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Abstract: Accurate predictions of Initial Public Offerings (IPOs) aftermarket performance
are essential for making informed investment decisions in the financial sector. This paper
attempts to predict IPO short-term underperformance during a month post-listing. The
current research landscape lacks modern models that address the needs of small and
imbalanced datasets relevant to emerging markets, as well as the risk preferences of
investors. To fill this gap, we present a practical framework utilizing tree-based ensemble
learning, including Bagging Classifier (BC), Random Forest (RF), AdaBoost (Ada), Gradient
Boosting (GB), XGBoost (XG), Stacking Classifier (SC), and Extra Trees (ET), with Decision
Tree (DT) as a base estimator. The framework leverages data-driven methodologies to
optimize decision-making in complex financial systems, integrating ANOVA F-value for
feature selection, Randomized Search for hyperparameter optimization, and SMOTE for
class balance. The framework’s effectiveness is assessed using a hand-collected dataset
that includes features from both pre-IPO prospectus and firm-specific financial data. We
thoroughly evaluate the results using single-split evaluation and 10-fold cross-validation
analysis. For the single-split validation, ET achieves the highest accuracy of 86%, while for
the 10-fold validation, BC achieves the highest accuracy of 70%. Additionally, we compare
the results of the proposed framework with deep-learning models such as MLP, TabNet,
and ANN to assess their effectiveness in handling IPO underperformance predictions.
These results demonstrate the framework’s capability to enable robust data-driven decision-
making processes in complex and dynamic financial environments, even with limited
and imbalanced datasets. The framework also proposes a dynamic methodology named
Investor Preference Prediction Framework (IPPF) to match tree-based ensemble models
to investors’ risk preferences when predicting IPO underperformance. It concludes that
different models may be suitable for various risk profiles. For the dataset at hand, ET
and Ada are more appropriate for risk-averse investors, while BC is suitable for risk-
tolerant investors. The results underscore the framework’s importance in improving IPO
underperformance predictions, which can better inform investment strategies and decision-
making processes.

Keywords: data-driven decision making; complex financial systems; IPO prediction; en-
semble learning; investor risk preferences; machine learning

1. Introduction
Predicting the aftermarket performance of Initial Public Offerings (IPOs) is a critical

area of research in finance, as it can provide valuable insights for investors, companies, and
policymakers [1]. The ability to forecast IPO outcomes is essential for data-driven decision-
making in complex financial systems, enabling stakeholders to navigate uncertainties and
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optimize strategies. The performance of IPOs post-listing serves as a significant indicator
of market dynamics and investor sentiment, impacting decisions around investment, is-
suance strategies, and regulatory policies [2]. Accurate prediction models help mitigate
risks and inform better decision-making, making this an area of high importance and
continuous development.

Traditionally, IPO performance prediction has relied on various statistical methods,
such as regression analysis, which offer foundational insights into the factors influencing
IPO outcomes [3]. However, these methods often fall short of capturing the complex,
non-linear relationships inherent in financial markets. Despite advancements in machine-
learning models, existing approaches still face limitations in handling small, imbalanced
IPO datasets, particularly in emerging markets, where data scarcity and class imbalance
present significant challenges. Many studies have either overlooked these issues or relied
on limited features, reducing their generalizability and predictive robustness. As financial
systems grow more intricate, there is an increasing need for advanced data-driven method-
ologies, such as machine learning, to uncover hidden patterns and improve predictive
accuracy [4].

Despite the progress made, predicting IPO performance remains challenging due
to issues such as limited data availability and class imbalance. This issue is particularly
pronounced in emerging markets, where IPO datasets are typically small, making it dif-
ficult to train robust models. Additionally, in these markets, the number of successful
IPOs often significantly outnumbers those that underperform, leading to skewed predic-
tions. Addressing these challenges is critical for developing reliable, data-driven models
capable of managing the complexities and imbalances of financial systems, particularly in
emerging markets.

This study addresses key gaps in IPO underperformance prediction through a com-
prehensive data-driven framework specifically designed for challenging financial envi-
ronments. Unlike previous approaches, the framework integrates feature selection, data
balancing techniques, and risk-based model evaluation to improve generalizability and
decision-making. Leveraging publicly available financial and prospectus data reduces
reliance on proprietary datasets, enhancing the practical applicability of the model, espe-
cially in emerging markets where data scarcity is prevalent. The methodology employs
various ensemble methods, including BC, RF, Ada, GB, XG, ET, and SC, with Decision
Trees (DT) as the base estimator. It incorporates ANOVA F-value for feature selection,
Randomized Search for hyperparameter optimization, and the Minority Over-Sampling
Technique (SMOTE) for class balance to optimize predictive accuracy. Additionally, the
study introduces a dynamic methodology that tailors evaluation metrics based on investor
risk preferences, ensuring adaptability to different risk profiles. This comprehensive ap-
proach aims to provide a robust, versatile tool for IPO performance prediction, offering
valuable insights into the field of financial forecasting. Thus, the major contributions of this
paper are summarized as follows:

(1) It proposes a unique data-driven framework that is tailored to handle IPO underper-
formance predictions in complex financial systems, focusing on small and imbalanced
datasets relevant to emerging markets by conducting the following:

a. Depending solely on the publicly accessible pre-listing prospectus and firm-
specific financial data.

b. Utilizing SMOTE to handle class imbalances and ANOVA to manage
feature selection.

c. Incorporating various tuned ensemble classifiers to handle small datasets in the
context of IPO underperformance predictions.
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(2) It proposes a risk-optimized methodology for classifier selection based on investor’s
risk preferences.

The remainder of the paper is organized as follows: Section 2 provides a review of the
relevant literature, Section 3 describes the dataset used, Section 4 outlines the proposed
framework, Section 5 presents the results obtained from the framework, and Section 6
offers conclusions.

2. Literature Review
Predicting the aftermarket performance of IPOs is a critical area of research in finance,

as it can provide valuable insights for investors, companies, and policymakers. A wide
range of data-driven methodologies has been explored to understand and forecast the be-
havior of IPO stocks post-listing, spanning from traditional regression analysis to advanced
machine-learning techniques tailored for complex financial systems. This literature review
examines the key approaches and findings in this domain, emphasizing the evolution
of predictive modeling and the role of data-driven decision-making in optimizing IPO
performance predictions.

2.1. Regression Approaches

The performance of IPOs has been the subject of extensive research, with various
studies employing regression analysis to uncover the determinants and implications of IPO
performance across different markets, as shown in Table 1.

Table 1. Comparison of Regression-based Approaches.

Ref Year Technique
Name Limitation Advantage

[5] 2021 Multiple
Regression

Limited to the Australian Stock
Exchange; lacks broader
generalizability to other
markets or conditions.

Incorporates industry and
listing year as dummy
variables, capturing
market-specific effects.

[6] 2020 Multiple
Regression

Did not find a significant
impact on key variables (e.g.,
firm size, issue size, leverage),
limiting actionable insights.

Examines the long-term
financial and operating
performance of IPOs over a
ten-year period.

[7] 2020
Regression
and Statistical
Tests

Small sample size (12 IPOs);
limited to Nairobi Securities
Exchange, reducing
applicability to larger datasets.

Identifies a high average
underpricing rate and post-IPO
performance trends.

[8] 2021 Regression
Analysis

Focused only on the non-linear
relationship of public float,
ignoring other potential
determinants of underpricing.

Provides empirical evidence
supporting the fixed allocation
hypothesis for IPO
underpricing.

[9] 2022
OLS and
Stepwise
Regression

Relies on natural logarithm
transformations; lacks
exploration of alternative
models for improved accuracy.

Enhances model explanatory
power by applying logarithmic
transformations.

[10] 2021

Univariate
and Multiple
OLS
Regression

Focused on Malaysian IPOs;
conclusions may not generalize
to other markets or
book-building mechanisms.

Demonstrates a strong
relationship between IPO price
multiples and comparable
firms, highlighting market
valuation dynamics.
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Using multiple regression with industry and listing year as dummy variables, Ferdous
et al., [5] analyzed 211 IPOs on the Australian Stock Exchange from 2011 to 2015. They
found underpricing in the total market return and overpricing in the secondary market,
influenced by the year of listing and industry settings. Rafique et al., [6] also used multiple
regression to investigate 51 IPOs on the Pakistan Stock Exchange over ten years and
concluded that prior IPO demand, firm size, issue size, and leverage do not significantly
impact financial and operating performance. Mutai [7] employed regression and traditional
statistical tests to examine 12 IPOs on the Nairobi Securities Exchange (NSE) from 1996 to
2013, discovering an average underpricing of 55.36% and a significant post-IPO decline in
Cumulative Abnormal Returns (CAR) and Return on Equity (ROE), suggesting the need for
investors to consider more financial determinants beyond ROA and ROE. Michel et al., [8]
applied regression analysis to explore the relationship between IPO underpricing and
public float, the portion of a company’s shares that are available for trading by the public,
with data from 1996 to 2008, finding a non-linear relationship that supports the hypothesis
that firms allocate a fixed amount for underpricing. Mittal and Verma [9] used ordinary
least squares (OLS) and stepwise regression methods to analyze 335 book-built IPOs in the
Indian capital market from 2006 to 2015, finding that natural logarithm transformations
significantly improved model explanatory power. Lastly, Ong et al., [10] utilized univariate
and multiple OLS regression analyses to study 467 Malaysian IPOs listed from 2000 to 2017,
discovering a positive relationship between IPO price-multiples and those of comparable
firms, with lower-valued firms underpricing their IPOs to attract investors and book-built
IPOs generating higher initial returns, highlighting the book-building mechanism’s role in
mitigating misvaluation.

These studies underscore both the strengths and limitations of using regression anal-
ysis to predict IPO aftermarket performance. The advantages include identifying key
determinants of IPO performance, assessing the impact of various factors such as industry,
listing year, and investor demand, and improving model predictability through variable
transformation. However, the traditional regression method’s limitations include the as-
sumption of a linear relationship between predictors and the outcome, which may not
always hold true, leading to potential model misspecification. It also struggles with cap-
turing complex, non-linear interactions compared to advanced techniques like machine
learning. Regression models also can be sensitive to outliers, which can disproportionately
affect the model estimates and reduce predictive accuracy. Nevertheless, regression analysis
remains a pivotal tool in the empirical examination of IPO dynamics, offering valuable
insights for investors, underwriters, and regulators.

2.2. Machine-Learning Approaches

The prediction of IPO aftermarket performance has recently been extensively explored
through machine-learning (ML) models, as shown in Table 2. This literature review exam-
ines several key studies that employ different machine-learning techniques to enhance the
prediction accuracy of IPO outcomes.
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Table 2. Comparison of Machine-Learning-based Approaches.

Ref Year Technique Name Limitation Advantage

[1] 2020 Random Forest
Focused only on Borsa
Istanbul; lacks comparison
with other ensemble methods.

Demonstrates RF’s robustness
in handling outliers and key
predictors like IPO proceeds
and trading volume.

[11] 2017 Random Forest

Benchmarked against
traditional ML algorithms but
excluded newer methods like
XGBoost or LightGBM.

RF outperforms traditional ML
models in predictive accuracy
and error variance,

[12] 2022 Random Forest
Limited to prospectus content;
does not include broader
financial or market factors.

Achieves 71% accuracy in IPO
outcome prediction based on
prospectus content.

[13] 2024
Random Forest
and Gradient
Boosted Trees

Found no significant
differences between models;
lacks exploration of why
performance is similar.

Provides empirical validation
of RF and GBT performance
similarities in IPO prediction.

