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Abstract: This study is based on the stock returns of 11 subindustry markets in the international clean

energy market from 2010 to 2024 and constructs a skewed t distribution dynamic factor copula model.

The time-varying load factor is used to characterize the correlation between a single subindustry

market and the entire system, and the joint probability of distress is calculated as a measure of the

overall level of systemic risk. Two indicators, Systemic Vulnerability Degree and Systemic Importance

Degree, are introduced to evaluate the vulnerability of a single subindustry market in systemic risk

and its contribution to systemic risk. A conditional risk-spillover index is constructed to measure

the risk-spillover level between subindustry markets. This method fully considers the individual

differences and inherent correlations of the international clean energy market subsectors, as well as

the fat tail and asymmetry of returns, thus capturing more information and more timely information.

This study found that the correlation between subindustry markets changes over time, and during

the crisis, the market correlation shows a significant upward trend. In the measurement of the overall

level of systemic risk, the joint probability of distress can identify the changes in systemic risk in

the international clean energy market. The systemic risk of the international clean energy market

presents the characteristics of rapid and multiple outbreaks, and the joint default risk probability of

the whole system can exceed 0.6. The outbreak of systemic risk is closely related to a series of major

international events, showing a strong correlation. In addition, the systemic vulnerability analysis

found that the biofuel market has the lowest systemic vulnerability, and the advanced materials

market has the highest vulnerability. The energy efficiency market is considered to be the most

important market in the system. The advanced materials market and renewable energy market play

a dominant role in the risk contribution to other markets, while the geothermal market, solar market,

and wind energy market are net risk overflow parties in the tail risk impact, and the developer market

and fuel cell market are net risk receivers. This study provides a theoretical basis for systemic risk

management and ensuring the stability of the international clean energy market.

Keywords: systemic risk; clean energy market; dynamic factor copula model; systemic importance;

risk spillover

1. Introduction

Climate change is one of the major challenges facing the world today, which not only
affects global sustainable development but also poses a serious threat to the international
financial market [1]. The global warming caused by carbon dioxide emissions is the main
driving factor of climate change [2]. In response to global warming, the United Nations
adopted the Paris Agreement in 2015, which explicitly stated that the world needs to
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accelerate the transition to low-carbon energy to limit global temperatures from rising
above 1.5 degrees Celsius [3]. Clean energy is key to achieving carbon neutrality and global
climate development goals. The development of clean energy can help mitigate climate
change, promote economic growth, and create a large number of job opportunities [4,5].
The European Commission announced the European Green Deal in 2019, proposing to
achieve carbon neutrality in the European region by 2050 and promote the development
of renewable energy. China proposed the goals of “peak carbon emissions by 2030” and
“carbon neutrality” by 2060 in 2020. With the successive introduction of a series of policies
by governments around the world to promote the development of clean energy, the im-
portance of clean energy has become increasingly prominent and has received widespread
attention and importance. This trend not only accelerates the pace of global energy transi-
tion but also greatly promotes the investment boom in the clean energy market. According
to a report released by Bloomberg New Energy Finance in 2023, global investment in energy
transition technologies reached a historic high of 1.3 trillion in 2022.

Clean energy plays a crucial role in promoting global sustainable development and
energy transition. However, with the continuous expansion of this industry, the clean
energy market is also facing increasingly complex challenges, especially the impact of
external shock events on the market [6]. External shock events are not limited to affecting
individual clean energy markets but can also be transmitted to the entire international clean
energy market through volatility spillover effects, causing systemic risks to erupt within
the international clean energy market [7,8]. In addition, the volatility of the clean energy
market spreads to other markets through the global market linkage mechanism, further
exacerbating the uncertainty of the global financial market [9,10]. Therefore, understanding
how volatility spillover effects trigger cross-market risk transmission and the mechanisms of
systemic risk generation can help better formulate risk management and policy intervention
measures to ensure the stability of the international clean energy market while providing
strong support for the development of a low-carbon economy worldwide.

Therefore, this study uses the skewed t distribution dynamic factor copula model to
characterize the overall interdependence structure of the international clean energy market
and combines the GARCH model to characterize the asymmetry of individual return volatil-
ity to conduct systemic risk measurement and regulatory research. The main contribution
of the article is as follows. Firstly, the construction of all systemic risk measurement indica-
tors is based on the joint distribution of the entire system, which can better characterize the
heavy-tailed, time-varying, asymmetric, and nonlinear dependence structure of financial
data in high-dimensional situations, fully considering the correlation between the entire
system rather than just the dependence between pairs. Secondly, a unified framework
based on joint distribution was established to provide systemic risk measurement indicators
for the international clean energy market in different dimensions. The joint probability
of distress (JPD) degree was used to measure the probability of collective outbreak risk
in the quantum industry market, and the degree of systemic vulnerability and systemic
importance were measured. The interdependence of the international clean energy market
as a whole and locally was fully considered to identify systemically important markets
and systemically vulnerable markets. Thirdly, a conditional risk-spillover index (CRSI)
was constructed based on the copula-dependent structure to generate simulated return
sequences, which was used to evaluate the level of risk spillover between 11 subindustry
markets during periods of concentrated systemic risk outbreaks. Overall, this study com-
prehensively analyzes and quantifies the systemic risks in the international clean energy
market from different perspectives by constructing the ARMA-GARCH-Skew t model and
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the dynamic factor copula model, providing an important theoretical and empirical basis
for formulating more effective macro prudential regulatory policies and helping to enhance
the stability and sustainable development capacity of the clean energy market. It should
be pointed out that the systemic importance here is stronger than the correlation between
subindustry markets.

The remainder of the article is constructed as follows: The second part provides a
comprehensive review of the relevant literature. The third part introduces the methodology.
The fourth part provides an overview of data sources and basic data analysis. The fifth
part presents empirical results on the measurement of systemic risk, systemic importance,
systemic vulnerability, and risk-spillover levels. The sixth part summarizes the research
conclusions.

2. Literature Review

Systemic risk has always been a focus of academic attention. Benoit et al. (2013) [11]
defined systemic risk as the risk that causes a large number of market participants to
suffer severe losses simultaneously and rapidly spread throughout the entire system,
characterized by common changes (correlations) between most or all parts of the system.
Acharya et al. (2017) [12] further described systemic risk, emphasizing that this risk is not
limited to the failure of individual institutions but involves a chain reaction of the entire
financial system. Adrian and Brunnermeier (2011) [13] pointed out that systemic risk reflects
the vulnerability of financial institutions to external shocks, which is reflected through
the high correlation between financial institutions. Kaufman and Scott (2003) [14] argue
that systemic risk not only comes from the interdependence between financial institutions
but also includes regulatory and policy uncertainty, which may exacerbate panic and
overreaction among market participants. Overall, systemic risk is a multidimensional
concept that encompasses interdependence among market participants, common changes
in financial assets, and the impact of external shocks on system stability.

