2021, 14, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Taneepanichskul, N.; Purkiss, D.; Miodownik, M. A Review of Sorting and Separating Technologies Suitable for Compostable and Biodegradable Plastic Packaging. Front. Sustain. 2022, 3, 901885. [Google Scholar] [CrossRef]
- Ramesh, M. Hemp, Jute, Banana, Kenaf, Ramie, Sisal Fibers. In Handbook of Properties of Textile and Technical Fibres; Elsevier: Amsterdam, The Netherlands, 2018; pp. 301–325. ISBN 978-0-08-101272-7. [Google Scholar]
- Sen, T.; Reddy, H.N.J. Various Industrial Applications of Hemp, Kinaf, Flax and Ramie Natural Fibres. Int. J. Innov. 2011, 2, 192. [Google Scholar]
- Watson, R.A.; Nichols, R.; Lam, V.W.Y.; Sumaila, U.R. Global Seafood Trade Flows and Developing Economies: Insights from Linking Trade and Production. Mar. Policy 2017, 82, 41–49. [Google Scholar] [CrossRef]
- Zoli, M.; Rossi, L.; Costantini, M.; Bibbiani, C.; Fronte, B.; Brambilla, F.; Bacenetti, J. Quantification and Characterization of the Environmental Impact of Sea Bream and Sea Bass Production in Italy. Clean. Environ. Syst. 2023, 9, 100118. [Google Scholar] [CrossRef]
- Tamburini, E.; Fano, E.A.; Castaldelli, G.; Turolla, E. Life Cycle Assessment of Oyster Farming in the Po Delta, Northern Italy. Resources 2019, 8, 170. [Google Scholar] [CrossRef]
- Summa, D.; Turolla, E.; Lanzoni, M.; Tamisari, E.; Castaldelli, G.; Tamburini, E. Life Cycle Assessment (LCA) of Two Different Oyster (Crassostrea gigas) Farming Strategies in the Sacca Di Goro, Northern Adriatic Sea, Italy. Resources 2023, 12, 62. [Google Scholar] [CrossRef]
- Lourguioui, H.; Brigolin, D.; Boulahdid, M.; Pastres, R. A Perspective for Reducing Environmental Impacts of Mussel Culture in Algeria. Int. J. Life Cycle Assess. 2017, 22, 1266–1277. [Google Scholar] [CrossRef]
- Martini, A.; Calì, M.; Capoccioni, F.; Martinoli, M.; Pulcini, D.; Buttazzoni, L.; Moranduzzo, T.; Pirlo, G. Environmental Performance and Shell Formation-Related Carbon Flows for Mussel Farming Systems. Sci. Total Environ. 2022, 831, 154891. [Google Scholar] [CrossRef]
- Aubin, J.; Fontaine, C. Environmental Impacts of Producing Bouchot Mussels in Mont-Saint-Michel Bay (France) Using LCA with Emphasis on Potential Climate Change and Eutrophication; American Center for Life Cycle Assessment: Bethesda, MD, USA, 2014; pp. 64–69. [Google Scholar]
- Sun, L.; Feng, J.-C.; Zhang, S. The Carbon Footprint of Pacific Oyster Farming in China. Energy Proceedings 2021, 19, 1–4. [Google Scholar]
- Zhou, A.; Zhang, Y.; Xie, S.; Chen, Y.; Li, X.; Wang, J.; Zou, J. Microplastics and Their Potential Effects on the Aquaculture Systems: A Critical Review. Rev. Aquac. 2021, 13, 719–733. [Google Scholar] [CrossRef]
- Bonello, G.; Varrella, P.; Pane, L. First Evaluation of Microplastic Content in Benthic Filter-Feeders of the Gulf of La Spezia (Ligurian Sea). J. Aquat. Food Prod. Technol. 2018, 27, 284–291. [Google Scholar] [CrossRef]
- Rossi, V.; Amorosi, A.; Marchesini, M.; Marvelli, S.; Cocchianella, A.; Lorenzini, L.; Trigona, S.L.; Valle, G.; Bini, M. Late Quaternary Landscape Dynamics at the La Spezia Gulf (NW Italy): A Multi-Proxy Approach Reveals Environmental Variability within a Rocky Embayment. Water 2021, 13, 427. [Google Scholar] [CrossRef]
- Collinson, R.; Rees, C. Mussel Mortality in the Gulf of La Spezia, Italy. Mar. Pollut. Bull. 1978, 9, 99–101. [Google Scholar] [CrossRef]
- Robert, R.; Sánchez, J.L.; Pérez-Parallé, L.; Ponis, E.; Kamermans, P.; O’Mahoney, M. A Glimpse on the Mollusc Industry in Europe. Aquac. Eur. 2013, 38, 5–11. [Google Scholar]
- Tamburini, E.; Turolla, E.; Fano, E.A.; Castaldelli, G. Sustainability of Mussel (Mytilus Galloprovincialis) Farming in the Po River Delta, Northern Italy, Based on a Life Cycle Assessment Approach. Sustainability 2020, 12, 3814. [Google Scholar] [CrossRef]
- Danioux, C.; Bompais, X.; Paquotte, P.; Loste, C. Offshore Mollusc Production in the Mediterranean Basin. 2000. Available online: https://om.ciheam.org/om/pdf/b30/00600655.pdf (accessed on 17 July 2024).