[3] 2022 Random Forest
and XGBoost

XGBoost achieves higher
accuracy, but the study does
not explain the disparity in
detail.

XGBoost achieves 87.89%
accuracy, outperforming RF’s
80.25% in IPO forecasting.

[14] 2023
Random Forest
and Logistic
Regression

Focused only on post-IPO
financial performance; lacks
broader IPO metrics or
market-level insights.

RF outperforms logistic
regression in post-IPO
performance prediction.

[15] 2022
Random Forest
and Logistic
Regression

Logistic regression
outperforms RF in Hong Kong;
lacks exploration of RF’s
strengths in this market.

RF performs well for long-term
predictions.

[16] 2023 Artificial Neural
Networks (ANN)

ANN achieves moderate
accuracy (68.11%); limited
comparison with other
advanced deep-learning
methods.

ANN outperforms RF and
other models in predicting IPO
underperformance.

[17] 2024 LightGBM

Focused only on tree-based
models; lacks comparison with
non-tree-based ensemble
methods.

LightGBM achieves an F1 score
of 82.3%, excelling in
regression and classification
tasks.

[18] 2023

Deep Neural
Networks (DNN)
and Stochastic
Frontier Analysis

Complex non-linear models
but limited to pricing efficiency,
not broader IPO outcomes.

DNN-based model estimates
significant premarket
underpricing, highlighting
pricing inefficiencies.

The random forest algorithm emerges as a prominent method in several studies due
to its robustness and high predictive accuracy. Baba and Sevil [1] emphasize the superiority
of the random forest algorithm over traditional linear regression models in predicting
IPO initial returns on Borsa Istanbul. They attribute this to the algorithm’s ability to
handle outliers effectively, with key predictors including IPO proceeds and trading volume.
Similarly, Quintana et al. [11] benchmark random forests against eight traditional machine-
learning algorithms, finding that random forests outperform others in terms of mean
and median predictive accuracy and exhibit the second smallest error variance. Emidi
and Galán [12] also find that random forests achieve the highest performance (accuracy
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of 71%) in predicting IPO outcomes based on prospectus content. In contrast, Dhini
and Sondakh [13] and Munshi et al., [3] compare random forests with other ensemble
learning methods, such as gradient-boosted trees and XGBoost. While Dhini and Sondakh
find no significant performance differences between random forest and gradient-boosted
trees, Munshi et al. report that XGBoost achieves the highest average accuracy of 87.89%,
compared to 80.25% for random forest.

Methods such as logistic regression and random forest algorithms were explored by
Supsermpol et al. [14], who concluded that random forest outperforms logistic regression
in predicting post-IPO financial performance. This finding aligns with the results of
Emidi and Galán [12] and Ni [15], who also observed superior performance of random
forests over logistic regression in various contexts. However, Ni [15] notes that logistic
regression produces superior outcomes for predicting IPO performance in the Hong Kong
stock market, with random forest also performing well, particularly for longer prediction
horizons (Days 10, 20, and 30).

The exploration of advanced ML models reveals varied results. Sonsare et al. [16] find
that artificial neural networks (ANN) outperform other models, including random forest,
with an accuracy of 68.11% in predicting IPO underperformance. In a similar vein, Neghab
et al. [17] demonstrate that tree-based models, particularly LightGBM, outperform other
models in both regression and classification tasks, achieving an average F1 score of 82.3%.
Neghab et al. [18] introduce a non-linear approach using deep neural networks (DNN) and
stochastic frontier analysis to estimate IPO pricing efficiency. Their DNN-based method
identifies significant premarket underpricing, with IPO offer prices being, on average,
12.43% lower than the estimated maximum offer prices.

Machine-learning models offer several advantages in predicting IPO outcomes. They
exhibit robustness to outliers, with models like random forests handling these anomalies
more effectively than traditional linear regression models. Additionally, machine-learning
models, including random forests, XGBoost, and artificial neural networks (ANNs), consis-
tently demonstrate higher predictive accuracy compared to traditional statistical methods,
with reported accuracy ranging from 68.11% for ANNs to 87.89% for XGBoost for IPO
performance predictions. These advanced models are also capable of capturing com-
plex, non-linear relationships, providing deeper insights into the determinants of IPO
performance. However, machine-learning models come with certain disadvantages. Their
complexity and interpretability can be challenging, especially with advanced models like
deep neural networks (DNNs), which are often less transparent than traditional models,
complicating their practical application. Moreover, some machine-learning models, such
as logistic regression and DNNs, require large datasets and extensive assumptions, which
may not always be feasible. There is also a potential risk of overfitting, particularly with
complex models like ANNs and ensemble methods, necessitating careful model validation
and tuning to avoid this issue.

2.3. Determinants of IPO Underpricing and Performance

The literature on IPO underpricing identifies various determinants influencing initial
and long-term performance, as shown in Table 3. Lubis et al. [19] focus on the Indonesian
market, finding that inflation and interest rates significantly boost initial returns, while
firm-specific factors like ROA, size, and age do not. Oliveira et al., [4] emphasize informa-
tional asymmetry as a primary theory, highlighting underwriter and issuer reputations,
corporate governance, and offering size as key determinants. Arora and Singh [20] explore
Indian SME IPOs, noting that factors such as issue size and oversubscription negatively
affect long-run performance, whereas auditor reputation, underwriter reputation, and
market conditions positively influence it. Kumar and Sahoo [2] analyze the impact of
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anchor investor regulations in India, finding that anchor-backed IPOs underperform less
severely in the long run, with offer size, grade, and promoter holding being significant
variables. Hussein et al. [21] investigate ChiNext IPOs, revealing that risk factors like ongo-
ing litigation, policy changes, and capital expenditures significantly affect initial returns,
indicating the importance of disclosed risk factors. Collectively, these studies underscore
the multifaceted macroeconomic conditions, firm characteristics, market perceptions, and
regulatory environments.

Table 3. Overview of Determinants of IPO Underpricing and Performance.

Ref Year Technique Name Limitation Advantage

[19] 2023 Statistical Analysis
(Indonesian Market)

Focused only on
macroeconomic factors
(inflation, interest rates);
neglects broader
firm-specific and market
variables.

Identifies inflation and
interest rates as significant
determinants of initial
returns in the Indonesian
market.

[4] 2023 Informational
Asymmetry Analysis

Limited to qualitative
insights; lacks quantitative
validation of determinants.

Highlights underwriter and
issuer reputations,
corporate governance, and
offering size as key factors.

[20] 2020 Regression Analysis
(Indian SME IPOs)

Focused on SME IPOs;
conclusions may not
generalize to larger or
global IPOs.

Demonstrates how issue
size and oversubscription
negatively impact long-run
performance, while auditor
reputation and market
conditions have a positive
influence.

[2] 2021 Anchor Investor
Analysis

Focused on Indian
anchor-backed IPOs; lacks
applicability to markets
without similar regulations.

Finds that anchor-backed
IPOs experience less severe
long-term
underperformance, with
offer size, grade, and
promoter holding as
significant variables.

[21] 2020 Risk Factor Analysis
(ChiNext IPOs)

Limited to ChiNext IPOs;
risk factors may vary
significantly in other
markets or regulatory
contexts.

Identifies litigation, policy
changes, and capital
expenditures as major risk
factors affecting IPO initial
returns.

2.4. Sentiment and Textual Analysis Approaches

Recent research has extensively explored the utility of sentiment and textual analysis
in predicting IPO aftermarket performance, as shown in Table 4. Ly and Nguyen [22]
demonstrate that sentiment analysis of IPO prospectuses can predict stock price movements
with up to 9.6% greater accuracy than random chance, highlighting the significance of
sentiment in short-term IPO performance. Chi and Li [23] find that the readability of IPO
prospectuses, assessed through a gradient boost decision tree model, significantly predicts
IPO underpricing, suggesting that clearer prospectuses lead to less underpricing due to
reduced information asymmetry. Katsafado et al. [24] extend this analysis by incorporating
both textual and financial data from S-1 filings, using various machine-learning algorithms
to predict IPO underpricing. Their models show a 6.1% improvement in accuracy over
financial-only models, with sophisticated approaches outperforming traditional methods.
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Zou et al. [25] examine the impact of media coverage on IPOs in China, finding a negative
relationship between media coverage and IPO underpricing, as well as heightened investor
sensitivity to negative news. Fedorova et al. [26] use advanced techniques like Latent
Dirichlet Allocation (LDA) and BERT to analyze news sentiment and key topics, finding
that media sentiment and specific themes significantly influence IPO underpricing.

Table 4. Comparison of Textual Analysis-based Approaches.

Ref Year Technique Name Limitation Advantage

[21] 2020 Sentiment Analysis
of IPO Prospectuses

Limited to short-term
predictions; lacks
integration with broader
financial metrics.

Demonstrates that
sentiment analysis can
improve IPO stock
movement prediction
accuracy by 9.6%.

[23] 2021
Readability Analysis
(Gradient Boost
Trees)

Focused only on prospectus
readability; does not
incorporate sentiment or
external media factors.

Shows that clearer IPO
prospectuses reduce
underpricing by mitigating
information asymmetry.

[24] 2023 Textual and Financial
Data Analysis

High computational cost;
potential overfitting with
complex machine-learning
models.

Combining textual and
financial data improves IPO
underpricing prediction
accuracy by 6.1% over
financial-only models.

[25] 2020 Media Coverage
Analysis

Focused on Chinese IPOs;
findings may not be
generalized to other
markets or cultural
contexts.

Reveals a negative
relationship between media
coverage and IPO
underpricing, highlighting
investor sensitivity to news.

[26] 2022
Sentiment and Topic
Modeling (LDA,
BERT)

Requires high-quality
textual data; complex
algorithms may be
resource-intensive and
difficult to implement.

Finds that media sentiment
and specific topics
significantly influence IPO
underpricing using
advanced NLP techniques.

Utilizing sentiment and textual analysis offers several key advantages. Enhanced
predictive accuracy is achieved by incorporating textual data alongside financial metrics,
providing a more comprehensive understanding of IPO dynamics. Additionally, improved
readability and nuanced media coverage analysis help reduce information asymmetry,
leading to more efficient market outcomes. Furthermore, techniques such as sentiment
analysis and topic modeling provide advanced insights into investor sentiment and market
trends, capturing elements that traditional financial metrics may overlook. These advan-
tages underscore the growing importance of sentiment and textual analysis in financial
research, particularly in the context of IPO performance prediction. Despite their advan-
tages, utilizing sentiment and textual analysis for predicting IPO aftermarket performance
faces challenges like inconsistent data quality, subjective text interpretation, complex and
resource-intensive algorithms, overfitting risks, unpredictable investor behavior, varying
media influence, practical integration difficulties, and regulatory and ethical concerns.

2.5. Data-Driven Approaches

Recent studies have explored various data-driven predictive models to forecast IPO
aftermarket performance, as shown in Table 5. Kang et al. [27] examine the relationship
between online search volumes and post-IPO stock returns, finding that lower pre-IPO
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search volumes correlate with higher post-IPO returns, suggesting that less pre-IPO at-
tention may indicate undervaluation. Sorkhi and Paradi [28] introduce a methodology
combining Bayesian inference and Data Envelopment Analysis (DEA) to estimate the
probability density function (PDF) of IPO stock prices in the short-term, addressing the
challenge of predicting price uncertainty for firms with limited market history. Their ap-
proach iteratively updates prior beliefs using DEA to find comparable IPOs and Bayesian
inference to refine the IPO’s prior PDF, validated through backtesting. Turpanov [29] inves-
tigates the impact of optimistic analyst forecasts on long-run abnormal returns for South
Korean IPOs, revealing an upward bias in earnings forecasts and a positive correlation
between risk-adjusted returns and earnings forecast revisions, which supports the long-run
underperformance hypothesis when controlling for risk.

