A 10 V-to-1 V Double Step-Down Buck Converter Using Time-Based Current Mode Control with Minimum Delay Frequency Difference Phase Adder for 1 MHz Operation
<p>(<b>a</b>) The double step-down buck converter architecture and (<b>b</b>) its 4 control phases, with red and blue arrows indicating <math display="inline"><semantics> <mrow> <msub> <mi>PWM</mi> <mi mathvariant="normal">A</mi> </msub> <mo>/</mo> <msub> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">A</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>PWM</mi> <mi mathvariant="normal">B</mi> </msub> <mo>/</mo> <msub> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">B</mi> </msub> </mrow> </semantics></math> sub-converter current flow respectively.</p> "> Figure 2
<p>(<b>a</b>) Peak current mode (PCM) control of DSD buck converter using 2 autonomous sub-converters and (<b>b</b>) phase overlap from current mismatch.</p> "> Figure 3
<p>Time-based DSD buck converter architecture in (<b>a</b>), and (<b>b</b>) <math display="inline"><semantics> <msub> <mi mathvariant="normal">V</mi> <mrow> <mi mathvariant="normal">L</mi> <mo>+</mo> </mrow> </msub> </semantics></math> combination inductor feedback using inductor.</p> "> Figure 4
<p>Small signal model of the dual loop control scheme.</p> "> Figure 5
<p>VCDL phase delay (<b>a</b>) without voltage error and (<b>b</b>) with voltage error.</p> "> Figure 6
<p>Differential time-based current mode control DSD buck converter.</p> "> Figure 7
<p>Differential ring oscillators <math display="inline"><semantics> <msub> <mi>VCO</mi> <mi>SET</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>VCO</mi> <mi>RES</mi> </msub> </semantics></math>.</p> "> Figure 8
<p>Frequency difference phase adder (FDPA).</p> "> Figure 9
<p>Cycle slip detector.</p> "> Figure 10
<p>Frequency difference phase adder operation during (<b>a</b>) no voltage error and (<b>b</b>) positive voltage error.</p> "> Figure 11
<p>Pulse allocation circuit for phase addition to <math display="inline"><semantics> <msub> <mi>DIV</mi> <mi>SET</mi> </msub> </semantics></math> or <math display="inline"><semantics> <msub> <mi>DIV</mi> <mi>RES</mi> </msub> </semantics></math>.</p> "> Figure 12
<p>Non-overlapping anti-slip phase detector.</p> "> Figure 13
<p>Phase difference to duty ratio transfer function for phase detector (<b>a</b>) without slip detection and (<b>b</b>) with slip detection at <math display="inline"><semantics> <mi>π</mi> </semantics></math> radians.</p> "> Figure 14
<p>Cycle slip detector behaviour when (<b>a</b>) phase difference exceeds 1 <math display="inline"><semantics> <mi>π</mi> </semantics></math> and (<b>b</b>) phase detector falls below 0 <math display="inline"><semantics> <mi>π</mi> </semantics></math></p> "> Figure 15
<p>Active area of time-based control 10 V-to-1 V DSD buck converter, area of 0.412 mm<sup>2</sup>.</p> "> Figure 16
<p>Efficiency and load regulation of DSD buck converter.</p> "> Figure 17
<p>Frequency response of the time-based controller.</p> "> Figure 18
<p>Simulated 1.8 A loading and unloading transients. (<b>a</b>) UP 0.2 A to 2.0 A; (<b>b</b>) DN 2.0 A to 0.2 A.</p> ">
Abstract
:1. Introduction
2. Double Step-Down Buck Converter Using Time-Based Control
2.1. Conventional Controller for Double Step-Down Buck Converter
2.2. Time-Based Current Mode Controller for Double Step-Down Buck Converter
2.3. Conventional VCDL for Proportional Gain Response
3. Circuit Implementation
3.1. Differential VCOs
3.2. Frequency Difference Phase Adder (FDPA)
3.3. Non-Overlapping Anti-Slip Phase Detector
4. Post-Layout Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Jiang, S. “Google 48V Power Architecture”, Keytalk. In Proceedings of the 2017 Applied Power Electronics Conference and Exposition, Tampa, FL, USA, 26–30 March 2017. [Google Scholar]
