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Simple Summary: Metagenomics analysis measures microbiome diversity in samples with-
out prior enrichment. Advances in High-Throughput Sequencing (HTS) have expanded its
use from identifying known organisms to diagnosing diseases. Reliable results need strong
validation with standard samples and databases from real and synthetic controls. We intro-
duce the Metagenomic Standards Generator (MeStanG), a tool for creating HTS Nanopore
data sets to test bioinformatics pipelines. MeStanG allows users to design and generate
samples with specific numbers of reads for each organism from reference sequences and
error profiles. The accuracy was tested by simulating metagenomic samples with known
diversities and abundances expressed as number of reads. The analysis showed results that
matched the expected organism composition in the samples. MeStanG is a valuable tool
for scientists to create mock metagenomic samples useful in diagnostic assay validation
studies and assess bioinformatics pipeline performance using simulated samples.

Abstract: Metagenomics analysis has enabled the measurement of the microbiome diversity
in environmental samples without prior targeted enrichment. Functional and phylogenetic
studies based on microbial diversity retrieved using HTS platforms have advanced from
detecting known organisms and discovering unknown species to applications in disease
diagnostics. Robust validation processes are essential for test reliability, requiring standard
samples and databases deriving from real samples and in silico generated artificial controls.
We propose a MeStanG as a resource for generating HTS Nanopore data sets to evaluate
present and emerging bioinformatics pipelines. MeStanG allows samples to be designed
with user-defined organism abundances expressed as number of reads, reference sequences,
and predetermined or custom errors by sequencing profiles. The simulator pipeline was
evaluated by analyzing its output mock metagenomic samples containing known read
abundances using read mapping, genome assembly, and taxonomic classification on three
scenarios: a bacterial community composed of nine different organisms, samples resem-
bling pathogen-infected wheat plants, and a viral pathogen serial dilution sampling. The
evaluation was able to report consistently the same organisms, and their read abundances
as provided in the mock metagenomic sample design. Based on this performance and its
novel capacity of generating exact number of reads, MeStanG can be used by scientists
to develop mock metagenomic samples (artificial HTS data sets) to assess the diagnostic
performance metrics of bioinformatic pipelines, allowing the user to choose predetermined
or customized models for research and training.
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1. Introduction

Advances in molecular biology and genomics made possible the assessment of the
diversity, richness, and interaction of the organisms present in an environment sample [1].
Metagenome is a term used to refer to a collection of genomes in samples retrieved by
amplicon and whole-genome shotgun strategies, focusing on microbial diversity and
functional studies [2]. Metagenomics has been used to profile several ecosystems and
environments’ taxonomic and functional interactions, making identifying specific microbes
possible [3]. Direct sequencing of raw environmental DNA is used as a technique to retrieve
quantitative sequence information from a sample, allowing the classification of known
and the discovery of new taxa by association with known organisms [4,5]. Shotgun High-
throughput sequencing (HTS) provides fast and extensive insights into massive biological
data with different sequencing platforms including Illumina, Nanopore, PacBio, and Ion
Torrent platforms, which are used for studies on phylogenetic, functional, and descriptive
metagenomics [6-8]. Microbial diversity has been one of the leading research areas that
have improved over the years since the advent of shotgun metagenomics. Several tools
have been developed for reconstructing microbial composition [9], viral discovery [10],
and unculturable organism detection [11]. One challenge posed by these techniques is the
complex data analysis required to effectively establish shotgun metagenomics HTS as a
strategy for pathogen detection and diagnostics regarding the massive amounts of data,
diversity of highly specialized pipelines, and computationally expensive processes [12].

Validating the accuracy of read classification procedures can be challenging due to
the lack of accurate reference databases, samples, and quality controls. To address this, in
silico validation can be performed using sequence read simulators. When validating the
accuracy of read classifiers, it is essential to consider the diversity of metagenomic samples,
how accurately they resemble real samples, and determine their analytical sensitivity
and specificity as a first validation tier [13,14]. Using sequence sets generated in silico
representing the diverse naturally occurring sequencing outputs from real samples is crucial
for validating diagnostic tests based on HTS methods [15].

There are several HTS simulators available for short (ART v.2.5.8, DWGSIM v.0.1.15,
InSilicoSeq v.1.5.4, Mason v.2.0.9, NEAT v.3.0, wgsim v.0.3.1-r13) [16], long (NanoSim v3.1.0,
HeteroGenesis v1.5, DeepSimulator v1.5) [17], and metagenomic reads (NanoSim v3.1.0,
CAMISIM 1.3). CAMISIM can use ART, wgsim, and NanoSim for metagenomic simulation
in its framework, being NanoSim the only one capable of generating Nanopore reads
through error model characterization on sequencing outputs followed by read simulation
or de novo direct simulation using reference genomes and pre-trained models obtained from
mock data sets [18,19]. However, there are cases where the corresponding real sequencing
outputs are not available for model characterization or the pre-trained models generate data
sets with read abundance distributions unsuitable for estimating performance indicators in
precise sample composition analyses, such as assessing the limits of Detection, Sensitivity,
and Specificity, metrics required for diagnostic assay validation.