Systemic risk measurement plays an important role in financial risk management.
Early risk measurement methods, such as Value at Risk (VaR) [15] and Expected Shortfall
(ES) [16], mainly focus on individual risks of individual financial institutions and do not
fully consider the interdependence and feedback effects between institutions and the finan-
cial system. In recent years, research has gradually shifted towards more comprehensive
methods, including tail dependence analysis and “portfolio based” measurement [17]. The
tail dependence analysis method measures systemic risk by examining the profit and loss
dependence relationship between institutions and systems under extreme shocks. Represen-
tative research methods include Conditional Value at Risk (CoVaR), ∆CoVaR, Conditional
Expected Shortfall (CoES), ∆CoES, etc. [18,19]. For example, Zhang et al. (2023) [20] used
the copula–DCC–GARCH model and explored the systemic risk spillover between mul-
tiple financial sectors and the stock market in China by calculating CoVaR and ∆CoVaR.
They found that there is a highly dynamic correlation between the financial sector and the
stock market, and the banking industry is an important source of systemic risk in China.
Gu et al. (2022) [21] combined extreme value theory (EVT) and dynamic mixed Copula
(DM Copula) function to estimate CoES and applied it to China’s financial market. They
found that EVT can more accurately fit the tail distribution of the index, while the new
dynamic mixed Copula function better captures the complex correlations between the
financial sector and the system. Unlike tail dependence analysis, the “portfolio based”
measurement method measures systemic risk by evaluating the contribution of a single
financial institution (or asset) to the overall financial system (or asset portfolio) risk. Rep-
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resentative methods include Component Expected Shortfall (CES), Marginal Expected
Shortfall (MES), Systemic Expected Shortfall (SES), SRISK, etc. [12,22,23]. For example,
Manguzvane and Ngobese (2023) [24] used CES to quantify the contribution of important
banks and insurance companies in the South African system to the overall systemic risk
and found that the ranking results obtained by the CES method were highly consistent with
the D-SIB capital surcharge set by regulatory authorities, verifying the accuracy of CES in
risk measurement. Armanious (2024) [25] used MES and SRISK to evaluate the systemic
risk of the Euro financial system and found that SRISK tends to assign higher systemic risk
scores to large institutions, while MES is more easily attracted to interrelated institutions.

With the continuous development and volatility of the energy market, various extreme
events have occurred frequently, making the accurate measurement and management of
systemic risks particularly important. Correspondingly, the above measurement methods
have also been widely applied in the systemic risk analysis of energy markets. Mari-
moutou et al. (2009) [26] applied extreme value theory to the oil market and found that
conditional extreme value theory has significant improvements in predicting VaR compared
to traditional methods. Chen and Lv (2015) [27] found, based on EVT, that there is a positive
extreme dependence relationship between the Chinese stock market and global crude oil
prices, which will further strengthen during economic crises. Ahmed et al. (2022) [28]
used EVT to study the tail risk, systemic risk, and spillover effect between crude oil and
precious metals and found that except for the COVID-19 pandemic, crude oil and precious
metals showed relatively low tail risk during the crisis period. Ren et al. (2023) [29] stud-
ied the extreme risk-spillover effects between the international crude oil market and the
Chinese energy futures market by constructing a GARCH-EVT-VaR model and found the
dependence and vulnerability of the Chinese energy sector to the international oil market.
Liu et al. (2021) [30] used a binary copula model and CoVaR system risk indicators to study
the time-varying dependence and risk-spillover effects between the GB market and the
CE market and found a positive and asymmetric risk-spillover relationship between the
GB and CE stock markets. By using CoVaR and Conditional Expectation Value at Risk
(CoEVaR), Syuhada et al. (2024) [31] investigated the interconnectivity and systemic risk be-
tween clean energy markets and fossil-fuel-based “dirty” energy markets. They found that
crude oil, heating oil, and industry clean energy indices were highly interconnected, but
this connectivity weakened after the 2015 Paris Climate Agreement. Tiwari et al. (2020) [32]
used the CoVaR and MES methods to analyze the dependence and risk spillover between
the crude oil market and the stock markets of G7 countries and found that the fluctuation of
oil prices has a particularly significant impact on the returns of G7 stock markets, especially
the Canadian stock market, during market turbulence. Zhao et al. (2023) [33] constructed a
GARCH-EVT-Copula-CoVaR model framework based on the GARCH model, Copula func-
tion, and CoVaR method and found that international oil prices have positive risk-spillover
effects on different industries in China. Tian et al. (2022) [34] used the Generalized Autore-
gressive Conditional Heteroskedasticity Conditional Quantile Regression (GARCH-CQR)
model to estimate the spillover effects of downside risk (DCoVaR) and upside risk (UCo-
VaR) of the oil market on the stock market at different risk levels and found that downside
risk spillover was greater than upside risk spillover. Janda et al. (2022) [35] used three
multivariate GARCH models (CCC, DCC, and ADCC) to study the dynamic correlation,
return, and volatility spillover effects between clean-energy-related stocks in China and the
United States, oil prices, and technology company stocks. They found that compared with
technology stocks, the correlation between clean energy company stock prices and oil prices
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was stronger. The above research mainly focuses on the interdependence between two
markets but has not fully addressed the systemic risk problem involving multiple markets.

With the continuous development of complex network theory and the increasing inter-
dependence of various components within the energy market, some researchers have begun
to use network-based risk measurement methods to analyze systemic risks in the energy
market. Deng et al. (2023) [36] explored the dynamic risk-spillover effects between China’s
clean energy market and non-ferrous metal market during the COVID-19 pandemic through
complex network analysis and found that the pandemic significantly increased the volatility
spillover between markets and changed the risk transmission path. Mensi et al. (2024) [37]
used quantile vector autoregression (QVAR) to investigate the dynamic spillover effects
between green bonds, renewable energy, and the sustainability markets of G7 countries at
different quantiles and constructed a network model to quantify and visualize the degree
of interdependence and dependence between markets. Gong et al. (2023) [38] used the
QVAR model and network analysis method to study the tail risk-spillover effects of the
international energy market under different states and frequency domains. They found
that the extreme risk-spillover effects of the clean energy market were more significant, and
long-term risk spillover dominated the overall market. Zhao et al. (2024) [39] used the tail
risk-spillover network (TRSN) and tail event driven network (TENET) methods to simulate
the dynamic tail risk-spillover process of the international energy market in the context of
major events and found that the renewable energy market had a greater systemic risk con-
tribution during the Paris Agreement and COVID-19, while the impact of the fossil energy
market during the Russia–Ukraine conflict was more significant. Foglia et al. (2024) [40]
used a tail event-driven network model to study the correlation between tail risk spillovers
of clean energy and oil companies from 2011 to 2021.