- Kim, S.J.; Khan, Q.; Talegaonkar, M.; Elshazly, A.; Rao, A.; Griesert, N.; Greg, W.; William, M.; Kumar, H.P. High Frequency Buck Converter Design Using Time-Based Control Techniques. IEEE J. Solid State Circuits 2015, 50, 990–1001. [Google Scholar] [CrossRef]
- Kim, S.J.; Nandwana, R.K.; Khan, Q.; Pilawa-Podgurski, R.C.; Hanumolu, P.K. A 4-Phase 30–70 MHz Switching Frequency Buck Converter Using a Time-Based Compensator. IEEE J. Solid State Circuits 2015, 50, 2814–2824. [Google Scholar] [CrossRef]
- Khan, Q.A.; Kim, S.J.; Hanumolu, P.K. Time-Based PWM Controller for Fully Integrated High Speed Switching DC-DC Converters—An Alternative to Conventional Analog and Digital. In Proceedings of the 2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID) Controllers, Pune, India, 6–10 January 2018. [Google Scholar] [CrossRef]
- Dahl, N.J.; Muntal, P.L.; Andersen, M.A.E. Fully Time-Based PID Controller for a High Frequency Buck Converter. In Proceedings of the 2023 21st IEEE Interregional NEWCAS Conference (NEWCAS), Edinburgh, Scotland, 26–28 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Bertolini, A.; Leoncini, M.; Melillo, P.; Gasparini, A.; Levantino, S.; Ghioni, M. A 1-A 90% Peak Efficiency 5–36 V Input Voltage Time-Based Buck Converter with Adaptive Gain Compensation and Controlled-Skip Operation. IEEE Trans. Power Electron. 2024, 39, 973–984. [Google Scholar] [CrossRef]
- Leoncini, M.; Bertolini, A.; Melillo, P.; Gasparini, A.; Levantino, S.; Ghioni, M. Spread-Spectrum Frequency Modulation in a DC/DC Converter With Time-Based Control. IEEE Trans. Power Electron. 2023, 38, 4207–4211. [Google Scholar] [CrossRef]
- Melillo, P.; Zaffin, S.; Gasparini, A.; Levantino, S.; Ghioni, M. Time-Based Buck Converter with Variable Frequency DCM and ON-Time Correction for Seamless Transitions. In Proceedings of the 2023 18th Conference on Ph. D Research in Microelectronics and Electronics (PRIME), Valencia, Spain, 18–21 June 2023; pp. 205–208. [Google Scholar] [CrossRef]
- Kim, S.J.; Choi, W.S.; Pilawa-Podgurski, R.; Hanumolu, P.K. A 10-MHz 2-800-mA 0.5-1.5-V 90% Peak Efficiency Time-based Buck Converter with Seamless Transition between PWM/PFM Modes. IEEE J. Solid-State Circuits 2018, 53, 814–824. [Google Scholar] [CrossRef]
- Cao, P.; Lu, D.; Xu, J.; Zeng, X.; Hong, Z. A Time-Domain-Controlled Single-Inductor Step-Up Converter With Symmetric Bipolar Output Voltages. IEEE Trans. Power Electron. 2024, 39, 1087–1100. [Google Scholar] [CrossRef]
- Kang, J.G.; Jeong, M.G.; Park, J.; Yoo, C. A 10MHz Time-Domain-Controlled Current-Mode Buck Converter with 8.5% to 93% Switching Duty Cycle. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 424–426. [Google Scholar]
- Kang, J.G.; Park, J.; Jeong, M.G.; Yoo, C. A Time-Domain-Controlled Current-Mode Buck Converter with Wide Output Voltage Range. IEEE J. Solid State Circuits 2019, 54, 865–873. [Google Scholar] [CrossRef]
- Tsai, C.J.; Lo, I.F.; Lin, T.H.; Chen, C.J. A One-Cycle Load Transient Response and 0.81 mV/A Load-Regulation Time-Domain Cascaded-VCO-Controlled Buck Converter for Powering Gaming SoC. In Proceedings of the 2022 IEEE Asian Solid-State Circuits Conference (A-SSCC), Taipei, Taiwan, 6–9 November 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Chiu, M.L.; Lo, I.F.; Lin, T.H. A Time-Domain CCM/DCM Current-Mode Buck Converter with a PI Compensator Incorporating an Infinite Phase Shift Delay Line. In Proceedings of the ESSCIRC 2023-IEEE 49th European Solid State Circuits Conference (ESSCIRC), Lisbon, Portugal, 11–14 September 2023; pp. 441–444. [Google Scholar] [CrossRef]