- Balbi, T.; Fabbri, R.; Montagna, M.; Camisassi, G.; Canesi, L. Seasonal Variability of Different Biomarkers in Mussels (Mytilus galloprovincialis) Farmed at Different Sites of the Gulf of La Spezia, Ligurian Sea, Italy. Mar. Pollut. Bull. 2017, 116, 348–356. [Google Scholar] [CrossRef]
- Klöpffer, W. The critical review of life cycle assessment studies according to ISO 14040 and 14044: Origin, purpose and practical performance. Int J Life Cycle Ass 2012, 17, 1087–1093. [Google Scholar] [CrossRef]
- Gerbinet, S.; Belboom, S.; Léonard, A. Life Cycle Analysis (LCA) of Photovoltaic Panels: A Review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Vogli, L.; Macrelli, S.; Marazza, D.; Galletti, P.; Torri, C.; Samorì, C.; Righi, S. Life Cycle Assessment and Energy Balance of a Novel Polyhydroxyalkanoates Production Process with Mixed Microbial Cultures Fed on Pyrolytic Products of Wastewater Treatment Sludge. Energies 2020, 13, 2706. [Google Scholar] [CrossRef]
- Suwanmanee, U.; Charoennet, N.; Leejarkpai, T.; Mungcharoen, T. Comparative Life Cycle Assessment of Bio-Based Garbage Bags: A Case Study on Bio-PE and PBAT/Starch. In Materials and Technologies for Energy Efficiency; Universal-Publishers: Boca Raton, FL, USA, 2015; pp. 193–197. [Google Scholar]
- Horne, M.R.L. 5B-Bast Fibres: Hemp Cultivation and Production. In Handbook of Natural Fibres, 2nd ed.; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing: Boston, UK, 2020; pp. 163–196. ISBN 978-0-12-818398-4. [Google Scholar]
- Ainali, N.M.; Kalaronis, D.; Evgenidou, E.; Kyzas, G.Z.; Bobori, D.C.; Kaloyianni, M.; Yang, X.; Bikiaris, D.N.; Lambropoulou, D.A. Do Poly (Lactic Acid) Microplastics Instigate a Threat? A Perception for Their Dynamic towards Environmental Pollution and Toxicity. Sci. Total Environ. 2022, 832, 155014. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Shenkar, N. Potential Effects of Biodegradable Single-Use Items in the Sea: Polylactic Acid (PLA) and Solitary Ascidians. Environ. Pollut. 2021, 268, 115364. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly (Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [PubMed]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Dilkes-Hoffman, L.S.; Lant, P.A.; Laycock, B.; Pratt, S. The Rate of Biodegradation of PHA Bioplastics in the Marine Environment: A Meta-Study. Mar. Pollut. Bull. 2019, 142, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Perrier, A.; Touchard, F.; Chocinski-Arnault, L.; Mellier, D. Influence of Water on Damage and Mechanical Behaviour of Single Hemp Yarn Composites. Polym. Test. 2017, 57, 17–25. [Google Scholar] [CrossRef]
- Zhang, H.; Zhong, Z.; Feng, L. Advances in the Performance and Application of Hemp Fiber. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 1–18. [Google Scholar] [CrossRef]
- Duque Schumacher, A.G.; Pequito, S.; Pazour, J. Industrial Hemp Fiber: A Sustainable and Economical Alternative to Cotton. J. Clean. Prod. 2020, 268, 122180. [Google Scholar] [CrossRef]