From the above research, it can be seen that the core of systemic risk measurement
in the energy market lies in evaluating the interdependence between institutions and
measuring the spillover effects between different institutions. In the energy market, price
fluctuations and policy changes often bring significant nonlinear risk contagion effects,
requiring more flexible and accurate measurement tools. In this context, the Copula function
has become an important tool for researchers due to its unique advantages. The Copula
function can construct a joint distribution function that separates the marginal distribution
of individual institutions from the joint dependency structure of the system. This not
only allows for the individual modeling of heterogeneity among institutions but also
captures changes in interdependence when systemic risks occur, providing more accurate
risk measurement. Tiwari et al. (2021) [41] used a Dependence-Switching Copula (DSC)
to explore the dependency structure between oil prices and stock returns of clean energy
and technology companies under different market conditions. They found asymmetric
dependence between oil prices and clean energy stocks and symmetric dependence between
oil prices and technology stocks. Naeem et al. (2021) [42] found that green bonds exhibit
negative extreme tail dependence with crude oil, heating oil, gasoline, and coal while
exhibiting positive extreme tail dependence with natural gas, based on the time-varying
optimal copula (TVOC) model analysis.

With the continuous increase in data dimensions, traditional statistical methods often
struggle to handle the complex dependency structures in high-dimensional financial data.
Oh and Patton (2018) [43] proposed a dynamic factor Copula model that incorporates
the Generalized Autoregressive Score (GAS) model proposed by Creal (2013) [44] into
the factor Copula model. Wang and Liang (2020) [45] used the dynamic factor Copula
model to measure the systemic risk of Chinese banks and identify system importance
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and vulnerability. Ouyang et al. (2022) [46] used the dynamic factor Copula model to
measure systemic risk in the Chinese commodity market and explored the relationship
between systemic risk and macroeconomics. Chen et al. (2023) [47] studied the dynamic
dependency relationships between Chinese real industries based on a dynamic factor copula
model and found that the model had the highest accuracy in estimating the minimum
ES. The dynamic factor Copula model not only effectively captures dynamic dependency
relationships in high-dimensional data but also provides new ideas and methods for
measuring systemic risks.

There are still several shortcomings in the research on systemic risk measurement in
the energy market. Firstly, current research on the clean energy market mainly focuses on
selecting comprehensive stock indices or individual stock indices (such as renewable energy
such as solar and wind energy), but there is a lack of research on other subindustry markets
within the clean energy system, which fails to deeply characterize the interrelationships
between each subindustry market. Secondly, classic systemic risk indicators such as CoVaR,
∆CoVaR, and MES mainly focus on the pairwise interdependence between markets but
do not fully consider the overall systemic risk of multiple markets. Finally, although
tail-risk-based network models can reveal the dependency relationships between different
markets in the system, these models often focus on the bilateral or multilateral dependency
structures of local markets, which may have shortcomings in the global characterization of
systemic risk and fail to fully capture the complex interaction effects between all markets.

Therefore, this article will study the various subindustry markets that make up the
international clean energy market as independent markets. It will capture the yield charac-
teristics of various subindustry markets through GARCH models and use a dynamic factor
copula model to measure the systemic risk of the international clean energy market. In
addition, it will identify the systemic vulnerability and importance of various subindus-
try markets and analyze the level of risk spillover between markets to provide a more
comprehensive risk assessment.

3. Methodology

This study mainly divides the measurement of systemic risk into three steps: the first
step is to use the ARMA-GARCH-Skew t model to model the returns of the subindustry
market and obtain the marginal distribution function. The second step is to apply a dynamic
factor copula model to the marginal distribution function to obtain a joint distribution
function, which describes the correlation of the international clean energy market. The
third step is to calculate the joint probability of distress of the entire system through a joint
distribution function to measure the overall level and dynamic evolution of systemic risk.
The indicators of systemic vulnerability and systemic importance are introduced to identify
the systemic vulnerability and systemic importance of a single subindustry market, and a
conditional risk-spillover index is constructed to measure the level of risk spillover between
subindustry markets. The specific process is shown in Figure 1.
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Figure 1. Diagram of the systemic risk measurement framework.

3.1. Factor Copulas

Factor modeling is widely used in high-dimensional time series analysis to effec-
tively solve the “curse of dimensionality” problem. Oh and Patton (2017) [48] proposed
a new factor copula model based on a latent factor structure. This paper uses a single-
factor copula model to describe the dependence structure of latent vector random variable
Xt ≡ (X1,t, . . . , XN,t)

′, with the following model structure:

Xi,t = λi,t(γλ)Zt + εi,t, i = 1, 2, . . . , N

where Zt ∼ FZ,t(γZ), εi,t ∼ iidFε,t(γϵ),

Zt ⊥⊥ εi ∀i.

Here, Fz,t(γz) and Fε,t(γε) represent the parameterized univariate distributions of the
common factor and idiosyncratic factors, respectively. The common factor Zt captures
common changes and market trends across the system, while the idiosyncratic factor εi,t

describes each variable’s unique impact given the common factor. λi,t(γλ) represents the
time-varying weight λi,t, whose time variation is regulated by the parameter γλ. Let the
marginal distribution of Xi,t be denoted as Gi,t. According to the conditional Sklar’s theo-
rem, the joint distribution of Xt can be composed of its conditional marginal distribution
functions and conditional copula function:

Xt ∼ Gt = Ct(G1,t(γ), . . . , GN,t(γ); γ)

where γ ≡ [γ′
z, γ′

ε, γ′
λ]

′.

To reduce estimation complexity, this paper simplifies the model. Specifically, we set
fixed shape parameters for the common and idiosyncratic factors (Zt and εi,t). The common
factor Zt follows a skewed t distribution proposed by Hansen (1994) [49] with degrees
of freedom parameter νZ and skewness parameter ψZ, while the idiosyncratic factor εi,t

follows a t distribution with degrees of freedom parameter νε. The skewed t distribution,
with its ability to capture skewness and fat tails, can better capture asymmetry and extreme
risk events in financial markets.

Since the copula of X does not have an explicit solution for most factor combinations
(such as the skewed t distribution and t distribution used in this paper), numerical integration
methods are employed to solve this problem. Specifically, the Gaussian–Legendre quadrature
formula is used to integrate over the common factor for maximum likelihood estimation.
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3.2. GAS Model

In order to capture the dynamic characteristics of the dependency structure, the GAS
model from Creal et al. (2013) [44] is used. The GAS model has strong inclusiveness, able to
encompass a variety of existing successful models, and effectively improves model fitting
through optimization algorithms. In this paper, the GAS model is combined with the factor
copula model to estimate the dynamic changes in factor loadings λi,t:

let Ut|Ft−1 ∼ C(δt(γ))

then δt = ω + Bδt−1 + Ast−1

where st−1 = St−1∇t−1

∇t =
∂ log c(u1,t, . . . , uN,t; δt−1)

∂δt−1

Here, St represents the scaling matrix (inverse Hessian or its square root).
Referring to the simplification method from Oh and Patton (2018) [43], it is assumed

that the coefficient matrices B and A are diagonal matrices, and the elements on their
diagonals are represented by scalar parameters β and α, respectively. Meanwhile, the matrix
St is set to the identity matrix I. The parameters of the copula model are logarithmically
transformed, so the logarithm of the factor loadings in the GAS model can be expressed as

log λi,t = ωi + β log λi,t−1 + αsi,t−1

si,t =
∂ log c(ut; λt, νz, ψz, νε)

∂ log λi,t
, i = 1, 2, . . . , N.