- Leoncini, M.; Dago, A.; Bertolini, A.; Gasparini, A.; Levantino, S.; Ghioni, M. A Compact High-Efficiency Boost Converter with Time-Based Control, RHP Zero Elimination, and Tracking Error Compensation. IEEE Trans. Power Electron. 2023, 38, 3100–3113. [Google Scholar] [CrossRef]
- Lim, C.; Mandal, D.; Bakkaloglu, B.; Kiaei, S. Switching Battery Charger with Cascaded Two Loop Control Using Time-Based Techniques. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Virtual, 14–17 June 2021; pp. 1991–1995. [Google Scholar] [CrossRef]
- Nishijima, K.; Harada, K.; Nakano, T.; Nabeshima, T.; Sato, T. Analysis of Double Step-Down Two-Phase Buck Converter. In Proceedings of the INTELEC 05-Twenty-Seventh International Telecommunications Conference, Berlin, Germany, 18–22 September 2005; pp. 497–502. [Google Scholar]
- Kwak, J.W.; Ma, D.B. Comparative Topology and Power Loss Analysis on 48V-to-1V Direct Step-Down Non-Isolated DC-DC Switched-Mode Power Converters. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, Michigan, 11–15 October 2020; pp. 943–949. [Google Scholar] [CrossRef]
- Wei, K.; Ma, D.B. Comparative topology and power loss study for high power density and high conversion ratio integrated switching power converters. In Proceedings of the 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), Bariloche, Argentina, 20–23 February 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Seo, G.S.; Das, R.; Le, H.P. A 95%-Efficient 48V-to-1V/10A VRM Hybrid Converter Using Interleaved Dual Inductors. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 3825–3830. [Google Scholar] [CrossRef]
- Kirshenboim, O.; Peretz, M.M. High-Efficiency Nonisolated Converter with Very High Step-Down Conversion Ratio. IEEE Trans. Power Electron. 2017, 32, 3683–3690. [Google Scholar] [CrossRef]
- Yan, D.; Ke, X.; Ma, D.B. A Two-Phase 2MHz DSD GaN Power Converter with Master-SlaveAO2T Control for Direct 48V/1V DC-DC Conversion. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019; pp. C170–C171. [Google Scholar] [CrossRef]
- Yan, D.; Ke, X.; Ma, D.B. Direct 48-/1-V GaN-Based DC–DC Power Converter with Double Step-Down Architecture and Master–Slave AO2T Control. IEEE J. Solid-State Circuits 2020, 55, 988–998. [Google Scholar] [CrossRef]
- Majumder, P.; Kapat, S.; Kastha, D. Fast Transient State Feedback Digital Current Mode Control Design in Series Capacitor Buck Converters. In Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 20–24 March 2022; pp. 2080–2085. [Google Scholar] [CrossRef]
- Shenoy, P.S.; Lazaro, O.; Amaro, M.; Ramani, R.; Wiktor, W.; Lynch, B.; Khayat, J. Automatic current sharing mechanism in the series capacitor buck converter. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 2003–2009. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, A.; Ma, Q.; Jiang, Y.; Law, M.K.; Martins, R.P.; Mak, P.I. A 24-V-Input Highly Integrated Interleaved-Inductor Multiple Step-Down Hybrid DC-DC Converter with Inherent Current Equalization Characteristics. IEEE J. Solid-State Circuits 2024, 59, 2895–2906. [Google Scholar] [CrossRef]
- Wei, K.; Ramadass, Y.; Ma, D.B. Direct 12V/24V-to-1V Tri-State Double Step-Down Power Converter with Online VCF Rebalancing and In-Situ Precharge Rate Regulation. IEEE J.-Solid-State Circuits 2021, 56, 2416–2426. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, J.; Wu, F.; Cheng, L. A 12V/24V-to-1V PWM-Controlled DSD Converter with Delay-Insensitive and Dual-Phase Charging Techniques for Fast Transient Responses. IEEE J. Solid State Circuits 2022, 57, 3853–3864. [Google Scholar] [CrossRef]
- Hua, Y.; Lu, Q.; Li, S.; Zhao, B.; Du, S. A 90.6% Efficient, 0.333 W/mm2 Power Density Direct 48V-to-1V Dual Inductor Hybrid Converter with Delay-Line-Based V2D Controller. Trans. Circuits Syst.-II Express Briefs 2023, 70, 1014–1018. [Google Scholar] [CrossRef]