- Wise, K.; Baziotopoulos, E.; Zhang, C.; Leaming, M.; Shen, L.-H.; Selby-Pham, J. Comparative Study of Water Requirements and Water Footprints of Fibre Crops Hemp (Cannabis sativa) and Cotton (Gossypium hirsutum L.). J. Agrometeorol. 2023, 25, 392–396. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.-S.; Ehrlich, P.R. Does Aquaculture Add Resilience to the Global Food System? Proc. Natl. Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.; Teletchea, F.; Tomasso, J.R., Jr. Achieving Sustainable Aquaculture: Historical and Current Perspectives and Future Needs and Challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Yu, S.; Mu, Y. Evaluation of Green Development in Mariculture: The Case of Chinese Oyster Aquaculture. Aquaculture 2023, 576, 739838. [Google Scholar] [CrossRef]
- Crusot, M.; Gaertner, J.-C.; Rodriguez, T.; Lo, C.; Gaertner-Mazouni, N. Assessment of Plastic Waste Generated by the Aquaculture Industry: The Case Study of Pearl Farming in French Polynesia. J. Clean. Prod. 2023, 425, 138902. [Google Scholar] [CrossRef]
- Skirtun, M.; Sandra, M.; Strietman, W.J.; van den Burg, S.W.K.; De Raedemaecker, F.; Devriese, L.I. Plastic Pollution Pathways from Marine Aquaculture Practices and Potential Solutions for the North-East Atlantic Region. Mar. Pollut. Bull. 2022, 174, 113178. [Google Scholar] [CrossRef]
- Jiang, B.; Boss, E.; Kiffney, T.; Hesketh, G.; Bourdin, G.; Fan, D.; Brady, D.C. Oyster aquaculture site selection using high-resolution remote sensing: A case study in the Gulf of Maine, United States. Front. Mar. Sci. 2022, 9, 802438. [Google Scholar] [CrossRef]
- Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S.E.; Singh, S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007, 7, 255–277. [Google Scholar] [CrossRef]
- Nitsch, C.K.; Walters, L.J.; Sacks, J.S.; Sacks, P.E.; Chambers, L.G. Biodegradable Material for Oyster Reef Restoration: First-Year Performance and Biogeochemical Considerations in a Coastal Lagoon. Sustainability 2021, 13, 7415. [Google Scholar] [CrossRef]
- Degli Innocenti, F.; Breton, T. Intrinsic Biodegradability of Plastics and Ecological Risk in the Case of Leakage. ACS Sustain. Chem. Eng. 2020, 8, 9239–9249. [Google Scholar] [CrossRef]
- Afshar, S.V.; Boldrin, A.; Astrup, T.F.; Daugaard, A.E.; Hartmann, N.B. Degradation of Biodegradable Plastics in Waste Management Systems and the Open Environment: A Critical Review. J. Clean. Prod. 2024, 434, 140000. [Google Scholar] [CrossRef]
- Koller, M. Advances in Polyhydroxyalkanoate (PHA) Production. Bioengineering 2017, 4, 88. [Google Scholar] [CrossRef]
- Arantzamendi, L.; Andrés, M.; Basurko, O.C.; Suárez, M.J. Circular and Lower Impact Mussel and Seaweed Aquaculture by a Shift towards Bio-based Ropes. Rev. Aquac. 2023, 15, 1010–1019. [Google Scholar] [CrossRef]
- Theodorou, J.A.; Tzovenis, I. A framework for risk analysis of the shellfish aquaculture: The case of the Mediterranean mussel farming in Greece. Aquac. Fish. 2023, 8, 375–384. [Google Scholar] [CrossRef]
- Kripa, V.; Mohamed, K.S.; Velayudhan, T.S.; Laxmilatha, P.; Radhakrishnan, P.; Joseph, M.; Alloycious, P.S.; Jenni, B.; Appukuttan, K.K. Recent developments in edible bivalve farming in India. Aquac. Asia 2001, 6, 40–43. [Google Scholar]