3.3. Joint Probability of Distress (JPD)

In this paper, we define a risk event in the clean energy market as a situation where
the return is below a certain threshold:

Di,t ≡ 1{Ri,t < ci}

where Ri,t represents the return of the clean energy market i at time t and ci is the return
quantile (in the empirical part of this paper, the 5% quantile is used). A key characteristic of
systemic risk is that a large number of markets or institutions simultaneously suffer from
tail risk shocks. The concentration of systemic risk can be measured by the frequency of
collective risk events.

Following the study by Oh and Patton (2018) [43], we use the joint probability of
distress (JPD) model to measure the probability of tail risk events occurring simultane-
ously over different periods, thereby assessing the overall level of systemic risk in the
international clean energy market. Specifically, JPD is defined as follows:

JPDt,k ≡ Pt

[(
1
N

N

∑
i=1

Di,t+1

)
≥ k

N

]

where JPDt,k represents the probability that at least k clean energy markets will experience
risk events at time t + 1, given the information known prior to time t.
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3.4. Systemic Vulnerability and Importance Measurement

Drawing on the research of Wang and Liang (2020) [45], two indicators, SVD (Systemic
Vulnerability Degree) and SID (Systemic Importance Degree), are introduced to evaluate
the systemic vulnerability and importance of various clean energy markets.

3.4.1. Systemic Vulnerability Degree (SVD)

The degree of systemic vulnerability is used to measure the degree to which a market
is impacted during the risk contagion process. This indicator calculates the probability that
market i is in a risk state at time t + 1, under the condition that at least k market risk events
occur at time t + 1, that is, the Conditional Probability of Distress (CoPD). The formula is
as follows:

CoPDi,t,k ≡ Et[Di,t+1 | Mi,t+1 ≥ k]

where Mi,t+1 = ∑N
j=1,j ̸=i Dj,t+1 indicate the number of markets in the system at time t + 1

when risk events occur, except for the i − th market.
In this study, k = N/2 is set and the Systemic Vulnerability Degree (SVD) is defined as

SVDi,t ≡ CoPDi,t,N/2.

In tail risk monitoring, it is necessary to measure both global and local risks uniformly.
The market with more than half of the condition Mi,t+1 values in the SVD indicator covers
both local market crisis events (i.e., some markets are in a risk state) and global crisis events
(i.e., all markets are in a risk state when k = N − 1 ). This indicator fully considers the
vulnerability of individual markets under global and local crisis events and characterizes
the correlation structure of the entire international clean energy market system under
different situations.

3.4.2. Systemic Importance Degree (SID)

The degree of systemic importance is used to measure the risk contribution of a market
to the overall system, i.e., its risk-spillover effect. This index calculates the probability of a
collective risk event occurring in the system under the condition that a risk event occurs
in market i at time t + 1, namely the Conditional Contribution of Distress (CoCD). The
formula is as follows:

CoCDi,t,k ≡ Et[Mi,t+1 ≥ k | Di,t+1]

and similarly, set k = N/2 and define the Systemic Importance Degree (SID) as

SIDi,t ≡ CoCDi,t,N/2.

3.5. Measurement of Risk-Spillover Level

The Conditional Risk-Spillover Index (CRSI) is used to measure the level of risk
spillover between submarkets, controlling for the condition that no other markets experi-
ence risk events. The index calculates the probability that market j experiences a risk event
at time t + 1, given that market i experiences a risk event while no other markets do. The
formula is as follows:

CRSIi,j ≡ Et

[
Dj,t+1 | Di,t+1 = 1 and ∑

k ̸=i,j
Dk,t+1 = 0

]
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−Et

[
Dj,t+1 | Di,t+1 = 0 and ∑

k ̸=i,j
Dk,t+1 = 0

]
where ∑k ̸=i,j Dk,t+1 represents the number of markets experiencing risk events at time t + 1,
excluding markets i and j.

4. Data Description
4.1. Data Source

With the development of the global economy and society, financial market indices are
not only a reflection of company performance but also a barometer of economic conditions
and investor confidence. The volatility of financial market indices related to clean energy
can profoundly reflect the dynamic changes in the clean energy market. To comprehensively
analyze the systemic risk of the international clean energy market, the NASDAQ OMX
Clean Energy Index series is selected as the research object. This index series provides a
more comprehensive set of indices for tracking the global environment and clean energy
industry and its subsectors [50]. Specifically, the NASDAQ OMX Clean Energy Index can
be divided into four categories, as shown in Table 1. Treating each market index as an
independent market for analysis, there are a total of 11 markets.

Table 1. NASDAQ OMX Clean Energy Index.

Category Index Symbol Description

Advanced materials NASDAQ OMX Advanced Material Index M1
Tracks companies producing materials that
support renewable technologies or reduce
reliance on petroleum-based products

Bio/Clean fuels NASDAQ OMX Bio/Clean Fuels Index M2
Tracks producers of plant-based fuels used as
alternatives to petroleum-based transportation
fuels

Renewable energy NASDAQ OMX Developer/ Operator Index M3 Tracks developers and operators of solar,
wind, and other renewable energy projects

NASDAQ OMX Fuel Cell Index M4 Tracks energy producers using fuel cell
technology

NASDAQ OMX Geothermal Index M5 Tracks companies specializing in geothermal
energy production

NASDAQ OMX Solar Index M6 Tracks solar power production companies

NASDAQ OMX Wind Index M7 Tracks companies involved in wind energy
production

Energy efficiency NASDAQ OMX Energy Management Index M8

Tracks companies offering solutions for
reducing energy use through advanced
management systems like efficient motors and
process controls

NASDAQ OMX Energy Storage Index M9 Tracks companies advancing energy storage
technologies like batteries

NASDAQ OMX Green IT Index M10
Tracks IT solutions providers focusing on
energy efficiency through technologies like
data center optimization and virtualization

NASDAQ OMX Smart Grid Index M11
Tracks companies enhancing grid reliability
and intelligence through modernization
solutions

Source: NASDAQ and Pham (2019) [50].

Considering that the NASDAQ OMX Clean Energy Index has been trading since
18 October 2010, this study selects the period from 18 October 2010, to 17 May 2024, for
research, with a total of 3419 observations, all of which are from investment websites.
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4.2. Basic Data Analysis

Table 2 presents the basic statistics of logarithmic returns for 11 clean energy indices.
Skewness analysis shows that the logarithmic return sequences of all clean energy markets
follow an asymmetric distribution, and the kurtosis coefficients are all greater than 3,
indicating a sharp and thick-tailed distribution of market returns.

Table 2. Descriptive statistics of logarithmic returns for 11 clean energy indices.