Table 5. Comparison of Data-Driven Approaches.

Ref Year Technique Name Limitation Advantage

[27] 2021 Online Search
Volume Analysis

Focused on pre-IPO
attention; limited
applicability in markets
with low internet
penetration.

Identifies a negative
correlation between
pre-IPO search volumes
and post-IPO returns,
suggesting undervaluation
signals.

[28] 2020

Bayesian Inference
and Data
Envelopment
Analysis (DEA)

Computationally intensive;
relies on the availability of
comparable IPOs for
accurate predictions.

Provides a probabilistic
framework to estimate
short-term IPO price
movements by iteratively
refining prior beliefs.

[29] 2022 Analyst Forecast
Impact Analysis

Limited to markets with a
strong presence of analyst
coverage; may not
generalize to all regions.

Demonstrates that
optimistic analyst forecasts
lead to long-run IPO
underperformance,
supporting the long-run
underperformance
hypothesis.

Overall, while data-driven predictive models offer significant benefits in terms of
accuracy and innovative data usage, they also present challenges related to data quality,
model complexity, and inherent biases. These must be carefully managed to ensure reliable
and effective IPO performance predictions.

After reviewing current methods, our approach will utilize ensemble learning clas-
sifiers, known for their superior accuracy and ability to handle non-linear interactions.
Selection will focus on classifiers inherently capable of managing small datasets. Further-
more, we will apply several optimization techniques such as SMOTE, ANOVA F-value,
and hyperparameter tuning. Lastly, determinants will be based on pre-listing prospec-
tus characteristics and financial ratios, as these features are accessible to investors and
decision-makers in advance.

3. Data
This research study utilizes a comprehensive dataset derived from the original prospec-

tus documents of 68 companies listed on the Saudi stock market between 2004 and 2023.
The dataset was meticulously collected and organized to serve the objective of this study,
which is to utilize machine-learning techniques to predict the short-term underperformance
of IPO.
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The dataset encompasses two primary components:

1. Prospectus Characteristics: This part of the dataset includes features specific to the
initial public offering of the companies. These features include the total number
of offer shares, the total number of issued shares, the offer price, the total value of
offer shares, the nominal value per share, the number of substantial shareholders, the
total direct ownership of substantial shareholders pre- and post-offering (expressed
in percentage), and the number of days allocated for individual subscribers. These
features provide insights into the structure of the IPO and the company’s ownership
around the time of the offering.

2. Financial Ratios: This section comprises financial ratios calculated for a full fiscal year
immediately preceding the IPO year. These ratios include gross profit margin, net
profit margin, return on equity, return on assets, current assets-to-current liabilities
ratio, liability-to-equity ratio, and earnings per share. These ratios show the company’s
financial health and performance before the public offering.

To ensure comparability, financial metrics were collected for each company’s full
audited fiscal year prior to their IPO. This approach allows for a standardized compar-
ison across different companies, providing a complete picture of a company’s financial
performance in the period leading up to the IPO.

One important note regarding the data collection process is the exclusion of insurance
and banking companies from the dataset. This decision was made due to the unique
financial structure of such companies, which exhibit distinct financial ratios that are not
directly comparable to those of other industries. For instance, insurance companies do not
have comparable ratios such as profit margin or current assets-to-current liabilities ratio,
among others. We ensure the analysis is based on a more homogeneous and comparable
dataset by excluding insurance and banking companies, with a final dataset of 55 records.
The details of the features extracted for the dataset are listed in Table 6.

Table 6. Details of features used for the dataset.

Feature Description

Total Number of Offer Shares (TNOOS) The total shares offered for sale during the IPO, indicating the IPO size and public
equity distribution.

Total Number of Issued Shares (TNOIS) The total shares issued, including those offered during the IPO and retained by
original owners.

Offer Price (OP) The price at which each share is offered during the IPO, determined by the
company based on various factors.

Total Value of Offer Shares (TVOS) The overall value of shares offered during the IPO, calculated as the offer price
multiplied by the number of offer shares.

Nominal Value per Share (NVPS) The face value of a share as stated in the company’s corporate charter.

Number of Substantial Shareholders (NOSS) The count of shareholders holding a significant portion of the company’s shares.

Total Direct Ownership of Substantial Shareholders Pre- and Post-Offering (TDOS) Indicates the percentage of shares held by substantial shareholders before and
after the IPO.

Number of Days for Individual Subscribers (NDIS) The duration of the subscription
of shares by individual investors during the IPO.

Gross Profit Margin (GPM) The proportion of revenue that remains after deducting the cost of goods sold,
serving as an indicator of a company’s profitability.

Net Profit Margin (NPM) The percentage of revenue exceeding all company costs, including indirect
expenses.

Return on Equity (ROE) Measures company profitability by revealing profit generated with shareholder
investments.

Return on Assets (ROA) Indicates company profitability relative to total assets.

Current Assets to Current Liabilities (CACR) Also referred to as the current ratio, this metric evaluates a company’s capability
to cover its short-term obligations using its short-term assets.
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4. Methodology
The framework aims to predict IPO underperformance within the first month post-

listing based on investor risk preference. Figure 1 illustrates that following typical data
preprocessing steps such as cleansing, the framework first implements SMOTE, a widely
used technique in data-driven decision-making for complex systems [30]. SMOTE creates
synthetic instances for the minority class by interpolating between existing examples
rather than merely duplicating them. This process balances the class distribution, thereby
mitigating model bias towards the majority class and enhancing overall performance
metrics, which are essential for robust decision-making in imbalanced and data-scarce
environments. Additionally, by introducing variability through synthetic samples, SMOTE
reduces overfitting, leading to more generalizable and robust models capable of accurately
predicting IPO underperformance in data-scarce environments.
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Utilizing SMOTE can also enhance the effectiveness of ANOVA F-value for feature
selection, which is the next major step for our framework, by helping to attain the normality
assumption required for ANOVA. By generating synthetic samples to balance the class
distribution, SMOTE reduces the skewness and imbalance in the dataset, which in turn
promotes a more normal distribution of data. To further validate feature importance,
ANOVA F-value analysis is employed to assess variance among groups and determine
statistical significance. If no significant variance is detected, it confirms the absence of a
meaningful relationship between factors, preventing the inclusion of redundant or non-
informative features and enhancing the credibility of our findings. A threshold of 0.2 is
set to exclude less predictive features, improving model interpretability and preventing
overfitting. This threshold was selected based on a grid search from 0.1 to 0.9 with a
step of 0.1 to ultimately obtain 0.2 as the chosen level for best accuracy. Consequently,
the combination of SMOTE and ANOVA F-value facilitates the identification of the most
significant features, thereby improving the predictive performance and robustness of
models, especially in scenarios involving small, imbalanced datasets such as those found
in emerging financial markets.

Moreover, outlier analysis using the interquartile range (IQR) method confirmed that
no significant outliers were present in the dataset. Additionally, Principal Component
Analysis (PCA) was applied to manage feature correlations, reducing redundancy and
enhancing the model’s stability.

Next, the framework splits the dataset into 80% for training and 20% for testing
(single-split validation), providing a straightforward and efficient means to evaluate model
performance on unseen data. The same training and test datasets are used across all
models to ensure consistency in evaluation. This method allocates a substantial part of the
data for training purposes yet retains sufficient data to effectively evaluate the model’s
generalizability. Feature scaling is performed only on the training set after splitting and then
applied to the test set to prevent data leakage. To increase the reliability of the assessment,
the framework utilizes k-fold cross-validation, designating nine folds for training and one
fold for testing. The k-fold cross-validation is a standard practice in data-driven modeling,
reducing overfitting risks and ensuring comprehensive performance evaluation across
diverse data subsets. By averaging the results from all folds, k-fold validation offers a
comprehensive and reliable measure of the model’s performance, which is particularly
crucial for small datasets where variability can significantly impact outcomes.

The framework then starts training data on a set of thoroughly selected ensemble
models known to handle small datasets more efficiently. Each model is trained on the
same training dataset and subsequently evaluated on the test dataset, ensuring a uniform
assessment protocol. The set includes Bagging Classifier (BC), Random Forest (RF), Ad-
aBoost (Ada), Gradient Boosting (GB), XGBoost (XG), Stacking Classifier (SC), and Extra
Trees (ET), with Decision Tree (DT) as a base estimator. Ensemble models are particularly
effective for small datasets as they combine the strengths of multiple learning algorithms to
improve predictive performance and robustness. By aggregating the outputs of various
base learners, ensemble methods reduce the risk of overfitting and enhance generalization,
which is crucial when dealing with limited data. In addition to ensemble learning models,
we also evaluate deep-learning-based approaches such as Multi-Layer Perceptron (MLP),
TabNet, and Artificial Neural Networks (ANN). Deep-learning models offer the advantage
of automatically learning complex representations from raw data, potentially capturing in-
tricate patterns that traditional ensemble models might overlook. However, deep-learning
models typically require larger datasets for optimal performance and are more prone to
overfitting when trained on limited data. To mitigate this issue, we employ regularization
techniques, dropout layers, and hyperparameter tuning to enhance their generalization ca-
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pability. Hyperparameter optimization plays a crucial role in enhancing model performance
by fine-tuning parameters to achieve optimal results. Randomized Search is particularly
effective for this task, as it efficiently navigates a broad range of hyperparameter values,
identifying the best configurations without the prohibitive computational expense of grid
search [31]. This approach exemplifies a strategic balance between efficiency and accuracy,
making it well-suited for computationally constrained environments. After selecting the
optimal hyperparameters, the models were trained using these configurations to ensure
peak performance.

Metrics such as accuracy, precision, recall, F1 scores, and area under the receiver
operating characteristic curve (AUC) are used to evaluate and compare the efficacy of
different models. Accuracy determines the overall correctness of the model by calculating
the proportion of correct predictions out of the total number of predictions (i.e., accuracy in
predicting underperformance). In situations where datasets are imbalanced, relying solely
on accuracy might not provide a clear picture. Precision and recall provide deeper insights.
Precision measures the fraction of true positive predictions within all positive predictions,
showing how well the model avoids false positives, while recall quantifies the fraction of
true positives detected among all actual positives, emphasizing the model’s capacity to
identify true positives.

The F1 score, as the harmonic mean of precision and recall, mitigates the trade-offs
between these two metrics, making it a crucial measure when both false negatives and false
positives carry significant consequences. The AUC offers a comprehensive evaluation of the
model’s performance at various classification thresholds, reflecting its ability to effectively
differentiate between classes. These metrics collectively ensure a robust and data-driven
evaluation framework for decision-making under uncertainty.

At the heart of our proposed framework, we strategically propose a dynamic
methodology—named Investor Preference Prediction Framework (IPPF)—to improve the
decision-making process for IPO investments. Recognizing the underlying link between
investing decisions and risk preferences, the framework acknowledges a wide range of in-
vestors, from risk-averse to risk-tolerant. It ranks the evaluated ensemble models based on
investor risk preference, thereby tailoring investment strategies to individual risk profiles.

This dynamic methodology is particularly important in the context of IPO short-
term underperformance prediction because the outcomes of such predictions can vary
significantly based on different risk metrics. For example, a risk-tolerant investor seeks
higher returns and wants to avoid false alarms about underperforming stocks. Hence,
they value precision, which ensures most predicted underperformers are truly underper-
forming. On the other hand, a risk-averse investor prioritizes safety and wants to avoid
missing any underperforming stocks. Hence, they value recall, which ensures most actual
underperformers are correctly identified.