- Cacchioni, D. Hemp and Industry in Italy: Between Pasts and Present. Ager Rev. De Estud. Sobre Despoblación Y Desarro. Rural = J. Depopulation Rural Dev. Stud. 2021, 32, 93–115. [Google Scholar]
- Karche, T. The Application of Hemp (Cannabis sativa L.) for a Green Economy: A Review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Haramina, T.; Hadžić, N.; Keran, Z. Epoxy Resin Biocomposites Reinforced with Flax and Hemp Fibers for Marine Applications. J. Mar. Sci. Eng. 2023, 11, 382. [Google Scholar] [CrossRef]
- Chethan, K.; Hegde, S.; Kumar, R.; Padmaraj, N. An Experimental Investigation of the Effect of Natural Fiber Treatment and Marine Environment on Cannabis Sativa/Epoxy Laminates. J. Appl. Eng. Sci. 2021, 19, 840–846. [Google Scholar] [CrossRef]
- Giupponi, L.; Leoni, V.; Carrer, M.; Ceciliani, G.; Sala, S.; Panseri, S.; Pavlovic, R.; Giorgi, A. Overview on Italian Hemp Production Chain, Related Productive and Commercial Activities and Legislative Framework. Ital. J. Agron. 2020, 15, 194–205. [Google Scholar] [CrossRef]
- Croxatto Vega, G.; Gross, A.; Birkved, M. The Impacts of Plastic Products on Air Pollution-A Simulation Study for Advanced Life Cycle Inventories of Plastics Covering Secondary Microplastic Production. Sustain. Prod. Consum. 2021, 28, 848–865. [Google Scholar] [CrossRef]
- Hingant, M.; Mallarino, S.; Conforto, E.; Dubillot, E.; Barbier, P.; Bringer, A.; Thomas, H. Artificial Weathering of Plastics Used in Oyster Farming. Sci. Total Environ. 2023, 868, 161638. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Hou, J.; Wang, X. A Review of Microplastic Pollution in Aquaculture: Sources, Effects, Removal Strategies and Prospects. Ecotoxicol. Environ. Saf. 2023, 252, 114567. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Zhang, Y.; Ma, H.; Wu, X.; Xiao, S.; Li, J.; Mo, R.; Yu, Z. Comparison of the Biochemical Composition and Nutritional Quality Between Diploid and Triploid Hong Kong Oysters, Crassostrea Hongkongensis. Front. Physiol. 2018, 9, 1674. [Google Scholar] [CrossRef] [PubMed]
- Arini, A.; Gigault, J.; Venel, Z.; Bertucci, A.; Baudrimont, M. The Underestimated Toxic Effects of Nanoplastics Coming from Marine Sources: A Demonstration on Oysters (Isognomon alatus). Chemosphere 2022, 295, 133824. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.; Hollman, P.; Mendoza-Hill, J. Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety; FAO: Rome, Italy, 2017; ISBN 92-5-109882-4. [Google Scholar]
- Teng, J.; Wang, Q.; Ran, W.; Wu, D.; Liu, Y.; Sun, S.; Liu, H.; Cao, R.; Zhao, J. Microplastic in Cultured Oysters from Different Coastal Areas of China. Sci. Total Environ. 2019, 653, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Nationwide Monitoring of Microplastics in Bivalves from the Coastal Environment of Korea. Environ. Pollut. 2021, 270, 116175. [Google Scholar] [CrossRef] [PubMed]