Market Mean Min Max Std. Skewness Kurtosis

M1 −0.0012 −6.5879 7.2790 0.5274 1.2832 96.6234
M2 −0.0007 −7.1408 5.8709 0.7669 −0.4187 32.8268
M3 −0.0011 −8.0107 6.6280 0.4179 −2.8744 197.2819
M4 −0.0004 −8.0017 6.9180 0.5167 −0.9020 103.1280
M5 0.0004 −7.9316 7.9212 0.6993 −0.1934 52.9274
M6 −0.0013 −5.8403 5.9674 0.4002 0.6544 149.9079
M7 −0.0011 −8.0668 6.4508 0.4135 −3.0220 176.1471
M8 −0.0011 −7.3122 8.0054 0.5812 1.1994 90.1047
M9 −0.0007 −6.3651 7.9862 0.5279 1.4577 97.2519
M10 −0.0010 −8.0199 8.0117 0.5326 −0.9043 123.7959
M11 −0.0011 −7.9540 7.9649 0.4566 0.5270 140.0699

5. Empirical Results and Analysis
5.1. Fit Marginal Distribution

First, the marginal distribution of the return series for each clean energy market is
fitted. According to the ADF test, all series are stationary at the 1% significance level. Based
on the J-B test, the return distributions of each market are significantly different from the
normal distribution. The LB test and the ARCH-LM test with 20 lags indicate that all series
exhibit significant autocorrelation and ARCH effects. To better capture the characteristics
of fat tails and asymmetry in the data, the ARMA(p,q)-GARCH(1,1)-Skew t model is used
to fit the marginal distribution. The model is formulated as follows:

Ri,t = φi,0 + ∑
p
n=1 φi,nRi,t−n + εi,t − ∑

q
m=1 θi,mεi,t−m

εi,t = σi,tηi,t, ηi,t ∼ iid Skewt(νi, ψi)

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1

where φi,0 is the constant term of the ARMA(p,q) model, φi,n is the autoregressive coefficient,
εi,t is the residual term, following Hansen’s (1994) [49] skewed t distribution, where νi

and ψi determine the degrees of freedom and skewness of the skewed t distribution,
respectively; θi,m is the moving average coefficient; αi is the ARCH parameter; and βi is the
GARCH parameter.

Table 3 presents the parameter estimation results for the marginal distributions. The
first autoregressive coefficient and the first moving average coefficient are significant
for most markets, indicating that most markets exhibit serial correlation and short-term
volatility in returns. In the GARCH model, the αi and βi parameters are significant and
positive for all 11 markets, suggesting significant volatility clustering effects in the returns.
Moreover, the degrees of freedom parameter νi is significant for all 11 markets, indicating
that return shocks exhibit fat tails. The skewness parameter ψi is also significant and greater
than 1, indicating a right-skewed return distribution.
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Table 3. Marginal distribution parameter estimation results.

Market M1 M2 M3 M4 M5 M6

φi,0 −0.0002 (−0.7124) 0.0004 (0.5717) −0.0006 *** (−2.935) 0.0013 *** (2.7605) 0.0001 (0.1604) −0.0006 * (−1.9556)
φi,1 0.8450 *** (9.6248) 1.6743 *** (3220.3832) 0.0206 (0.1131) 0.8166 *** (8.2241) −1.1620 *** (−7146.3373) 0.0196 (1.1041)
φi,2 −0.0073 (−0.3221) −0.9100 *** (−1960.0041) −0.0809 (−0.5119) −0.7198 *** (−5.0202) 0.1118 *** (739.0500) 0.0177 (1.1027)
φi,3 −0.0055 (−0.3261) −0.0183 *** (−42.4145) 0.5438 *** (3.8696) 0.5050 *** (4.2985) 0.6102 *** (5991.0197) 0.0028 (0.1895)
φi,4 0.0013 (0.0966) −0.0170(−1.2772)
φi,5 −0.0021 (−0.2575) −0.0055 (−0.4936)
θi,1 −0.8473 *** (−9.7802) −1.6928 *** (−3111.0619) 0.0092 (0.0505) −0.8373 *** (−8.5849) 1.1070 *** (8059.7525)
θi,2 0.9416 *** (1983.4071) 0.0695 (0.4265) 0.7098 *** (5.0298) −0.2040 *** (−8726.5037)
θi,3 −0.5483 *** (−3.8174) −0.5223 *** (−4.7530) −0.6574 *** (−5217.0239)
θi,4 −0.0206 (−1.2585) −0.0003 (−0.6600)
θi,5 0.0279 * (1.6845) −0.0039 *** (−11.3083)
ωi 0.0000 *** (4.2388) 0.0010 *** (9.1804) 0.0000 *** (7.7313) 0.0005 *** (7.2122) 0.0004 *** (8.5149) 0.0001 *** (7.9681)
αi 0.2942 *** (17.3123) 0.6886 *** (14.8922) 0.3590 *** (17.5551) 0.5326 *** (10.6172) 0.6646 *** (16.8748) 0.4612 *** (16.6045)
βi 0.7048 *** (50.2256) 0.3104 *** (14.4611) 0.6400 *** (43.0400) 0.4664 *** (14.2168) 0.3344 *** (15.2606) 0.5378 *** (30.1923)
ψi 1.0675 *** (55.5737) 1.0872 *** (58.4626) 1.0623 *** (51.1134) 1.0233 *** (58.4611) 1.1119 *** (59.0161) 1.0263 *** (59.0419)
νi 3.8484 *** (24.8662) 2.7177 *** (44.7174) 4.2049 *** (22.6960) 2.5357 *** (43.6774) 2.8671 *** (42.8089) 3.0789 *** (35.0408)
LogLik 5279.0720 3596.6940 7425.9620 5461.7680 4480.0690 6462.5810

Market M7 M8 M9 M10 M11

φi,0 −0.0003 (−1.5380) −0.0008 *** (−3.8183) 0.0003 (0.7910) −0.0011 *** (−3.4733) −0.0004 * (−1.7453)
φi,1 1.7520 *** (95.7582) 0.9371 *** (235.0407) 0.8391 *** (5.2137) 0.7895 *** (16.7253) 1.7484 *** (192.9443)
φi,2 −1.2560 *** (−34.1595) −0.0236 (−1.4782) −0.0553 ** (−2.3052) 0.0359 ** (2.2971) −2.2398 *** (−238.0214)
φi,3 0.3567 *** (6.5217) −0.0043 (−0.1928) 0.0181 (0.8445) 1.3892 *** (189.1197)
φi,4 −0.0040 (−0.1213) −0.0120 (−0.5970) −0.0380 * (−1.9259) −0.6015 *** (−32.0232)
φi,5 0.0102 (0.6637) 0.0362 ** (2.5598) 0.0193 (1.0930)
θi,1 −1.7545 *** (−2353.3969) −0.9433 *** (−267.1463) −0.7956 *** (−4.9973) −0.8437 *** (−17.9024) −1.7082 *** (−1279.5498)
θi,2 1.2541 *** (933.7809) 2.1618 *** (12895.7617)
θi,3 −0.3620 *** (−10.2314) −1.3121 *** (−360.8111)
θi,4 0.5548 *** (26.6997)
θi,5
ωi 0.0000 *** (7.9033) 0.0000 *** (5.1613) 0.0001 *** (7.3062) 0.0001 *** (6.7476) 0.0000 *** (4.2559)
αi 0.3249 *** (16.7573) 0.3971 *** (19.7712) 0.3756 *** (14.7527) 0.5290 *** (16.1023) 0.2674 *** (17.1808)
βi 0.6741 *** (44.4860) 0.6019 *** (39.4101) 0.6234 *** (35.4739) 0.4700 *** (21.1233) 0.7316 *** (56.9000)
ψi 1.0348 *** (56.5116) 1.0655 *** (56.1808) 1.0737 *** (53.3635) 1.0487 *** (55.2222) 1.0967 *** (54.6823)
νi 3.7207 *** (26.9597) 3.8532 *** (27.5073) 3.3943 *** (26.5037) 3.1744 *** (32.5203) 4.1127 *** (23.7702)
LogLik 7373.3320 5908.8510 5548.5710 5971.6550 6024.1910