By employing IPPF, the framework dynamically adjusts the model evaluation criteria
based on these risk preferences, ensuring that the selected model aligns with the investor’s
risk tolerance. This adaptability enhances the relevance and applicability of the model’s
predictions, as it allows investors to make more informed decisions that align with their
risk appetite. Furthermore, this approach improves the overall robustness and flexibility
of the prediction framework, making it more responsive to the diverse needs of different
investors. In the volatile and unpredictable environment of IPO investments, such tailored
decision-making support is crucial for optimizing returns and managing risks effectively.

The subsequent section will discuss each component of the proposed framework in
further detail.
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4.1. Class Imbalance, Feature Selection, and Hyperparameter Tuning

Various strategies have been implemented to enhance the proposed framework. One
of the key approaches is the use of SMOTE, which effectively tackles the problem of class
imbalance within our datasets. This technique generates synthetic samples for the under-
represented minority class, helping to balance the dataset [30]. SMOTE creates synthetic
examples along the line segments joining existing minority class instances. This strategy
reduces bias toward the majority class and increases prediction accuracy in scenarios where
instances belong to a minority class. The class distribution after applying SMOTE is shown
in Table 7.

Table 7. Class Distribution Before and After Applying SMOTE.

Class Label Original Distribution Balanced Distribution
(After SMOTE)

0 35 35

1 20 35

The proposed framework employs the ANOVA F-value, a statistical measure that
assesses the significance of the differences in means among multiple groups [32]. In the
machine-learning domain, the ANOVA F-value reveals important variables for predictive
modeling by examining the variances of distinct classes. A higher ANOVA F-value indicates
a more substantial impact of a factor on the target. Setting a threshold, such as 0.2 in this
framework, eliminates less predictive characteristics, improving model interpretability and
lowering the danger of overfitting.

Hyperparameter tuning is a crucial stage in enhancing machine-learning model perfor-
mance. A hyperparameter tuning approach, Randomized Search, offers effective parameter
space search techniques [31]. In contrast to other hyperparameter tuning techniques, Ran-
domized Search selects a random subset of configurations, reducing processing costs and
time [31]. This method offers a comprehensive search in the hyperparameter space for
optimal settings that strike a reasonable balance between model variance and bias.

4.2. Random Search for Hyperparameter Optimization

In order to improve the performance of tree-based ensemble models and deep-learning
models, we use Randomized Search Cross-Validation (RandomizedSearchCV) to perform
hyperparameter tuning. Since random search explores a wide range of hyperparameter
values to find optimal configurations, it is computationally efficient compared to exhaus-
tive grid search. The algorithm optimizes hyperparameters based on multiple metrics,
including accuracy, recall, precision, and F1 score, ensuring a balanced evaluation of model
performance, particularly for handling imbalanced datasets. Each model is tuned based on
the key parameters, such as the number of estimators, maximum depth, feature selection
strategies, learning rate, etc., as shown in Table 8.
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Table 8. Best Hyperparameters for Tree-Based Models.

Model Best Parameters

Decision Tree (DT) min_samples_split = 3, min_samples_leaf = 2,
max_depth = None, criterion = ’entropy’

Random Forest (RF) n_estimators = 20, min_samples_split = 7,
max_features = ’log2’, max_depth = 10

Bagging Classifier (BC)
n_estimators = 10, max_samples = 1.0,
max_features = 0.5,
bootstrap_features = True, bootstrap = False

AdaBoost (Ada) n_estimators = 200, learning_rate = 1.0,
algorithm = ’SAMME.R’

Gradient Boosting (GB)
subsample = 0.5, n_estimators = 100, min_samples_split
= 9, min_samples_leaf = 5, max_features = ’sqrt’,
max_depth = 3, learning_rate = 0.2

XGBoost (XG)

subsample = 0.8, scale_pos_weight = 1.0,
reg_lambda = 0, reg_alpha = 0.1, n_estimators = 100,
min_child_weight = 2, max_depth = 5,
learning_rate = 0.1, gamma = 0.3,
colsample_bytree = 0.6

Extra Trees (ET)
n_estimators = 900, min_samples_split = 10,
min_samples_leaf = 1, max_features = ’log2’,
max_depth = None

MLP

hidden_layer_sizes = (128, 64, 32), activation = ’relu’,
solver = ’adam’, alpha = 0.0001,
learning_rate = ’adaptive’, batch_size = 32,
max_iter = 500

TabNet
n_d = 8, n_a = 8, n_steps = 3, gamma = 1.3,
lambda_sparse = 0.001, momentum = 0.02,
optimizer_params = {’lr’: 0.02}, max_epochs = 100

ANN
layers = [64, 32, 16], activation = ’relu’, optimizer =
’adam’, dropout_rate = 0.2, batch_size = 32,
epochs = 200

4.3. Base Estimator

In machine learning, base estimators are essential as they serve as the foundational
models for advanced ensemble methods. These initial models process the data first, and
their outputs are typically integrated or improved using different ensemble strategies to
boost the accuracy of predictions. The choice of base estimator significantly influences the
overall effectiveness of the ensemble model. A well-chosen base estimator can capture
essential patterns in the data, providing a robust foundation upon which ensemble methods
can build. Among the various types of base estimators, decision trees have emerged as a
popular and powerful choice due to their unique characteristics and adaptability.

The appeal of decision trees lies in their simplicity and interpretability [33]. They
provide a clear and intuitive representation of how decisions are made, which is valu-
able for understanding the underlying patterns in the data. Additionally, decision trees
can handle both numerical and categorical data, making them versatile tools for diverse
datasets. Their ability to capture non-linear relationships and interactions between features
further enhances their utility in complex domains such as finance. As base estimators,
decision trees are not only effective on their own but also serve as the cornerstone for
more advanced ensemble methods like Random Forests and boosting algorithms. These
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ensemble techniques leverage the strengths of individual decision trees, combining them to
produce models with improved accuracy and robustness. To summarize, DT is selected as
the base estimator for several reasons:

1. Simplicity and interpretability: Decision trees are straightforward to understand
and interpret, making them ideal for initial model building and understanding
feature importance.

2. Handling non-linearity: DTs can capture non-linear relationships between features,
which are common in financial datasets. This allows them to model complex interac-
tions without requiring extensive data preprocessing or transformation.

3. Versatility: Decision trees can handle both numerical and categorical data, making
them versatile tools in diverse datasets. This versatility is particularly valuable in
financial data, where features can vary widely in type and scale.

4. Foundation for ensembles: As a base estimator, decision trees form the foundation for
more complex ensemble methods like Random Forests and Boosting algorithms. Their
ability to be combined into ensembles allows for improved predictive performance
and robustness.

5. Efficiency: DTs are relatively fast to train and evaluate, which is crucial when con-
ducting multiple iterations of model training and hyperparameter tuning, such as in
Randomized Search and cross-validation processes.

4.4. Selection of Ensemble and Deep-Learning Classifiers

The choice of specific ensemble classifiers in this research is driven by their proven
effectiveness in handling small and imbalanced datasets, as well as their ability to model
complex relationships in financial data. The ensemble methods selected—BC, RF, Ada,
GB, XG, SC, and ET—each bring unique strengths to the framework, enhancing predictive
reliability and robustness in various market conditions.

• Bagging Classifier: Bagging helps to lower variance and prevent overfitting by creat-
ing multiple models, each trained on distinct subsets of the dataset. This technique is
especially beneficial in environments with small datasets, where the risk of overfitting
is typically higher.

• Random Forest: RF, which builds on the concept of bagging, constructs several
decision trees and combines their outputs. It is renowned for its strong performance
and capability to manage data with many dimensions, making it a suitable option
for predicting IPO performance, particularly when dealing with complex interactions
among numerous features.

• AdaBoost: AdaBoost, a type of boosting approach, trains models sequentially, each
time concentrating on the instances that were previously misclassified. Its capability
to learn from mistakes and adjust accordingly makes it effective for enhancing results
on imbalanced datasets, a key factor in accurately predicting IPO underperformance.

• Gradient Boosting and XGBoost: Both GB and XG are powerful boosting methods
that build models sequentially, each new model correcting the errors of its predecessor.
XGBoost, in particular, is optimized for speed and performance, making it highly
effective for large-scale data analysis. These methods are chosen for their ability to
capture subtle patterns and interactions within the data.

• Stacking Classifier: Stacking leverages the strengths of multiple base models by
combining their predictions using a metamodel. This approach is selected for its
ability to synthesize diverse model insights, thereby improving prediction accuracy
and robustness.

• Extra Trees: ET is similar to RF but differs in the way it splits nodes. It uses random
splits rather than the best splits, which can lead to lower variance and improved
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generalization on small datasets. ET is chosen for its efficiency and effectiveness in
handling diverse feature sets.

• Multi-Layer Perceptron (MLP): MLP is a deep-learning-based artificial neural network
that consists of multiple hidden layers with non-linear activation functions. It is
particularly effective in capturing intricate relationships within data and learning
hierarchical representations. MLP is well-suited for IPO performance prediction as it
can uncover deep feature interactions that traditional machine-learning models may
overlook. However, careful tuning of hyperparameters, such as the number of layers,
neurons, and learning rate, is required to achieve optimal performance.

• TabNet: TabNet is a deep-learning model specifically designed for tabular data,
leveraging attention mechanisms to perform feature selection dynamically during
training. Unlike traditional tree-based methods, TabNet allows for interpretability by
identifying which features contribute the most to predictions. Its ability to focus on
relevant aspects of the dataset makes it a promising candidate for IPO forecasting,
especially when feature importance is a crucial aspect of decision-making.

• Artificial Neural Network (ANN): ANN is a versatile deep-learning architecture com-
posed of interconnected layers of neurons that learn patterns through backpropagation.
It is particularly powerful for modeling complex and non-linear relationships within
financial data. When applied to IPO performance prediction, ANN can effectively
capture interactions between financial indicators and company-specific attributes,
providing a robust alternative to conventional machine-learning approaches. Its
effectiveness depends on factors such as network depth, activation functions, and
regularization techniques.

The selected models were chosen for their ability to handle structured data, robustness
against overfitting, and strong generalization capabilities, as shown in Table 9. Unlike
heuristic methods like Binary Ant Colony Optimization (BACO), which focuses on feature
selection and optimization [34], ensemble models provide superior classification accuracy
and stability by leveraging multiple learners. Additionally, boosting techniques such as
AdaBoost, Gradient Boosting, and XGBoost offer advantages in improving weak learners,
while stacking enhances predictive performance by combining multiple models.

4.5. Validation and Evaluation Metrics

In this study, we utilize both single train/test split and k-fold cross-validation meth-
ods. The effectiveness of our classifiers is evaluated using metrics such as accuracy, pre-
cision, recall, and F1 score, which are commonly employed in classification tasks to pro-
vide a detailed assessment of model performance. These metrics are calculated based
on the confusion matrix, as shown in Table 10. The confusion matrix is built on the
following values:
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Table 9. Comparison of Selected Classification Models and Alternative Heuristic Methods.