- Baechler, B.R.; Granek, E.F.; Hunter, M.V.; Conn, K.E. Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability. Limnol. Oceanogr. Lett. 2020, 5, 54–65. [Google Scholar] [CrossRef]
- Manolaki, S.M.; Chatzivasileiou, D.; Lampa, M.; Dimitriou, P.D.; Philippidis, A.; Karakassis, I.; Papageorgiou, N. Microplastic Contamination in Cultured Mussels and Pearl Oysters in Greece. Microplastics 2023, 2, 168–181. [Google Scholar] [CrossRef]
- Calero, M.; Godoy, V.; Quesada, L.; Martín-Lara, M.Á. Green Strategies for Microplastics Reduction. Curr. Opin. Green Sustain. Chem. 2021, 28, 100442. [Google Scholar] [CrossRef]
- Acharjee, S.A.; Bharali, P.; Gogoi, B.; Sorhie, V.; Walling, B. Alemtoshi PHA-Based Bioplastic: A Potential Alternative to Address Microplastic Pollution. Water Air Soil Pollut. 2022, 234, 21. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Dombrowski, A.; Völker, C.; Wagner, M. Are Bioplastics and Plant-Based Materials Safer than Conventional Plastics? In Vitro Toxicity and Chemical Composition. Environ. Int. 2020, 145, 106066. [Google Scholar] [CrossRef] [PubMed]
- Arantzamendi, L.; Andrés, M.; Suárez, M.J.; van Der Schueren, L.; Aguinaga, M. Assessing the Mechanical Properties of Biobased versus Fossil-Based Ropes and Their Impact on the Productivity and Quality of Mussel (Mytilus Galloprovincialis) in Longline Aquaculture: Toward Decarbonization. Aquaculture 2024, 588, 740919. [Google Scholar] [CrossRef]
- Jacquin, J.; Callac, N.; Cheng, J.; Giraud, C.; Gorand, Y.; Denoual, C.; Pujo-Pay, M.; Conan, P.; Meistertzheim, A.-L.; Barbe, V.; et al. Microbial Diversity and Activity During the Biodegradation in Seawater of Various Substitutes to Conventional Plastic Cotton Swab Sticks. Front. Microbiol. 2021, 12, 604395. [Google Scholar] [CrossRef] [PubMed]
- Deroiné, M.; Le Duigou, A.; Corre, Y.-M.; Le Gac, P.-Y.; Davies, P.; César, G.; Bruzaud, S. Accelerated Ageing of Polylactide in Aqueous Environments: Comparative Study between Distilled Water and Seawater. Polym. Degrad. Stab. 2014, 108, 319–329. [Google Scholar] [CrossRef]
- Grimaldo, E.; Herrmann, B.; Jacques, N.; Kubowicz, S.; Cerbule, K.; Su, B.; Larsen, R.; Vollstad, J. The Effect of Long-Term Use on the Catch Efficiency of Biodegradable Gillnets. Mar. Pollut. Bull. 2020, 161, 111823. [Google Scholar] [CrossRef] [PubMed]
- Cerbule, K.; Grimaldo, E.; Herrmann, B.; Larsen, R.B.; Brčić, J.; Vollstad, J. Can Biodegradable Materials Reduce Plastic Pollution without Decreasing Catch Efficiency in Longline Fishery? Mar. Pollut. Bull. 2022, 178, 113577. [Google Scholar] [CrossRef]
- Volova, T.G.; Boyandin, A.N.; Vasiliev, A.D.; Karpov, V.A.; Prudnikova, S.V.; Mishukova, O.V.; Boyarskikh, U.A.; Filipenko, M.L.; Rudnev, V.P.; Bá Xuân, B.; et al. Biodegradation of Polyhydroxyalkanoates (PHAs) in Tropical Coastal Waters and Identification of PHA-Degrading Bacteria. Polym. Degrad. Stab. 2010, 95, 2350–2359. [Google Scholar] [CrossRef]