Note: ***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively, with the value of t shown in parentheses.
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Table 4 presents the test results for the standardized residual series and copula data.
The results of the Ljung–Box test and ARCH test show that all p-values are greater than
0.05, indicating that the standardized residual series obtained after fitting the marginal
distribution models no longer exhibit autocorrelation or heteroscedasticity. The results
of the KS test suggest that the transformed copula data follow a uniform distribution on
[0, 1]. Therefore, the ARMA(p,q)-GARCH(1,1)-Skew t model constructed in this paper is
reasonable, and it is feasible to further establish a dynamic factor copula model.

Table 4. Test results for standardized residual series and copula data.

Market LB p-Value ARCH-LM p-Value KS p-Value

M1 0.0413 0.8390 0.0004 0.9832 0.0003 1.0000
M2 0.5539 0.4567 0.0553 0.8140 0.0003 1.0000
M3 0.0102 0.9196 0.0008 0.9774 0.0003 1.0000
M4 0.0698 0.7917 0.0033 0.9545 0.0003 1.0000
M5 0.0608 0.8052 0.0013 0.9715 0.0003 1.0000
M6 0.1171 0.7319 0.0040 0.9494 0.0003 1.0000
M7 0.2421 0.6227 0.0421 0.8374 0.0003 1.0000
M8 0.0676 0.7949 0.0087 0.9258 0.0003 1.0000
M9 0.0049 0.9443 0.0003 0.9852 0.0003 1.0000
M10 0.0129 0.9097 0.0067 0.9349 0.0003 1.0000
M11 0.0137 0.9067 0.0012 0.9725 0.0003 1.0000

5.2. Establish a Dynamic Factor Copula Function

Table 5 presents the parameter estimation results of the dynamic factor copula model,
where the value of β is 0.9909, which is close to 1, indicating that the estimated load factor
has high persistence. νz and νϵ reflect the fat-tail characteristics of the common factor and
idiosyncratic factors, respectively. The results show that νz is greater than νϵ, suggesting
that the idiosyncratic factors of the market are more likely to trigger extreme fluctuations in
the international clean energy system than the common factor. ψz represents the skewness
characteristic of the international clean energy market, with a value of 0.1163, which is
greater than 0. This is consistent with the estimation results of the marginal distribution
model, showing a right-skewed characteristic.

Table 5. Parameter estimation results of the dynamic factor copula model.

Parameter α β νz ψz νε

Estimate 0.0726 0.9909 61.1747 0.1163 4.616

Figure 2 shows the temporal variation of the load factor, which is derived from a
simple average of all clean energy markets. It can be seen that the load factor fluctu-
ates with time, ranging from 0.38 to 1.24, and exhibits a clustering effect. According to
Naeem et al. (2020) [51], major economic events or extreme situations enhance connectivity
between financial markets, while investor confidence weakens when it increases. Since
2011, the correlation of the international clean energy market has rapidly increased, and
the European debt crisis has driven an increase of about 70% in the load factor. After 2013,
the correlation began to decline, indicating that systemic risks continued to accumulate
during the European debt crisis. In mid-2014, the sharp drop in international oil prices
led to a further increase in market correlation, but the growth rate was only about 15%.
The conclusion of the Paris Agreement at the end of 2015 led to a rapid increase in market
interdependence, growing by about 40%. Subsequently, the withdrawal of the United
States from the Paris Agreement, as well as the Sino US trade war in 2018, the COVID-19
outbreak in 2020, the Russia–Ukraine conflict in 2022, and other events, led to increased
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market connectivity. It can be preliminarily concluded that there is a strong synchronicity
between the connectivity of the international clean energy market and systemic risk events.

Figure 2. Time-varying diagram of factor load.

5.3. Joint Probability of Distress

This study uses Monte Carlo simulation to obtain the joint probability of distress of
11 clean energy markets. In order to improve the accuracy of the simulation, an estimated
value is calculated every five trading days with 5000 simulations. Taking k = 6 as an
example to illustrate the selection of the number of defaults k, the result is shown in
Figure 3.

Figure 3. Time series diagram of joint probability of distress

From the graph, it can be seen that the systemic risks in the international clean energy
market exhibit rapid and multiple outbreaks, and the probability of joint default risk in the
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entire system can exceed 0.6. The outbreak of systemic risks is closely related to a series of
major international events, demonstrating a strong correlation.

Specifically, during the 2011 European debt crisis, the European economy declined,
and unemployment rates soared, affecting other global markets. The clean energy industry
is facing increasing systemic risks due to tight liquidity, decreased investor risk appetite,
and intensified market volatility. In 2014, the Ukrainian crisis led to increased uncertainty
in Europe’s natural gas supply, and geopolitical instability further amplified market risks.
At the same time, the sharp drop in international oil prices in the second half of the year,
coupled with a series of subsequent geopolitical events, intensified the turbulence in the
clean energy market, and the risk of joint default significantly fluctuated.

The achievement and implementation of the Paris Agreement is a significant positive
for the clean energy market, but it has caused market volatility in the short term. In the
fourth quarter of 2017, the passage of the US tax reform bill reduced the tax burden on the
clean energy sector and promoted investment in the clean energy industry. In 2018, the
US–China trade war led to increased tariffs and supply chain disruptions, exacerbating
market uncertainty. At the beginning of 2020, the large-scale outbreak of COVID-19 led
to the global blockade and stagnation of economic activities. Energy demand declined
significantly, and all energy markets, including clean energy, were severely impacted. After
the epidemic, the international clean energy market was relatively stable until the outbreak
of the Russia–Ukraine conflict in February 2022. Conflicts have led to drastic fluctuations
in global energy prices, supply chain disruptions, and an increased probability of joint
defaults in the clean energy market.

Therefore, external events such as economic shocks, geopolitical risks, and changes
in environmental policies can all trigger systemic risks in the international clean energy
market. Risk contagion is one of the important sources of systemic risk, and this contagion
effect is closely related to the connectivity between markets [52]. External shock events
typically enhance market connectivity, allowing risk events in one market to spread faster to
other markets, ultimately leading to systemic risk outbreaks within the entire international
clean energy market. In addition, external shock events can also affect internal information
contagion in the market, such as herd behavior and intensified convergence effects, further
deepening the severity of systemic risks.

5.4. Systemic Vulnerability

Table 6 shows the degree of systemic vulnerability of 11 subindustry markets in the
international clean energy market over different time periods. The values in parentheses
indicate the descending ranking of the SVD mean values for each subindustry market,
while the annual mean values reflect the SVD mean values during the study period.