Model Selection Criteria Advantages Limitations
Comparison to
BACO and Heuristic
Methods

Decision Tree (DT) Simple, interpretable
baseline

Easy to interpret, fast
training Prone to overfitting

Heuristic methods
often optimize
DT-based splits but
may not generalize
well

Bagging Classifier
(BC)

Reduces variance,
improves stability

Reduces overfitting,
handles noise well

Not ideal for small
datasets

BACO focuses on
feature selection,
whereas bagging
improves stability

Random Forest (RF) Strong performance
on structured data

Robust, reduces
overfitting, handles
missing values

Computationally
expensive

BACO selects
optimal features, but
RF is more robust for
classification

AdaBoost (Ada) Strong boosting
performance

Good for weak
learners, enhances
accuracy

Sensitive to noisy
data

BACO may struggle
with boosting weak
models effectively

Gradient Boosting
(GB)

Handles
non-linearity,
improves accuracy

High predictive
accuracy, handles
complex patterns

Computationally
intensive

GB builds models
iteratively, unlike
BACO’s
feature-based
optimization

XGBoost (XG) Best for structured
data, fast training

Optimized for speed,
regularized to avoid
overfitting

Requires careful
tuning

More efficient than
BACO for structured
datasets

Stacking Classifier
(SC)

Combines multiple
models for enhanced
performance

Leverages strengths
of different models

Complex to train and
tune

BACO does not
provide
ensemble-based
learning benefits

Extra Trees (ET) Improves variance
reduction

Faster than RF,
robust to noise Less interpretability

BACO does not offer
variance reduction
but optimizes feature
selection

Multi-Layer
Perceptron (MLP)

Deep-learning
approach for tabular
data

Learns complex
patterns, handles
high-dimensional
data

Requires large
datasets, tuning is
challenging

BACO optimizes
feature selection,
while MLP extracts
hierarchical features

TabNet
Attention-based
learning for tabular
data

Feature
interpretability,
automatic selection

Computationally
expensive

BACO makes explicit
feature selection,
while TabNet learns
feature importance
dynamically

Artificial Neural
Network (ANN)

General-purpose
deep-learning model

Captures non-linear
relationships, flexible
architecture

Requires significant
tuning, overfitting
risk

BACO focuses on
feature selection,
whereas ANN builds
deep representations

1. True Positives (tp)—correctly predicted underperforming stocks. In our context, a
true positive occurs when the model predicts that a stock will underperform (positive
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prediction), and the actual outcome is that the stock underperformed (positive label).
This means that the model correctly identified and predicted stocks that experienced
underperformance.

2. True Negatives (tn)—correctly predicted non-underperforming stocks. In this paper,
a true negative occurs when the model predicts that a stock will not underperform
(negative prediction), and the actual outcome is that the stock did not underperform
(negative label). This means that the model correctly identified and predicted stocks
that did not underperform (or performed well).

3. False Positives (fp)—incorrectly predicted underperforming stocks when they actually
did not underperform, are also known as Type I Errors. A false positive occurs when
the model predicts that a stock will underperform (positive prediction) when the
actual outcome is that the stock did not underperform (negative label). This means
that the model made an incorrect positive prediction, indicating that the stock would
experience underperformance when this was not actually the case. For risk-tolerant
investors who are making decisions that should maximize profits, this represents a
possible missed opportunity.

4. False Negatives (fn)—incorrectly predicted non-underperforming stocks when they
actually underperformed, are also known as Type II Error. A false negative occurs
when the model predicts a stock will not underperform (negative prediction) when
the actual outcome is that the stock underperforms (positive label). In our context,
this means that the model made an incorrect negative prediction, failing to identify
that the stock would experience underperformance when it was actually the case. For
risk-averse investors who are making decisions that should limit loss, this represents
a higher risk of actual losses.

Table 10. Confusion Matrix Structure.

A
ct

ua
l 0 tn fp

(Type I Error)

1 fn
(Type II Error) tp

0
(Non-Underperforming)

Negative Prediction

1
(Underperforming)
Positive Prediction

Predicted

In order to efficiently assess and compare the performance of IPO underperformance
prediction models, this study employs a number of key performance metrics that cap-
ture different dimensions of model robustness and suitability to different investor risk
preferences. Since these metrics concern trade-offs between false positives and false neg-
atives, they allow us to understand how the model can generate accurate predictions
while balancing.

Accuracy (Ac): Accuracy measures the overall correctness of the predictions or the
proportion of total correct predictions. It is calculated as follows:

Ac =
tp + tn

tp + tn + f p + f n
(1)

While a high accuracy score means that a model correctly predicts many instances,
it fails to specify the types of prediction errors (false positives vs. false negatives) or
account for how classes are distributed (such as underperforming vs. non-underperforming
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stocks). In situations where there is a prediction of IPO underperformance, there is often a
class imbalance, with one class (like underperforming stocks) being much rarer than the
other (non-underperforming stocks). Under these conditions, a model could reach a high
accuracy simply by predominantly predicting the more frequent class. For instance, in a
scenario where 5% of stocks underperform, and 95% perform well, a model predicting
“non-underperforming” for all cases would achieve 95% accuracy, yet it would be utterly
ineffective in recognizing any underperforming stocks, resulting in no true positives.

Accuracy can be misleading because it ignores class proportions, hides critical errors,
and lacks specificity. It does not account for the imbalance between classes, leading to a
false sense of performance when the minority class is rarely predicted. For risk-averse
investors who prioritize avoiding losses, high accuracy does not necessarily mean low false
negatives. A model can achieve high accuracy by correctly identifying a large number of
non-underperforming stocks (true negatives) while still missing many underperforming
ones (false negatives). Moreover, accuracy alone does not provide insight into how well the
model identifies underperforming stocks (recall) or the reliability of its positive predictions
(precision). Metrics like recall and precision should be considered to obtain a true picture
of the model’s performance in predicting IPO underperformance.

Recall (Re): Recall, also known as sensitivity, measures the model’s ability to correctly
identify actual positives (stocks that went below IPO price). It is calculated as follows:

Re =
tp

tp + f n
(2)

Risk-averse investors, who aim to limit losses, would prefer recall. Recall focuses on
the proportion of true positives among all actual positives, minimizing false negatives.
This ensures that most underperforming stocks are correctly identified, reducing the risk
of missing out on stocks that would lead to losses. This aligns with their preference for
avoiding the risk of actual losses by ensuring that underperformance is detected whenever
it occurs.

Precision (Pr): Precision measures the proportion of positive identifications that
were actually correct, or the proportion of correctly predicted positive instances out of all
instances predicted as positive by the model. It is calculated as follows:

Pr =
tp

tp + f p
(3)

Risk-tolerant investors who aim to maximize profits and can accept more risk would
prefer precision. Precision measures the proportion of true positives among all positive
predictions, minimizing false positives. This ensures that when the model predicts under-
performance, it is highly likely to be correct, thus avoiding missed opportunities due to
incorrect predictions of underperformance. This aligns with their preference for maximizing
returns by accurately identifying stocks that are unlikely to underperform.

F1 Score (F1): The F1 score is the harmonic mean of precision and recall, providing a
balance between them. It is calculated and simplified as follows:

F1 = 2×
(

Pr × Re

Pr + Re

)
=

2× tp
2× tp + f p + f n

(4)

The F1 score differs from other statistical measures, such as the F-statistic, which is
used in hypothesis testing. The F1 score is instrumental in balancing precision and recall.
For risk-averse investors, a high F1 score indicates a model that effectively identifies stocks
likely to decrease in value (thus should be avoided) while minimizing the incorrect labeling
of stocks as risky (thus not missing out on potential gains).
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A general or broader form for the F1 score is the so-called Fβ score [35], and it is
formulated as follows:

Fβ =
(β2 + 1)× Pr × Re

β2 × Pr + Re
=

(β2 + 1)× tp
(β2 + 1)× tp + f p + β2 f n

(5)

where β is a positive real constant that allows unequal weighting between precision and
recall. When β = 1, precision and recall are evenly balanced, leading to the regular F1 score.
β < 1 favors precision, while β > 1 favors recall.

The decision-making process about investments in IPOs is fundamentally tied to an
investor’s risk preference. Investors typically span a spectrum from risk-averse, favoring
the minimization of the probability of loss, to risk-tolerant, often willing to accept higher
probabilities of loss for the potential of greater returns. Thus, in our study of predicting
IPO underperformance based on the preference of the investor, the infinite space for β

would make it more difficult to assess or quantify an investor’s risk. We, therefore, define a
new parameter r, called the risk preference factor, which takes any real number between
0 (favoring precision, i.e., risk-averse investors) and 1 (favoring recall, i.e., risk-tolerant
investors). The real constant β can then be redefined as a function of r, ensuring consistency
with the following interpretation:

β(r) = 10(1−2r) 0 ≤ r ≤ 1 (6)

The investor’s risk preference now determines β. For a risk-averse investor, r = 0
would favor recall, whereas r = 1 would emphasize precision. Finally, r = 0.5 represents
completely balanced precision and recall, leading back to the F1 score. We also can use
any real number in between as per investor risk bias. As a result, the model selection
guarantees that the score appropriately reflects the trade-off between fn and fp, as eval-
uated by various investor profiles. We call this method IPPF, a systematic strategy for
balancing Pr (the significance of avoiding fp predictions) and Re (the value of avoiding fn
predictions) to evaluate class-based machine-learning models for modeling investor risk in
investment decisions.

We can also assess the discrepancy of a certain model in response to investor risk
preference by drawing a straight line between Pr and Re utilizing the risk preference factor
r as follows:

L(r) = rPr + (1− r)Rc (7)

The slope of this straight line is mathematically the difference between Pr and Re

derived as follows:
∂L
∂r

= Pr − Rc (8)

The absolute value Equation (8) would range between 0, indicating a robust model
or a model that is insensitive to investor risk preference, and 1, indicating a fragile model
that is highly sensitive to investor risk preference. This would measure the discrepancy
between precision and recall.

If we do not know the investor risk preference, we would prefer a model that mini-
mizes the absolute difference between Pr and Re, leading us to the following objective:

∆PR = |Pr − Rc| (9)
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Thus, we would want a model that has a maximum F score, but we can penalize
models that have high ∆ as follows to assess robustness (ρ):

ρ =
Fβ

∆PR
(10)

This measure, however, becomes problematic when ∆ = 0, leading to an undefined
outcome. Thus, we would simply use the geometric mean [36] to measure the discrepancy
between precision and recall as follows:

∆′PR =
√

Pr × Rc (11)

This measure naturally penalizes large discrepancies between precision and recall.
The model selection criteria, named robustness ratio, become the following:

ρ =
Fβ

∆′PR
(12)

We can now assess the best models across investors’ preference levels to find the best
model when exact risk preference is unknown with the following measure:

min
x

(
m

∏
j=1

n

∑
i=1

ρij · xij

)
∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . , m} (13)

where ρij is the robustness ratio for model i at risk level j, n is the number of models, and m
is the number of risk levels. xij is the binary decision variable that is equal to 1 if model i is
selected for risk level j; otherwise, it is 0.

In summary, to find the best tree-based ensemble model for IPO predicting, the
IPPF technique evaluates models through the perspective of the investor’s risk prefer-
ences. We identify the most appropriate model by analyzing each model’s recall and preci-
sion over the risk preference continuum, balancing these metrics based on the investor’s
risk tolerance.

Receiver Operating Characteristic (ROC): The ROC curve serves as a method to assess
the performance of binary classification systems by displaying the compromise between
the true positive rate and the false positive rate at different threshold levels. The area
under the curve (AUC) summarizes these data into a single number. A perfect prediction
is denoted by an AUC of 1, while an AUC of 0.5 indicates a performance no better than
random guessing. Models with AUC values approaching 1 are considered more accurate,
and a higher AUC value signifies better overall model performance.

4.6. Investor Preference Prediction Framework (IPPF)

IPPF is built around risk sensitivity, which is critical in financial decision-making.
By quantitatively measuring risk preference from 0 (risk-averse) to 1 (risk-tolerant), our
methodology provides a systematic strategy for balancing precision (the significance
of avoiding false positives) and recall (the value of avoiding false negatives) in our
prediction models.