- Rutkowska, M.; Krasowska, K.; Heimowska, A.; Adamus, G.; Sobota, M.; Musioł, M.; Janeczek, H.; Sikorska, W.; Krzan, A.; Žagar, E. Environmental Degradation of Blends of Atactic Poly[(R, S)-3-Hydroxybutyrate] with Natural PHBV in Baltic Sea Water and Compost with Activated Sludge. J. Polym. Environ. 2008, 16, 183–191. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Laforsch, C.; Greiner, A.; Agarwal, S. Fate of So-Called Biodegradable Polymers in Seawater and Freshwater. Glob. Chall. 2017, 1, 1700048. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Chu, J.; Ma, L.; Qi, X.; Kumar, A. Life Cycle Assessment of Plywood Manufacturing Process in China. Int. J. Environ. Res. Public Health 2019, 16, 2037. [Google Scholar] [CrossRef] [PubMed]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current Status of Biobased and Biodegradable Food Packaging Materials: Impact on Food Quality and Effect of Innovative Processing Technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef]
- Miao, L.; Walton, W.C.; Wang, L.; Li, L.; Wang, Y. Characterization of Polylactic Acids-Polyhydroxybutyrate Based Packaging Film with Fennel Oil, and Its Application on Oysters. Food Packag. Shelf Life 2019, 22, 100388. [Google Scholar] [CrossRef]
- Akoueson, F.; Paul-Pont, I.; Tallec, K.; Huvet, A.; Doyen, P.; Dehaut, A.; Duflos, G. Additives in Polypropylene and Polylactic Acid Food Packaging: Chemical Analysis and Bioassays Provide Complementary Tools for Risk Assessment. Sci. Total Environ. 2023, 857, 159318. [Google Scholar] [CrossRef]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macromol. Rapid Commun. 2021, 42, 2100130. [Google Scholar] [CrossRef] [PubMed]
Phase | Place | Time |
---|---|---|
Seed collection | From France | / |
Breeding | Gulf of La Spezia | 12 months |
Depuration and packaging | Depuration plant (S. Teresa, Lerici) | 1 day |
Material | Amount | Life Span (Years) | Distance to Suppliers | |
---|---|---|---|---|
Seed collection | ||||
Truck transport | N.A. | 40 kg × 1400 km | N.A. | N.A. |
Polystyrene box | Polystyrene | 4 | Single use | N.A. |
Tap water ice | Water | 16 kg | Single use | N.A. |
Longline materials (nursery of 500 m2) | ||||
Buoys | HDPE | 30 | 30 | L.S. |
Ropes (connection buoys and concrete blocks) Ropes (buoys’ connection) | Nylon | 22 × 25 m | 5 | L.S. |
Nylon | 186 × 5 m | 8 | L.S. | |
Concrete blocks | Concrete | 22 | 50 | L.S. |
Farming boxes | ||||
Lanterns | PE/PP | 1000 | 10 | L.S. |
Oyster bags | PE | 2000 | 15 | 340 km |
Ropes (connection headline and boxes) | Nylon | 3000 × 2 m | 5 | L.S. |
Technical equipment | ||||
Gloves | PVC | 40 | 4 | L.S. |
Vest | PVC | 40 | 2.5 | L.S. |
Barge and diesel consumption | ||||
Barge (capacity of 2 tons) | Fiberglass | 1 | 50 | L.S. |
Maintenance of barge | N.A. | 1 per year | 1 | L.S. |
Diesel consumption | N.A. | 25,000 L | Single use | L.S. |
Depuration plant | ||||
Bins | HDPE | 120 | 10 | |
Electric pump | Multicomponent | 2 | 10 | L.S. |
Electricity | N.A. | 41,910 GJ * | N.A. | L.S. |
PVC pipe | L.S. | |||
Marine water | N.A. | 16,700 L | N.A. | N.A. |
Packaging | ||||
Wooden box | Plywood | 0.2 L | Single use | L.S. |
Covered film | PP | 3.5 g | Single use | L.S. |
Material | Primary Materials | Life Span | End-of-Life | Database/References |