Table 6. Mean SVD across periods.

Market 2010–2013 2014–2015 2016–2017 2018–2019 2020–2021 2022–2024 Overall Mean

M1 0.0725(6) 0.7363(2) 0.5150(2) 0.2798(1) 0.0381(4) 0.1822(2) 0.2805(2)
M2 0.0338(11) 0.1392(11) 0.0000(11) 0.0000(11) 0.0000(11) 0.0000(11) 0.0285(11)
M3 0.0642(8) 0.7285(4) 0.5006(4) 0.2372(5) 0.0351(7) 0.1804(3) 0.2682(4)
M4 0.0560(9) 0.3055(9) 0.0551(9) 0.0096(9) 0.0058(9) 0.0051(9) 0.0696(9)
M5 0.0515(10) 0.2122(10) 0.0202(10) 0.0015(10) 0.0003(10) 0.0017(10) 0.0470(10)
M6 0.0748(5) 0.7478(1) 0.4983(5) 0.2166(6) 0.0379(5) 0.1200(7) 0.2601(6)
M7 0.0795(1) 0.7360(3) 0.5406(1) 0.2696(2) 0.0368(6) 0.1784(4) 0.2835(1)
M8 0.0788(3) 0.6924(7) 0.3980(7) 0.2151(7) 0.0406(1) 0.1250(6) 0.2391(7)
M9 0.0692(7) 0.5596(8) 0.2021(8) 0.0503(8) 0.0286(8) 0.0175(8) 0.1435(8)
M10 0.0762(4) 0.7023(5) 0.5093(3) 0.2566(3) 0.0397(2) 0.1680(5) 0.2698(3)
M11 0.0789(2) 0.7018(6) 0.4551(6) 0.2462(4) 0.0381(3) 0.1833(1) 0.2633(5)
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From the table, it can be seen that the SVD of each subindustry market shows similar
trends in different time periods, especially during the period of 2014–2015, when the SVD
reached its peak and the vulnerability significantly increased. Subsequently, it gradually
declined and rose again during the period of 2022–2024. In 2014–2015, the Ukrainian crisis
and the sharp drop in international oil prices triggered severe fluctuations in the global
energy market, leading to a significant increase in the sensitivity of various subindustry
markets to risk events and further exacerbating their vulnerability. Similarly, in 2022,
the Russia–Ukraine conflict triggered the instability of the global energy market again,
leading to the rise of SVD in various subindustry markets again. This indicates that various
subindustry markets are prone to difficulties and exhibit higher systemic fragility when
facing major geopolitical risk events.

From the ranking of systemic vulnerability in different subindustry markets at different
time periods, the biofuel market (M2), fuel cell market (M4), geothermal market (M5), and
energy storage market (M9) have relatively stable systemic vulnerability rankings in various
time periods and have always been in a low position. In particular, the rankings of the
biofuel market and geothermal market are 11 and 10, respectively. The reason for this is
that biofuel technology is mainly used in specific fields such as transportation, and its
substitutability is not as wide as solar energy, wind energy, etc., with a limited market
size. Geothermal energy, on the other hand, is mainly used in specific regions due to
uneven resource distribution, with a smaller global market size and lower volatility. The
wind energy market (M7) and advanced material market (M1) have shown high systemic
vulnerability in multiple periods, which may be due to the large scale of the wind energy
market worldwide, high investment costs, strong dependence on technological progress
and policy support, and the widespread application of advanced materials with high
research and development and production costs, making them vulnerable to systemic risks.

5.5. Systemic Importance

Table 7 shows the systemic importance levels of 11 subindustry markets in the in-
ternational clean energy market over different time periods. The values in parentheses
indicate the descending ranking of the SID mean values for each subindustry market, while
the historical mean values reflect the SID mean values during the study period. From the
table, it can be seen that the SID of the 11 subindustry markets shows a similar trend to the
degree of systemic vulnerability (SVD) in different periods. Specifically, during the periods
of 2014–2015 and 2022–2024, the SID of 11 subindustry markets significantly increased,
indicating the amplification effect of major geopolitical events (such as the Ukraine crisis
and the sharp drop in international oil prices) on systemic risks. During 2020–2021, SID
dropped to the lowest level, which may be due to the global spread of the COVID-19
epidemic, which triggered panic in the market and made investors more sensitive to the
risk spillover of clean energy stock prices.

From the ranking of the systemic importance of various subindustry markets at
different time periods, the energy management market (M8), energy storage market (M9),
smart grid market (M11), and solar energy market (M6) have consistently ranked among
the top four in terms of their systemic importance. In particular, the energy management
market and energy storage market are ranked 1 and 2, respectively. The reason for this
is that energy management systems involve the production, distribution, consumption,
and efficiency optimization of energy, and energy storage technology plays a key role
in balancing the gap between renewable energy supply and demand. This conclusion is
consistent with the research findings of Zhao et al. (2024) [7], indicating that the systemic
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importance of the energy management market and energy storage market continues to be
significant, with strong correlations with other markets, and has a “ripple effect” on the
entire international clean energy system.

Table 7. Mean SID across periods.

Market 2010–2013 2014–2015 2016–2017 2018–2019 2020–2021 2022–2024 Overall Mean

M1 0.0522(6) 0.3409(5) 0.0953(5) 0.0276(5) 0.0101(5) 0.0165(5) 0.0851(5)
M2 0.0446(10) 0.1798(11) 0.0000(11) 0.0000(11) 0.0000(11) 0.0000(11) 0.0370(11)
M3 0.0443(11) 0.3057(8) 0.0772(9) 0.0215(8) 0.0078(9) 0.0128(8) 0.0735(9)
M4 0.0486(9) 0.3156(7) 0.0778(7) 0.0128(9) 0.0094(7) 0.0069(9) 0.0740(8)
M5 0.0503(8) 0.2669(10) 0.0340(10) 0.0031(10) 0.0040(10) 0.0039(10) 0.0580(10)
M6 0.0529(5) 0.3454(4) 0.0989(4) 0.0311(5) 0.0103(4) 0.0198(2) 0.0876(4)
M7 0.0515(7) 0.3006(9) 0.0777(8) 0.0215(7) 0.0080(8) 0.0129(7) 0.0746(7)
M8 0.0583(1) 0.3723(2) 0.1241(1) 0.0381(1) 0.0115(2) 0.0278(1) 0.0992(1)
M9 0.0570(3) 0.3881(1) 0.1189(2) 0.0336(2) 0.0143(1) 0.0178(4) 0.0985(2)
M10 0.0533(4) 0.3270(6) 0.0936(6) 0.0272(6) 0.0100(6) 0.0165(6) 0.0830(6)
M11 0.0576(2) 0.3567(3) 0.1062(3) 0.0324(3) 0.0112(3) 0.0190(3) 0.0916(3)

5.6. Risk-Spillover Level

Figure 4 shows the risk-spillover situation between 11 subindustry markets in the
international clean energy market during the outbreak of systemic risk concentration. The
values in the figure represent the mean of the conditional risk-spillover index, where
columns represent risk emitters and rows represent risk receivers. Overall, during periods
of systemic risk concentration and outbreak, the correlation between various markets
significantly increases, and any risk event that occurs in one market may quickly spread
to other markets. The advanced materials market, wind energy market, and solar energy
market have played a leading role in risk transmission, and their risk contributions to other
markets are particularly prominent.