The framework combines these ensemble methods with decision trees as base estima-
tors to take advantage of the strengths of each of these methods to better predict a small,
imbalanced dataset. The aim of this strategic selection of these models is to address the
particular challenges of IPO underperformance prediction in emerging markets, ensur-
ing that these models fit the individual preferences of the investors and help them make
appropriate investment decisions.
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4.7. Algorithm of Proposed Framework

Let X ∈ Rn×p denotes the feature matrix for n samples and p features and let y ∈ Rn

be the target vector. The set Θ comprises a finite collection of learning algorithms considered
for model training. The scalar α signifies the predetermined threshold for feature selection
based on performance metrics. We define M as the collection of models obtained from
training algorithms in Θ on the dataset (X, y). The model yielding the highest performance
according to predefined criteria is represented as Mbest. Then, SMOTE is applied for data
balancing to y. The functions S, F, R, and P correspond to standard scaling, feature selection
(using ANOVA F-value), hyperparameter optimization (using Randomized Search), and
performance evaluation, respectively. Single-split and k-fold cross-validation strategies
are encapsulated by SS and CV, correspondingly. Sensitivity for investors’ risk level (r) is
conducted utilizing IPPF by calculating the adjusted fβ.

The algorithm of the proposed framework is shown in Algorithm 1:

Algorithm 1 Proposed Framework with IPPF

Input: Feature matrix X, target vector y, set of algorithms Θ, threshold α,
investor’s risk preference r
Output: Best performing model Mbest, performance metrics
procedure EvaluateModels(X, y, Θ, α, r)

Xscaled← S(X)
Apply SMOTE to balance classes in (Xscaled, y)
Split (Xscaled, y) into training (Xtrain, ytrain) and testing (Xtest, ytest) using single
split (SS)
Xselected← F(Xtrain) ANOVA F-value feature selection with threshold α

Initialize an empty list for Results
for each θ in Θ do

Perform k-fold cross-validation (CV) on Xselected, ytrain
M← hyper-parameter tuning by Random Search R using θ on Xselected,
ytrain with SS/CV
Metrics← evaluate M on Xtest, ytest after final model training on the entire
Xselected, ytrain
Append (M, Metrics) to Results

end for
Mbest← P(M) evaluates models with best Metrics from Results
Calculate fβ for each model using investor’s risk preference r
Update Mbest based on fβ and r using IPPF
return Mbest and its Metrics

end procedure

5. Results and Discussion
The Results and Discussion section provides an overall evaluation of the model’s

predictive ability, using both single-split training and 10-fold cross-validation approaches.
The analysis covers the in-depth analysis of the confusion matrix and corresponding results
obtained during training as well as testing phases, providing essential insights into the
model’s efficacy in correctly identifying true positives, true negatives, false positives,
and false negatives. The examination of single-split training results explains the model’s
behavior on the training set and also evaluates the model’s generalization on new, unseen
data. Furthermore, this section also explores the findings of 10-fold cross-validation, which
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gives some insight into how the model can remain consistent and resilient across different
regions of the dataset.

5.1. Models Training

In the training phase, the ensemble models performed well across various metrics.
The DT model showed an exceptional true negative rate of 53.57% and achieved a solid
balance in counts for false negatives (3.57%) and true positive outcomes (42.86%). RF
follows the same trend, with high true negative and positive rates of 51.79% and 42.86%,
respectively. The true negative rates for BC, AdaBoost Classifier, GB Classifier, and XGBoost
are around 53.57%. Most notably, the ET Classifier demonstrated a significantly different
trend, achieving 46.43% true positive and 48.21% true negative rates simultaneously. The
SC presented a balanced performance, achieving a true negative rate of 50.00% while
effectively managing false positives and false negatives.

Deep-learning models exhibited varied performance, with MLP, TabNet, and ANN
showing different strengths and weaknesses. MLP achieved a moderate true positive
rate of 37.5% but struggled with a higher false positive rate of 10.7%. TabNet, leveraging
attention-based learning, showed a lower true negative rate (35.7%) and the highest false
negative rate (21.4%), indicating difficulty in correctly identifying positive instances. ANN
performed similarly to ET in terms of true negatives (48.21%) but had the highest false
negative rate (26.79%), indicating a struggle in correctly classifying positive cases. The
confusion matrix details of trained models are provided in Table 11.

Table 11. Confusion Matrix Details During Training.

Model TN TN% FP FP% FN FN% TP TP%

Decision
Tree 30 53.57% 0 0.00% 2 3.57% 24 42.86%

Random
Forest 29 51.79% 1 1.79% 2 3.57% 24 42.86%

Bagging
Classifier 30 53.57% 0 0.00% 0 0.00% 26 46.43%

AdaBoost
Classifier 30 53.57% 0 0.00% 0 0.00% 26 46.43%

Gradient
Boosting
Classifier

30 53.57% 0 0.00% 0 0.00% 26 46.43%

XGBoost
Classifier 29 51.79% 1 1.79% 0 0.00% 26 46.43%

Stacking
Classifier 28 50.00% 2 3.57% 2 3.57% 24 42.86%

Extra
Trees
Classifier

27 48.21% 3 5.36% 0 0.00% 26 46.43%

MLP 24 42.8% 6 10.7% 5 9% 21 37.5%

TabNet 20 35.7% 10 17.9% 12 21.4% 14 25%

ANN 27 48.21% 3 5.36% 15 26.79% 11 19.64%

The training results show that ensemble models perform well across all evaluation
metrics. The BC, AdaBoost Classifier, and GB Classifier all achieve 100% accuracy, precision,
recall, and F1 score. It shows that these models made flawless predictions on the training
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data, accurately capturing both positive and negative cases. The DT, RF, XGBoost Classifier,
and ET Classifier have somewhat lower accuracy, but their performance is exceptional,
particularly regarding recall for detecting true positive cases. The SC’s 93% accuracy,
balanced recall, precision, and F1 scores show that it can effectively combine diverse
base models.

In contrast, deep-learning models exhibited varied performances. MLP achieved
80% accuracy with balanced recall (80%) and F1 scores (79%), demonstrating its ability to
capture underlying patterns but with some misclassifications. TabNet performed the worst
among all models, achieving only 61% accuracy with a recall of 54%, indicating its difficulty
in distinguishing true positive cases. ANN also struggled, with an accuracy of 67% and the
lowest recall of 42%, suggesting challenges in capturing positive cases effectively despite
a relatively high precision of 79%. The detailed evaluation metrics of trained models are
provided in Table 12

Table 12. Evaluation Metrics Results Details During Training.

Model Accuracy Recall Precision F1

Decision Tree 96% 92% 100% 96%

Bagging
Classifier 100% 100% 100% 100%

Random Forest 95% 92% 96% 94%

AdaBoost
Classifier 100% 100% 100% 100%

Gradient Boost
Classifier 100% 100% 100% 100%

XGBoost
Classifier 98% 100% 96% 98%

Stacking
Classifier 93% 92% 92% 92%

Extra Trees
Classifier 95% 100% 90% 95%

MLP 80% 80% 77% 79%

TabNet 61% 54% 58% 56%

ANN 67% 42% 79% 55%

5.2. Models Testing

The testing confusion matrix provides insights into the models’ generalization abilities
by demonstrating how well they function on untested data. Notably, the BC, AdaBoost
Classifier, and GB Classifier exhibit consistent and impressive results across TN%, FP%,
FN%, and TP%. These models strike an outstanding balance between avoiding false
positives and false negatives, which is crucial for accurate predictions. The highest TP%
(57%) and TN% (35.71%) are found in the ET Classifier, indicating its proficiency in correctly
predicting instances. The DT and XGBoost Classifier, although having lower TN% and
TP%, display a very balanced performance. The SC, representing the union of models,
demonstrates robustness with 28.57% TN% and 50.00% TP%, highlighting its ability to
synthesize predictions effectively on the testing data.

Deep-learning models exhibit mixed generalization performance. MLP achieves a
TN% of 35.7% with a balanced TP% of 35.7%, demonstrating its ability to generalize
moderately well but with a higher FN% (28.6%), indicating misclassifications in positive
cases. TabNet struggles with a low TP% of 21.4% and the highest FN% (42.9%), suggesting
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difficulty in correctly predicting positive instances. ANN performs similarly, with a TP% of
21.43% and an FN% of 42.86%, highlighting its limitations in capturing true positives. The
confusion matrix details of tested models are provided in Table 13.

Table 13. Confusion matrix Details During Testing.

Model TN TN% FP FP% FN FN% TP TP%

Decision
Tree 3 21.43% 2 14.29% 2 14.29% 7 50.00%

Random
Forest 4 28.57% 1 7.14% 3 21.43% 6 42.86%

Bagging
Classifier 5 35.71% 0 0.00% 2 14.29% 7 50.00%

AdaBoost
Classifier 3 21.43% 2 14.29% 2 14.29% 7 50.00%

Gradient
Boosting
Classifier

4 28.57% 1 7.14% 3 21.43% 6 42.86%

XGBoost
Classifier 3 21.43% 2 14.29% 3 21.43% 6 42.86%

Stacking
Classifier 4 28.57% 1 7.14% 2 14.29% 7 50.00%

Extra
Trees
Classifier

4 28.57% 1 7.14% 1 7.14% 8 57.14%

MLP 5 35.7% 0 0.0% 4 28.6% 5 35.7%

TabNet 4 28.6% 1 7.1% 6 42.9% 3 21.4%

ANN 5 35.71% 0 0.00% 6 42.86% 3 21.43%

The models’ evaluation is critical for determining their practical usefulness in fore-
casting whether a newly traded stock would trade below its IPO price within one month.
The BC and ET Classifiers emerge as standout performers with high accuracy (86%) and
balanced recall, precision, and F1 scores. The SC, representing a combination of diverse
models, achieves a commendable 79% accuracy and exhibits balanced recall, precision, and
F1 scores. While the DT and AdaBoost Classifier achieve moderate accuracy (71%), their
recall, precision, and F1 scores suggest room for improvement, especially in avoiding false
negatives and maintaining precision.

Deep-learning models show mixed performance in this evaluation. MLP achieves 71%
accuracy with a high precision of 100%, but its recall (56%) suggests that it struggles with
capturing true positive cases, leading to a less balanced performance. TabNet performs the
weakest, with only 50% accuracy and a recall of 33%, highlighting its difficulty in correctly
predicting stocks trading below their IPO price. ANN performs slightly better than TabNet,
with 57% accuracy and 33% recall, but its 100% precision suggests that while it correctly
identifies some positive cases, it misclassifies many others. The detailed evaluation metrics
of tested models are provided in Table 14.

The above discussion shows that BC is the best performer with high accuracy and
precision. It shows its ability to correctly identify positive cases while limiting false positives
to a minimum. Moreover, the ET Classifier performs admirably, with excellent accuracy,
recall, precision, and F1 scores. These models differ from the others in that they can
predict whether a newly listed stock will trade below its Initial Public Offering (IPO)
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price within one month of its listing. On the other hand, the XGBoost Classifier displays
competitive numbers but falls somewhat below top performance. In contrast, the DT model
underperformed across evaluation metrics, suggesting limits in its capacity to represent the
complexity of IPO price fluctuations.

Table 14. Evaluation Metrics Results Details During Testing.