---|---|---|---|---|
(S0) HDPE (reference) | Fossil sources | Municipal Incineration | EcoinventTM v. 3.7. | |
(S1) PLA | Maize | 10 years (lanterns) 15 years (oyster bags) | Composting | EcoinventTM v. 3.7. |
(S2) PHA | Products of wastewater treatment sludge | Composting | IdematTM 2023/[38] | |
(S3) Bio-PET | 70% fossil sources and 30% sugar cane | Municipal Incineration | IdematTM 2023/[39] | |
(S4) Recycled plastic | Traditional plastic | Municipal Incineration | IdematTM 2023 | |
(S0) Nylon (reference) | Fossil sources | Municipal Incineration | EcoinventTM v. 3.7. | |
(S5) Hemp fiber | Hemp plant | 2.5 years * 4 years ** | Composting | EcoinventTM v. 3.7./[40] |
(S6) Cotton fiber | Cotton plant | Composting | EcoinventTM v. 3.7. | |
(S0) Wood (reference) | Different type of hardwood | Single use | N.C. | EcoinventTM v. 3.7. |
(S7) PP | Fossil sources | Single use | N.C. | EcoinventTM v. 3.7. |
Impact Category | Value | Unit |
---|---|---|
Land use | 1.97 | m2 × a |
Climate change (GWP) * | 4.84 × 10−1 | Kg CO2 eq |
Resource-depletion potential (RDP) | 1.33 × 10−1 | Kg oil eq |
Human toxicity potential (HTP) | 1.04 × 10−1 | Kg 1.4-DB eq |
Ecotoxicity potential (ETP) | 6.25 × 10−3 | Kg 1.4-DB eq |
Eutrophication potential (FMEP) | 2.42 × 10−4 | Kg N, P eq |
Particulate matter formation (PMFP) | 9.45 × 10−4 | Kg PM10 eq |
Photochemical oxidant-formation potential (POFP) | 2.65 × 10−3 | Kg NMVOC |
Acidification potential (AP) | 2.17 × 10−3 | Kg SO2 eq |
Water-depletion potential (WDP) | 7.89 × 10−1 | m3 |
Impact Category | S1 Values | S2 Values | S3 Values | S4 Values | S5 Values | S6 Values | S7 Values | Unit |
---|---|---|---|---|---|---|---|---|
Land use | 2.05 | 1.97 | 1.98 | 1.97 | 1.96 | 2.10 | 1.12 × 10−1 | m2 × a |
GWP | 5.92 × 10−1 | 4.40 × 10−1 | 4.90 × 10−1 | 4.87 × 10−1 | 7.71 × 10−1 | 6.90 × 10−1 | 4.79 × 10−1 | Kg CO2 eq |
RDP | 1.73 × 10−1 | 9.44 × 10−2 | 1.29 × 10−1 | 1.61 × 10−1 | 1.90 × 10−1 | 1.81 × 10−1 | 8.80 × 10−2 | Kg oil eq |
HTP | 1.70 × 10−1 | 9.10 × 10−2 | 1.19 × 10−1 | 1.00 × 10−1 | 3.32 × 10−1 | 1.68 × 10−1 | 5.35 × 10−2 | Kg 1.4-DB eq |
ETP | 8.33 × 10−3 | 4.23 × 10−3 | 6.95 × 10−3 | 6.15 × 10−3 | 3.59 × 10−2 | 8.93 × 10−3 | 4.49 × 10−3 | Kg 1.4-DB eq |
FMEP | 1.02 × 10−4 | 2.33 × 10−4 | 2.61 × 10−4 | 2.37 × 10−4 | 8.83 × 10−4 | 7.63 × 10−4 | 1.56 × 10−4 | Kg N, P eq |
PMFP | 1.11 × 10−4 | 8.87 × 10−4 | 9.52 × 10−4 | 9.79 × 10−4 | 1.71 × 10−3 | 1.59 × 10−3 | 7.26 × 10−4 | Kg PM10 eq |
POFP | 3.00 × 10−3 | 2.47 × 10−3 | 2.70 × 10−3 | 2.61 × 10−3 | 3.31 × 10−3 | 3.42 × 10−3 | 2.05 × 10−3 | Kg NMVOC |
AP | 2.83 × 10−3 | 2.03 × 10−3 | 2.19 × 10−3 | 2.11 × 10−3 | 3.70 × 10−3 | 4.77 × 10−3 | 1.71 × 10−3 | Kg SO2 eq |
WDP | 1.54 | 7.61 × 10−3 | 8.65 × 10−1 | 7.87 × 10−3 | 6.58 × 10−1 | 1.36 | 3.82 × 10−1 | m3 |
Impact Category | SD | MC mean | Median | CV (%) | Unit |
---|---|---|---|---|---|
Land use | 5.07 × 10−1 | 2.04 | 1.99 | 26% | m2 × a |
GWP | 2.49 × 10−2 | 5.00 × 10−1 | 4.99 × 10−1 | 5% | Kg CO2 eq |
RDP | 1.27 × 10−2 | 1.42 × 10−1 | 1.41 × 10−1 | 10% | Kg oil eq |