From the analysis of spillover effects on various markets, the risk-spillover levels of
the advanced materials market to the geothermal market and wind energy market are
relatively high, at 0.1144 and 0.1044, respectively. The biofuel market has relatively low
risk spillovers to other markets and risks received from other markets, which is consistent
with the results of systemic vulnerability and systemic importance. This indicates that the
biofuel market is in a relatively marginal position in the entire international clean energy
system and is relatively stable.

The risk-spillover levels of the developer market to the solar energy market and energy
storage market are relatively high, at 0.1285 and 0.1670, respectively. At the same time, the
risk-spillover level of the energy storage market to the developer market is also relatively
high, at 0.1679, indicating a highly correlated relationship between these two markets. In
addition, the energy storage market, fuel cell market, geothermal market, and wind energy
market all show high levels of risk spillover to the advanced materials market, with values
of 0.1212, 0.0987, 0.0991, and 0.0604, respectively. The risk-spillover levels of the solar
energy market to the wind energy market and energy management market are relatively
high, at 0.0708 and 0.0703, respectively. The risk-spillover level of the energy management
market to the solar energy market is relatively high, at 0.0935.

The developer market and solar energy market in the renewable energy market, as
well as the energy management market and energy storage market in the energy efficiency
market, further promote the risk transmission between the energy efficiency market and the
renewable energy market. The high risk-spillover effects between the advanced materials
market and multiple markets further demonstrate its vulnerability in the entire system.
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Through the symmetry of the thermal matrix, the roles of various clean energy markets
in tail risk shocks can be analyzed in depth. The upper triangle of the matrix displays the
level of risk spillover received by each market, while the lower triangle reveals the degree of
risk spillover emitted by each market. The analysis results show that the geothermal market,
solar energy market, and wind energy market mainly play the role of net risk spillover in
tail risk shocks, while the developer market and fuel cell market mainly play the role of net
risk reception, which is consistent with the research results of Gong et al. (2023) [38].

Figure 4. Heatmap of risk spillovers between subsector markets.

Figure 5 shows the dynamic risk spillover between 11 subindustry markets in the
international clean energy market during a period of systemic risk outbreak. Overall, during
the period of concentrated systemic risk outbreaks, the level of systemic risk spillover in
various subindustry markets fluctuated greatly. In 2015, the risk spillover was relatively
concentrated, and the cumulative risk-spillover level in multiple subindustry markets was
close to 1.8. After 2017, although risk spillover still exists, the volatility weakened compared
to before, and the risk spillover in many subindustry markets decreased between 2018 and
2019, especially in the biofuel market, green IT market, and smart grid market. The reason
for this is that the peak period in 2015 was related to changes in energy policies at the time,
such as changes in global clean energy subsidy policies, significant fluctuations in oil prices,
and intensified market volatility due to investment policies in renewable energy by various
countries, leading to an increase in systemic risk spillovers. As the global energy market
gradually stabilized after 2017, risk spillovers correspondingly decreased, indicating that
policy stability and market maturity can help alleviate the transmission of systemic risks.
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Figure 5. Cumulative dynamic risk-spillover levels between subsector markets.

6. Conclusions

On the basis of considering the fat-tailed, time-varying, and asymmetric nature of
financial returns, this study uses the dynamic factor copula model to establish a unified
framework to examine the systemic risk of the international clean energy market from four
dimensions: overall level of systemic risk, systemic vulnerability, systemic importance, and
risk-spillover level. The Systemic Vulnerability Degree (SVD) and Systemic Importance
Degree (SID) are introduced to analyze from the perspectives of systemic importance
and systemic vulnerability, and a conditional risk-spillover index (CRSI) is constructed to
measure the risk-spillover level between quantum industry markets. The research results
are as follows.

First, based on the dynamic factor copula model, it was found that the interdependence
structure between the 11 subindustries in the international clean energy market changes
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over time, and their correlation accumulates and increases during crisis events. This further
confirms the findings of Naeem et al. (2020) [51] that major economic events or extreme
conditions enhance connectivity between financial markets. In measuring the overall level
of systemic risk, the joint probability of distress can identify changes in systemic risk in the
international clean energy market.

Second, the systemic risks in the international clean energy market exhibit rapid
and multiple outbreaks, and the joint probability of distress in the entire system can
exceed 0.6. The outbreak of systemic risks is closely related to a series of major interna-
tional events, demonstrating a strong correlation. This strengthens the understanding of
Li et al. (2023) [53]; that is, under extreme market conditions, uncertainty will exacerbate
the volatility of the clean energy market. Kuang (2021) [54] pointed out that the safe-haven
nature of clean energy assets does not always play a full role in the global financial crisis or
other major events, echoing the findings of this study. After the collapse of international
oil prices in the second half of 2014, the level of systemic risk was significantly reduced.
During the China–US trade war in 2018, COVID-19 in 2019, and the Russia–Ukraine conflict
in 2022, the systemic risk had an upward trend.

Third, overall, the biofuel market has the lowest systemic vulnerability, while the
advanced materials market has the highest systemic vulnerability. At different times, the
ranking of systemic vulnerability in subindustry markets also varies. In the measurement
of systemic importance, the energy efficiency market has the highest systemic importance.
This conclusion is consistent with the findings of Zhao et al. (2024) [7], which shows that
the systemic importance of the energy management market and the energy storage market
continues to be significant, and the correlation with other markets is strong, which has a
“ripple effect” on the entire international clean energy system.

Finally, during the period of systemic risk concentration and outbreak, the correlation
between various subindustry markets significantly increases, and any risk event that occurs
in one market may quickly spread to other markets. The advanced materials market and
renewable energy market play a dominant role in the risk contribution to other markets,
especially the geothermal market, solar energy market, and wind energy market, which
are net risk overflow parties in tail risk shocks, while the developer market and fuel cell
market are net risk receivers.

It should be emphasized that the research has certain limitations, which in turn indicate
possible future research directions.

First, this study mainly focuses on the correlation between subindustry markets in the
clean energy market. However, it has not been further deepened to the microenterprise level
under the subindustry market. Therefore, future research can explore the risk tolerance of
enterprises and reveal the role of individual institutions in the clean energy market system.
Second, there is a lack of comprehensive and detailed analysis of how the external shock
events conduct and affect the path of systemic risk in the clean energy market through
specific mechanisms. Therefore, in the future, we can explore the transmission path
of different types of external shock events (such as climate change and policy change) to
systemic risk. Finally, the potential driving factors (such as macroeconomic changes, market
sentiment fluctuations, etc.) of the abnormal rise of systemic risk levels during nonimpact
events have not been fully revealed in this study, which may limit the comprehensive
understanding of risk triggers.
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