Model Accuracy Recall Precision F1

Decision Tree 71% 78% 78% 78%

Bagging Classifier 86% 78% 100% 88%

Random Forest 71% 67% 86% 75%

AdaBoost
Classifier 71% 78% 78% 78%

Gradient Boost
Classifier 71% 67% 86% 75%

XGBoost Classifier 64% 67% 75% 71%

Stacking Classifier 79% 78% 88% 82%

Extra Trees
Classifier 86% 89% 89% 89%

MLP 71% 56% 100% 71%

TabNet 50% 33% 75% 46%

ANN 57% 33% 100% 50%

BC and SC perform better because BC trains individual models on slightly varied
data samples, creating a diverse ensemble. This strategy proved valuable in mitigating
the risk of overfitting the limited dataset associated with IPO predictions. The ensemble’s
predictions, aggregated through averaging or majority voting, contribute to more stable
and reliable outcomes, which is crucial in scenarios with small-scale data. The ET Classifier,
employed in the ensemble, also excels in addressing challenges related to variance and
overfitting, which are common concerns in the context of limited data. Its randomized
decision-making process and comprehensive analysis of the entire learning sample result
in de-correlated DT, effectively reducing variance and improving the model’s ability to
capture underlying patterns in the data.

In contrast, deep-learning models exhibit varying levels of effectiveness in handling
IPO predictions. MLP achieves moderate accuracy with high precision but struggles with
recall, indicating its difficulty in identifying all relevant positive cases. This suggests
that while MLP is effective at making confident predictions, it may not generalize well in
capturing all variations in IPO performance. TabNet, despite its architectural advantages
for tabular data, underperforms significantly, demonstrating the lowest accuracy and recall.
This suggests that its feature representation may not align well with the stock market data
structure. ANN, while slightly better than TabNet, also struggles to balance precision and
recall, indicating challenges in effectively learning from the limited dataset.

5.3. 10-Fold Cross-Validation

In predicting stock performance following IPOs, applying a 10-fold cross-validation
technique adds a crucial level of consistency to the assessment procedure. In this method,
the dataset is divided into 10, nine of which are used to train the models and one to
test them. Each subset is utilized as the validation data precisely once during the ten
repetitions of this process. This approach allows for an overall evaluation of the models’
generalization abilities over distinct data portions, reducing biases that may occur based on
a sole split. For stakeholders in the financial sector, 10-fold cross-validation is a dependable
indicator of the consistency and dependability of models when it comes to IPO stock
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prediction. The following indicators have been used to evaluate the models using 10-fold
cross-validation: Mean, Median Interquartile Range (IQR), First Quartile Q1, Third Quartile
(Q3), Whisker Low (WhisLo), Whisker High (WhisHi), and Fliers (Outliers above and below
Q1 ± 1.5 × IQR)

The models perform consistently across measures, with mean accuracy ranging from
57% to 70%. The BC and ET models demonstrate outstanding accuracy, with averages
of 70% and 69%, respectively. The recall values range from 63% to 78%, reflecting the
balance sensitivity in forecasting stocks that fall below their IPO prices. Precision ratings
for positive predictions are typically good, ranging from 61% to 76%, with the bagging
model achieving an impressive precision mean of 76%, emphasizing its ability to minimize
false positives. Lastly, the F1 scores range between 60% and 69%, indicating a well-rounded
performance, with BC achieving the highest value.

Beyond accuracy, recall, precision, and F1 score, the analysis of additional metrics
provides a more comprehensive understanding of each model’s performance in predicting
stock movements in the IPO market. The DT has a consistent and equal distribution across
metrics with a moderate IQR for accuracy, recall, precision, and F1 score. The RF model has
a balanced distribution across all measures, indicating dependability in multiple aspects
of prediction. AdaBoost Classifier, despite a lower IQR in accuracy, demonstrates robust
performance in recall, precision, and F1 score. The GB Classifier, XGBoost Classifier, and
SC all have varied degrees of IQR, demonstrating trade-offs between different measures.
While the ET Classifier has an accuracy IQR of 0%, other metrics show significant variability,
indicating distinct strengths and shortcomings.

Deep-learning models exhibit mixed results in 10-fold cross-validation. MLP performs
competitively, achieving a mean accuracy of 67%, along with strong precision (77%) and
well-balanced F1 scores (68%), making it a viable alternative for IPO predictions. However,
TabNet struggles significantly, yielding the lowest accuracy (44%) and recall (27%), sug-
gesting that its feature representation may not effectively capture the patterns necessary
for stock movement prediction. ANN also underperforms with a 53% accuracy and a
recall of 42%, indicating difficulties in learning meaningful patterns from the dataset. The
lower performance of deep-learning models, particularly ANN and TabNet, suggests that
traditional ensemble-based models may still be more suited for IPO prediction tasks where
data availability is limited and interpretability is essential. The detailed results of the
10-fold cross-validation are shown in Tables 15 and 16.

Table 15. Results for 10-Fold Cross-Validation.

Accuracy Recall Precision F1

Decision Tree 64% 63% 70% 62%

Bagging Classifier 70% 69% 76% 69%

Random Forest 63% 70% 64% 66%

AdaBoost Classifier 63% 78% 61% 67%

Gradient Boost Classifier 57% 67% 58% 60%

XGBoost Classifier 60% 68% 63% 63%

Stacking Classifier 64% 63% 66% 62%

Extra Trees Classifier 69% 74% 69% 68%

MLP 67% 64% 77% 68%

TabNet 44% 27% 35% 25%

ANN 53% 42% 38% 33%
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Table 16. Variation Analysis for 10-Fold Cross-Validation Results.

Model Metric Mean Median IQR 1 Q1 2 Q3 3 WhisLo 4 WhisHi 5 Fliers 6

Decision
Tree

Accuracy 64% 57% 14% 57% 71% 43% 86% 0

Recall 63% 71% 38% 38% 75% 25% 100% 0

Precision 70% 71% 15% 60% 75% 50% 75% 3

F1 62% 62% 21% 52% 73% 33% 86% 0

Bagging
Classifier

Accuracy 70% 71% 14% 57% 71% 43% 71% 2

Recall 69% 67% 44% 50% 94% 33% 100% 0

Precision 76% 71% 46% 54% 100% 50% 100% 0

F1 69% 62% 22% 57% 79% 50% 100% 0

Random
Forest

Accuracy 63% 57% 11% 57% 68% 43% 71% 3

Recall 70% 71% 8% 67% 75% 67% 75% 4

Precision 64% 60% 23% 50% 73% 33% 100% 0

F1 66% 62% 16% 57% 73% 50% 75% 3

AdaBoost
Classifier

Accuracy 63% 64% 14% 57% 71% 57% 86% 1

Recall 78% 75% 31% 69% 100% 33% 100% 0

Precision 61% 63% 7% 60% 67% 50% 75% 1

F1 67% 67% 8% 67% 75% 57% 86% 1

Gradient
Boost

Classifier

Accuracy 57% 50% 29% 43% 71% 29% 86% 0

Recall 67% 67% 44% 50% 94% 25% 100% 0

Precision 58% 55% 32% 41% 73% 33% 100% 0

F1 60% 59% 25% 50% 75% 29% 89% 0

XGBoost
Classifier

Accuracy 60% 57% 11% 57% 68% 43% 71% 3

Recall 68% 71% 8% 67% 75% 67% 75% 4

Precision 63% 59% 21% 50% 71% 33% 100% 0

F1 63% 67% 17% 58% 74% 40% 80% 1

Stacking
Classifier

Accuracy 64% 64% 14% 57% 71% 57% 86% 1

Recall 63% 67% 38% 38% 75% 25% 100% 0

Precision 66% 67% 22% 53% 75% 33% 100% 0

F1 62% 62% 21% 52% 73% 29% 89% 0

Extra Trees
Classifier

Accuracy 69% 71% 0% 71% 71% 71% 71% 4

Recall 74% 75% 33% 67% 100% 25% 100% 0

Precision 69% 71% 8% 67% 75% 67% 80% 3

F1 68% 71% 12% 67% 79% 50% 89% 1

MLP

Accuracy 50% 50% 14% 43% 57% 29% 71% 0

Recall 61% 50% 73% 27% 100% 25% 100% 0

Precision 57% 50% 20% 43% 63% 33% 67% 2

F1 51% 59% 30% 35% 65% 29% 67% 0

TabNet

Accuracy 41% 43% 29% 29% 57% 14% 57% 0

Recall 25% 29% 33% 0% 33% 0% 75% 0

Precision 31% 50% 50% 0% 50% 0% 60% 0

F1 27% 37% 40% 0% 40% 0% 67% 0

ANN
Accuracy 46% 50% 14% 43% 57% 29% 57% 1

Recall 27% 0% 33% 0% 33% 0% 33% 2

1: IQR: Interquartile Range, 2: Q1: First Quartile, 3: Q3: Third Quartile, 4: WhisLo: Whisker Low, 5: WhisHi:
Whisker High, and 6: Fliers: Outliers above and below Q1 ± 1.5 × IQR.

In 10-fold cross-validation results, the BC is a good choice among the classifiers. It
achieves the highest accuracy of 70%, indicating effectiveness in identifying stocks likely to
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decline while maintaining a balanced trade-off between recall and precision. On the other
hand, the ET Classifier demonstrates the second-highest accuracy of 69%. However, the
existence of fliers and a non-zero IQR implies that its efficacy may vary between folds. BC
appears as a noteworthy alternative with the most outstanding mean F1 score, indicating a
solid balance between accuracy and recall despite the slightly lower recall score.

On the other hand, the RF model performs poorly compared to ET and BC, particularly
regarding the recall rate with many fliers. Based on these results, cautious investors looking
for a model capable of reliably detecting stocks that may fall below their IPO price while
generating the fewest false alarms should pick the AdaBoost Classifier. However, the
BC and ET Classifier should be considered viable alternatives, particularly for investors
prepared to accept somewhat lower recall in exchange for higher accuracy and fewer false
positives. For risk-averse investors seeking a model that consistently identifies stocks at risk
of falling below their IPO price with minimal false negatives, the AdaBoost Classifier is the
top recommendation based on these findings. However, practical consideration should also
be given to the BC and ET Classifier as viable secondary options, especially for investors
willing to trade off some recall for improved precision and fewer false positives.

Deep-learning models present a mixed picture in IPO stock prediction. The MLP
model achieves a competitive accuracy of 67% and the highest precision of 77%, making it a
strong contender for investors prioritizing precise predictions with minimal false positives.
However, its slightly lower recall (64%) suggests some limitations in capturing all potential
declining stocks. In contrast, TabNet significantly underperforms, with an accuracy of only
44% and a recall of 27%, indicating its struggle to extract meaningful patterns from IPO
data. Similarly, ANN falls behind with a 53% accuracy and 42% recall, suggesting that
deep-learning models may require more extensive feature engineering or larger datasets to
perform optimally in this context. While MLP remains a viable choice for precision-focused
investors, traditional ensemble models like BC and ET still offer better overall reliability,
especially in handling small-scale IPO prediction tasks.

5.4. Receiver Operating Characteristic Curve (ROC)

In the context of this study, ROC analysis is an essential technique for assessing the
binary classification performance of various machine-learning and deep-learning models.
ROC curves are visual representations of each model’s ability to balance true positive rates
and false positive rates across different classification thresholds, providing insights into
their discriminative power in predicting whether a newly listed stock will fall below its
Initial Public Offering (IPO) price within a month of trading.