HTP | 4.74 × 10−1 | 2.75 × 10−1 | 2.04 × 10−1 | >50% | Kg 1.4-DB eq |
ETP | 8.43 × 10−2 | 1.26 × 10−2 | 1.11 × 10−2 | >50% | Kg 1.4-DB eq |
FMEP | 1.12 × 10−4 | 3.02 × 10−4 | 2.76 × 10−4 | 46% | Kg N, P eq |
PMFP | 1.23 × 10−4 | 1.04 × 10−3 | 1.03 × 10−3 | 13% | Kg PM10 eq |
POFP | 2.76 × 10−4 | 2.83 × 10−3 | 2.81 × 10−3 | 10% | Kg NMVOC |
AP | 3.74 × 10−4 | 2.41 × 10−3 | 2.34 × 10−3 | 17% | Kg SO2 eq |
WDP | 1.04 × 10−1 | 8.47 × 10−1 | 8.39 × 10−1 | 13% | m3 |
Impact Category | S1 | S2 | S3 | S4 | S5 | S6 | S7 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SD | CV % | SD | CV % | SD | CV % | SD | CV % | SD | CV % | SD | CV % | SD | CV % | |
Land use | 7.11 × 10−1 | 35% | 5.11 × 10−1 | 26% | 5.09 × 10−1 | 26% | 5.37 × 10−1 | 27% | 5.03 × 10−1 | 26% | 5.10 × 10−1 | 24% | 3.46 × 10−2 | 31% |
GWP | 1.45 | >50% | 2.37 × 10−2 | 5% | 2.59 × 10−2 | 5% | 2.34 × 10−2 | 5% | 1.55 × 10−2 | 2% | 6.90 × 10−1 | 25% | 2.12 × 10−2 | 4% |
RDP | 5.88 × 10−1 | >50% | 2.31 × 10−2 | 14% | 1.46 × 10−2 | 11% | 1.45 × 10−2 | 9% | 1.02 × 10−2 | 5% | 8.68 × 10−2 | 48% | 7.15 × 10−3 | 8% |
HTP | 2.43 × 10−1 | >50% | 2.37 × 10−1 | >50% | 7.56 × 10−1 | >50% | 2.41 × 10−1 | >50% | 8.97 × 10−1 | >50% | 1.51 | >50% | 1.37 × 10−1 | >50% |
ETP | 3.24 × 10−1 | >50% | 3.37 × 10−3 | >50% | 1.16 × 10−2 | >50% | 6.41 × 10−3 | >50% | 7.35 × 10−3 | 21% | 1.60 × 10−2 | >50% | 7.90 × 10−3 | >50% |
FMEP | 5.32 × 10−3 | >50% | 9.41 × 10−5 | 40% | 1.08 × 10−4 | 41% | 9.92 × 10−5 | 42% | 7.00 × 10−5 | 8% | 3.52 × 10−4 | 48% | 5.60 × 10−5 | 36% |
PMFP | 2.13 × 10−3 | >50% | 1.29 × 10−4 | 15% | 1.54 × 10−4 | 16% | 1.22 × 10−4 | 12% | 1.13 × 10−4 | 7% | 4.51 × 10−4 | 28% | 1.16 × 10−4 | 16% |
POFP | 4.22 × 10−3 | >50% | 2.65 × 10−4 | 11% | 3.16 × 10−4 | 12% | 2.69 × 10−4 | 10% | 2.80 × 10−4 | 8% | 5.14 × 10−4 | 15% | 2.46 × 10−4 | 12% |
AP | 6.45 × 10−3 | >50% | 3.41 × 10−4 | 17% | 5.69 × 10−4 | 26% | 3.44 × 10−4 | 16% | 1.62 × 10−4 | 4% | 1.29 × 10−3 | 27% | 3.19 × 10−4 | 19% |
WDP | 9.01 | >50% | 1.07 × 10−1 | 14% | 1.16 × 10−1 | 13% | 1.05 × 10−1 | 13% | 1.36 | 13% | 2.21 × 10−1 | 16% | 5.83 × 10−2 | 15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Summa, D.; Tamisari, E.; Lanzoni, M.; Castaldelli, G.; Tamburini, E. How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia. Resources 2025, 14, 10. https://doi.org/10.3390/resources14010010
Summa D, Tamisari E, Lanzoni M, Castaldelli G, Tamburini E. How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia. Resources. 2025; 14(1):10. https://doi.org/10.3390/resources14010010
Chicago/Turabian StyleSumma, Daniela, Elena Tamisari, Mattia Lanzoni, Giuseppe Castaldelli, and Elena Tamburini. 2025. "How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia" Resources 14, no. 1: 10. https://doi.org/10.3390/resources14010010
APA StyleSumma, D., Tamisari, E., Lanzoni, M., Castaldelli, G., & Tamburini, E. (2025). How Reducing Fossil-Based Plastic Use Can Help the Overall Sustainability of Oyster Farming: The Case of the Gulf of La Spezia. Resources, 14(1), 10. https://doi.org/10.3390/resources14010010