- Cao, H.; Yang, X.; Xue, C.; He, L.; Tan, Z.; Zhao, M.; Ding, Y.; Li, W.; Qu, W. A 12-Level Series-Capacitor 48-1V DC–DC Converter with On-Chip Switch and GaN Hybrid Power Conversion. IEEE J. Solid-State Circuits 2021, 56, 3628–3638. [Google Scholar] [CrossRef]
- Ke, X.; Sankman, J.; Ma, D. A 5MHz, 24V-to-1.2V, AO2T Current Mode Buck Converter with One-Cycle Transient Response and Sensorless Current Detection for Medical Meters. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 94–97. [Google Scholar] [CrossRef]
JSSC 2015 [2] | TPE 2024 [6] | JSSC 2019 [12] | ESSCIRC 2023 [14] | This Work | ||
---|---|---|---|---|---|---|
Controller | Time-based Voltage Mode | Time-based Voltage Mode | Time-based Current Mode | Time-based Current Mode | Time-based Current Mode | |
Process | 180 nm CMOS | 180 nm BCD | 65 nm CMOS | 180 nm CMOS | 130 nm BCD | |
Proportional Controller | VCDL | VCDL | VCDL | IPSDL | FDPA | |
(V) | 1.8 | 5 to 36 | 1.8 | 3.3 | 10 | |
(V) | 0.6 to 1.5 | 3.3 | 0.15 to 1.69 | 0.4 to 2.3 | 1 | |
Step-Down Ratio | 0.333 to 0.833 | 0.0917 to 0.66 | 0.0833 to 0.939 | 0.121 to 0.697 | 0.1 | |
Switching Frequency (MHz) | 11–25 | 1.5 | 10 | 2.5 | 1 | |
Inductor/s (H) | 0.22 | 4.7 | 0.22 | 1 | 2.2 × 2 | |
Output Capacitor (F) | 4.7 | 30 | 4.7 | 4.7 | 22 | |
Max (mA) | 0.6 | 1 | 0.6 | 1 | 2 | |
Transient Response | Current Step (A) | 0.5 | 1 | 0.48 | 0.95 | 1.8 |
UP Settling Time (s) | 3 | 17 | 3.5 | 1.8 | 5.75 | |
DN Settling Time (s) | 3.5 | 18 | 3.5 | 15.6 | 9.9 |
JSSC 2022 [28] | TCAS-II 2022 [29] | JSSC 2020 [23] | JSSC 2021 [30] | APEC 2016 [31] | This Work | ||
---|---|---|---|---|---|---|---|
Architecture | DSD | DIHC | DSD | DIHC | Half-Bridge | DSD | |
Process | 180 nm BCD | 180 nm BCD | GaN HEMT | 180 nm BCD + GaN HEMT | 350 nm BCD | 130 nm BCD | |
(V) | 12 | 48 | 48 | 48 | 24 | 10 | |
(V) | 1 | 1 | 1 | 1 | 1.2 | 1 | |
Switching Frequency (MHz) | 1 | 1 | 2 | 2.5 | 5 | 1 | |
Inductor (H) | 2 × 1.8 | 2 × 0.11 | 2 × 0.9 | NA | 0.68 | 2 × 2.2 | |
Output Capacitor (F) | 10 | 47 | 22 | NA | 18 | 22 | |
Series Capacitors (F) | 2.2 | 9 × 1 | 1 | NA | NA | 1 | |
Peak Efficiency (%) | 83.5 | 90.6 | 56.8 | 90.2 | 89.8 | 82.2 | |
Active Area (mm2) | 9.6 | 22 | 1.46 | 18.3 | 2.6 | 0.412 | |
Transient Response | Current Step (A) | 3 | NA | 1 | 5 | 1.8 | 1.8 |
UP Settling Time (s) | 1.6 | NA | 8.2 | NA | 5.1 | 5.75 | |
DN Settling Time (s) | NA | NA | 8.4 | NA | 5.3 | 9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.B.; Siek, L. A 10 V-to-1 V Double Step-Down Buck Converter Using Time-Based Current Mode Control with Minimum Delay Frequency Difference Phase Adder for 1 MHz Operation. J. Low Power Electron. Appl. 2024, 14, 58. https://doi.org/10.3390/jlpea14040058
Tan CB, Siek L. A 10 V-to-1 V Double Step-Down Buck Converter Using Time-Based Current Mode Control with Minimum Delay Frequency Difference Phase Adder for 1 MHz Operation. Journal of Low Power Electronics and Applications. 2024; 14(4):58. https://doi.org/10.3390/jlpea14040058
Chicago/Turabian StyleTan, Chong Boon, and Liter Siek. 2024. "A 10 V-to-1 V Double Step-Down Buck Converter Using Time-Based Current Mode Control with Minimum Delay Frequency Difference Phase Adder for 1 MHz Operation" Journal of Low Power Electronics and Applications 14, no. 4: 58. https://doi.org/10.3390/jlpea14040058
APA StyleTan, C. B., & Siek, L. (2024). A 10 V-to-1 V Double Step-Down Buck Converter Using Time-Based Current Mode Control with Minimum Delay Frequency Difference Phase Adder for 1 MHz Operation. Journal of Low Power Electronics and Applications, 14(4), 58. https://doi.org/10.3390/jlpea14040058