The BC has the highest AUC of 0.90, showing a more remarkable ability to balance
true positive and false positive rates across different classification thresholds. RF and ET
Classifiers follow closely, with AUC values of 0.89, indicating strong performance in the
study’s context. The SC shows constant discriminative capability with an average AUC
of 0.83, whereas the GB Classifier obtains an AUC of 0.78, indicating significantly weaker
discriminating power. The AdaBoost and XGBoost Classifiers had lower AUC scores of
0.73 apiece, indicating inferior performance. Finally, the DT Classifier falls behind with
a score of 0.69, indicating the limits in its capacity to distinguish between positive and
negative cases in the given predicting job. Among deep-learning models, MLP achieved an
AUC of 0.87, showing competitive performance close to RF and ET, while ANN obtained an
AUC of 0.80, demonstrating moderate discriminative power. However, TabNet performed
poorly with an AUC of 0.69, aligning with DT in its weaker ability to differentiate between
cases. The ROC curve of all the classifiers is shown in Figure 2.
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5.5. Comparison

In this study, we propose a new framework to predict if a recently listed stock will trade
below its IPO price in a month of trading using tree-based ensemble learning techniques.
An essential component of our research is the limited utilization of tree-based ensemble
methods in existing research on stock market prediction. We validate our suggested
framework by comparing the results of our best model with those of Ampomah and
Nyame [37], who also used tree-based ensemble approaches. Since their research used a
different dataset, the comparative analysis of results is not prohibited because they used
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the same tree-based ensemble methods. Further, this comparative study also shows that
our framework is not only efficient but also unique in providing better results, notably for
small datasets, which is an area underexplored in most studies.

As illustrated in Figure 3, the Extra Trees (ET) Classifier in our study outperformed
the ET Classifiers from Ampomah and Nyame [37] across all evaluation metrics. Our ET
Classifier achieved an accuracy of 86%, compared to 83.75% in their study. Notably, the
recall improved from 81.25% to 88%, precision increased from 86.25% to 89%, and the F1
score rose from 83.69% to 88.48%. These results underscore the robustness and reliability of
our framework, especially in predicting IPO underperformance in the short term.
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5.6. Risk Sensitivity and 𝑓ఉ Score Calculation Using IPPF 

This study introduces IPPF to explore the effect of different investors’ risk prefer-
ences on the outcome of the framework. It will be used in both single-split and 10-fold 
cross-validation to evaluate our suggested approach’s risk sensitivity and robustness. By 
adding IPPF, we aim to enhance the decision-making process in complex financial sys-
tems, offering a more thorough knowledge of the model’s performance across multiple 
data splits and assuring its usefulness in capturing the dataset’s underlying patterns. 

5.6.1. IPPF with Single-Split Validation 

The results in Table 17 and Figure 4 indicate a clear shift in the chosen model when 
the risk level rises. The following is a discussion and interpretation based on the findings 
of single-split validation. 

The Extra Trees Classifier outperforms other models in the risk range of 0 to 0.5, as 
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Figure 3. Comparison with existing studies using the test dataset [37].

Several factors may explain this performance gap. First, our framework incorporates
advanced feature selection through ANOVA F-value and hyperparameter optimization
using Randomized Search, which likely enhanced model accuracy and generalization.
Additionally, the use of SMOTE to address class imbalance has contributed to improved
recall, reflecting better sensitivity in identifying underperforming IPOs.

5.6. Risk Sensitivity and fβ Score Calculation Using IPPF

This study introduces IPPF to explore the effect of different investors’ risk preferences
on the outcome of the framework. It will be used in both single-split and 10-fold cross-
validation to evaluate our suggested approach’s risk sensitivity and robustness. By adding
IPPF, we aim to enhance the decision-making process in complex financial systems, offering
a more thorough knowledge of the model’s performance across multiple data splits and
assuring its usefulness in capturing the dataset’s underlying patterns.

5.6.1. IPPF with Single-Split Validation

The results in Table 17 and Figure 4 indicate a clear shift in the chosen model when
the risk level rises. The following is a discussion and interpretation based on the findings
of single-split validation.

The Extra Trees Classifier outperforms other models in the risk range of 0 to 0.5, as
determined by the fβ score. The fβ score remains constant at 0.89, indicating that the
model’s precision–recall balance does not change considerably or is not sensitive to β

parameter alterations within the risk range. The BC is the preferable model, starting at
a risk level of 0.6, with its fβ score continuously increases with each rise in risk. This
trend continues until the maximum risk level is 1.0. The shift suggests that the Bagging
Classifier is better suited to handling scenarios in which precision is increasingly essential—
for example, missing out on predicting a price increase above the IPO level, which is
costly (i.e., the opportunity cost is high) and a common concern for risk-tolerant investors.
Transitioning from the ET Classifier to the BC at a risk threshold of 0.6 is an essential
milestone in the use of the IPPF method. This means that as the risk level grows, the
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BC model will likely outperform the ET Classifier in terms of precision, which becomes
increasingly important as we focus more on minimizing false positives.

Table 17. Different risk levels with calculated measure scores for single-split validation.

Risk Level Max F Selected
Model ∆’

PR Robustness Ratio σ

0 89.0% ET 89.0% 1.00

0.1 89.0% ET 89.0% 1.00

0.2 89.0% ET 89.0% 1.00

0.3 89.0% ET 89.0% 1.00

0.4 89.0% ET 89.0% 1.00

0.5 89.0% ET 89.0% 1.00

0.6 93.0% BC 88.0% 1.06

0.7 96.0% BC 88.0% 1.09

0.8 98.0% BC 88.0% 1.11

0.9 99.0% BC 88.0% 1.13

1 100.0% BC 88.0% 1.14
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5.6.2. IPPF with 10-Fold Cross-Validation

For risk levels 0 to 0.3, the AdaBoost Classifier is consistently selected. At lower
risk levels, when misclassifying a negative event (a price drop below the IPO level) is
more penalized (lower β), this model performs best according to the fβ score, as shown in
Figure 5. AdaBoost may be suitable for risk-averse investors, as the fβ score decreases with
increased risk. At risk level 0.4, the ET Classifier is preferred, indicating a fair trade-off at
this stage.
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This preference, however, is fleeting, as the BC takes the lead from risk level 0.5
onward, showing that it handles the increasing focus on precision better than the ET and
AdaBoost Classifiers. From a risk threshold of 0.5 to 1.0, the BC’s fβ score improves and
stays the preferred model, suggesting its relative strength in cases where missing a positive
result (e.g., predicting a price gain beyond the IPO level) is more punished. This steady
choice demonstrates the model’s resilience in high-risk situations where precision becomes
critical. The detailed risk levels with calculated measure scores for 10-fold validation are
shown in Table 18.

Table 18. Different risk levels with calculated measure scores for 10-fold cross-validation.

Risk Level Max F Selected
Model ∆’

PR Robustness Ratio σ

0 77.8% Ada 69.0% 1.13

0.1 77.5% Ada 69.0% 1.12

0.2 76.7% Ada 69.0% 1.11

0.3 75.1% Ada 69.0% 1.09

0.4 72.5% ET 71.0% 1.02

0.5 72.3% BC 72.0% 1.00

0.6 73.9% BC 72.0% 1.03

0.7 75.0% BC 72.0% 1.04

0.8 75.5% BC 72.0% 1.05

0.9 75.8% BC 72.0% 1.05

1 75.9% BC 72.0% 1.05

Figure 6 shows the robustness ratios for both single-split and 10-fold validations
for analysis.
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The diagram in Figure 6 demonstrates how different models perform under different
investor risk profiles that span from risk-averse (focused on recall only at r = 0) to risk-
tolerant (focused on precision only at r = 1). The robustness ratio shows how much a
forecasting system reacts to changes between accurate detection and total finding. Lower
ρ ratings mean our models work better under all conditions, whereas higher ρ readings
indicate they react strongly to changes. ET proves to be the most dependable for all risk
levels below 0.5, while BC takes over as the best model for risk-tolerant investors. Another
interpretation is that we should select AdaBoost only if we know for sure the investor is
risk-averse since it is less robust with a higher ρ value. Also, we can interpret that if the
risk preference of an investor is unknown, then it would be best to select either ET or BC
for balanced and more robust results.

6. Research Limitations
A limitation of our study is the underlying assumption that the application of SMOTE

will help attain the normality assumption required for ANOVA F-value feature selection.
While SMOTE effectively balances class distributions and promotes normality, it may not
always fully achieve the normality required for ANOVA, particularly in datasets with
complex or highly skewed distributions. Although SMOTE mitigates class imbalance,
it might not address the underlying skewness of the data, which could influence the
feature selection process. If this assumption does not hold, the validity of the feature
selection process could be compromised. To mitigate this risk, future work should explore
alternative data preprocessing methods or evaluate the robustness of the feature selection
process under different assumptions. Additionally, non-parametric methods, such as
mutual information or decision tree-based approaches, could be employed to provide
more accurate feature selection in cases where normality is difficult to achieve, even after
applying SMOTE.

The dataset used in this study is limited to 55 records after excluding insurance and
banking companies. While this decision was made to ensure consistency and relevance
in the context of IPOs, the relatively small sample size may affect the generalizability of
the results. A larger dataset would enhance the reliability and robustness of the findings,
offering more statistical power and more representative insights. Furthermore, the study
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focuses on data from the Saudi stock market, which may limit the external validity of the
results to other markets with different economic conditions and regulatory environments.

7. Conclusions and Future Directions
This paper explores the challenging area of forecasting IPO results, particularly in

overcoming the obstacles associated with insufficient data and class imbalance. The study
significantly improves predicted accuracy by applying a modified framework that inte-
grates SMOTE for class balancing with ensemble learning methods. The ensemble contains
a variety of classifiers, including DT, RF, BC, AdaBoost, GB, XGBoost, ET, and SC. The
results show that the ET Classifier performs better than other models in terms of accuracy
and well-balanced recall, precision, and F1 scores in the single-split evaluation. Also, the
BC achieves a high accuracy of 70% and well-balanced recall, precision, and F1 scores
in 10-fold validation. In contrast, the MLP model showed the best performance among
the deep-learning models, achieving an accuracy of 67% and a strong recall rate of 77%,
indicating its effectiveness in this context.

The proposed framework outperforms existing tree-based ensemble learning tech-
niques in single-split evaluation. This validation illustrates the impact of data-driven
decision-making in complex systems and the improvements achieved in this domain by
using ensemble approaches in our proposed framework for predictive modeling in stock
market prediction.

Furthermore, IPPF reveals insights into the dynamic nature of decision-making based
on varying investor risk preferences. In single-split validation, the ET Classifier is resilient
for investors with low to moderate risk tolerance. However, the BC is preferable as risk
tolerance increases due to its greater recall rate. This demonstrates a model’s flexibility to
varying investor choices. Lastly, the AdaBoost Classifier performs well in 10-fold cross-
validation for risk-averse investors but loses efficacy as risk tolerance increases. The ET
Classifier strikes a balance at a moderate risk level, but the BC performs best for moderate
to high-risk tolerance. The dynamic change between these classifiers highlights the need to
understand model behavior across a wide range of risk preferences and the relevance of
cross-validation in creating stable and generalizable models.

While the current study yields noteworthy results and a promising conceptual frame-
work, future research might explore more dimensions. Firstly, an analysis of the influence
of feature engineering and the inclusion of domain-specific financial metrics might improve
the model’s prediction abilities. More advanced ensemble techniques, hybrid models inte-
grating deep-learning algorithms, or using different base estimators may allow for more
significant results. Additionally, future work will involve using a larger dataset to further
validate the robustness and generalizability of the proposed framework. Lastly, exploring
interpretability and explainability in the context of IPO prediction models would con-
tribute to fostering trust and understanding among stakeholders, promoting data-driven
decision-making in complex systems.
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