Here, we propose Metagenomic Standards Generator (MeStanG) as a resource for
simulating de novo specific nanopore data sets resembling sequencing data. The simulated
data can be used to evaluate existing and emerging bioinformatics pipelines designed to
analyze HTS data for taxonomic classification and diagnostic purposes.
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2. Materials and Methods

MeStanG allows the generation of standard samples with precise composition features
for the performance assessment of tools that rely on variable and abundances as number of
reads per organism and diversities of the organisms in metagenomic communities. It is a
de novo approach that requires reference data sets in FASTA format (assemblies, complete
genomes, contigs, or reads) and a set of user-defined parameters for sample generation
consistent with the reference sequence lengths. MeStanG introduces an algorithm for de
novo error insertion resembling Guppy and Dorado base-calling performance implemented
as error type [20-22] and specific base transition/transversion probability using an empiric
model based on the chemical structures of the nucleotide nitrogenous bases. Users can also
provide custom error rates and base-calling accuracy profiles (Figure 1).

Design input files

MeStanG Pipeline

Output

—
Reference assemblies, complete A -
genomes, contigs, or reads

AT
Q ,:“ > G AGTCCCTGAATCGA ':‘|>
smaances Mutate reads Cia
abundances as Load sequences based on error §

y number of reads and extract reads models descriptive reports
Input files:

o List of organisms
* Taxa profile
« Custom models (optional)

Figure 1. MeStanG workflow diagram. Created in BioRender [23].

Read abundance (RA) for the organisms in the metagenomic sample can be provided
as (1) absolute number of reads, (2) relative to the total number of reads, or (3) assigned
pseudo-randomly. Samples can be designed to resemble environmental or host-microbiome
scenarios. Depending on the taxonomic distribution, the diversity design has two ap-
proaches: individual taxa or taxa with subtaxa. For designing diversity as individual taxa,
each organism in the community exists as an independent taxon, and an assignment of
absolute or relative RA is required individually. When designing diversity as taxa with
subtaxa in scenarios where individual organisms’ RA cannot be provided or estimated but
the information for a higher taxon is available, the RA for the higher taxon can be manually
set and distributed among the subtaxa, i.e., a species complex with a total known RA but
unknown for each organism in the group individually. Samples are generated in FASTA
format, along with reports of the absolute and relative RA, error profile, error distribution,
and run parameters.

To determine MeStanG’s capability of generating metagenomes with specified read
length, depth, and taxon microbial RA when compared to NanoSim metagenome mode, sev-
eral generated metagenomes with both simulation platforms using the same design param-
eters were evaluated using pipelines for metagenome analysis through assembly [24,25],
mapping to reference [25], and taxonomic sequence classification [26].

2.1. Bacterial-Only Metagenome

Nine bacterial species assemblies stored in the National Center for Biotechnology
Information (NCBI) database were used as input for generating a metagenome sample
that resembles one that contains only bacterial organisms with MeStanG and NanoSim
metagenome mode. Bacillus subtilis (GCF_000009045.1), Escherichia coli (GCF_000005845.2),
Enterococcus faecalis (GCF_000393015.1), Klebsiella pneumoniae (GCF_000364385.3), Limosi-
lactobacillus fermentum (GCF_029961225.1), Listeria monocytogenes (GCF_000438585.1), Pseu-
domonas aeruginosa (GCF_000006765.1), Staphylococcus aureus (GCF_000418345.1), and
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Salmonella enterica (GCF_000783815.2). MeStanG was run with parameters that aimed
at generating an average read length of 2000 & 200 nucleotides, varying the number of
reads for each organism to get ~50x depth for assembly, optimal for the chosen read
length [27].

Metagenome composition was detected through mapping to a combined reference
of the nine bacteria using minimap2 v2.28-r1209 [28] and samtools v1.20 [29] for post-
processing removing secondary and chimeric mappings, retrieving unique hits to each
organism per read. Metagenome Assembly was performed with Miniasm v0.3-r179 [30]
along with Racon v1.5.0 [31] for three polishing rounds and Flye v2.9.4-b1799 [32] optimized
for metagenomic samples with three polishing rounds. Assemblies were evaluated using
MetaQUAST v5.2.0 [33], and dot plots were generated using D-Genies for the assembly
alignment to the combined reference [34]. Taxonomic sequence classification was carried
out using Kraken2 v2.1.3 [35], followed by Bracken v2.9 [36], and displayed using Pavian
v1.0 [37].

2.2. Host-Pathogen Metagenome Sample Generation

Fifteen metagenomic HTS data sets were generated with MeStanG and NanoSim,
simulating bread wheat samples (Assembly accession: GCF_018294505.1) infected with
three different pathogens. The pathogens included were Puccinia striiformis f. sp. tritici
strain 134E16A+17+33+ (Assembly accession: GCF_021901695.1), Xanthomonas translucens
pv. undulosa strain XtLr8 (Assembly accession: GCF_017301775.1), and Barley yellow dwarf
virus—PAV (Nucleotide accession: NC_004750.1). Varying pathogen concentrations were
used to resemble different host-pathogen interaction scenarios. Pathogens were detected
on the samples using minimap?2, Kraken2 followed by Bracken, and E-probe Diagnostic
Nucleic Acid Analysis (EDNA) on Microbe Finder (MiFi®) [38,39]. Results were compared
to the reported pathogen RA set in the sample design.

Additionally, a set of samples resembling five serial dilutions with 20 replicates each
of wheat samples containing the viral pathogen Barley yellow dwarf virus were generated
using MeStanG to evaluate the accuracy of RA design with the same approaches for
detection previously described.

3. Results and Discussion
3.1. Bacterial-Only Metagenome Assessment

The results from mapping the bacterial metagenome to the combined reference
genomes are consistent in mapping quality for MeStanG and NanoSim data sets, with
higher accuracy in the number of mapped reads for MeStanG than NanoSim samples
(Table 1).

Assembly results for MeStanG generated samples with Miniasm followed by Racon
polishing assembly genome fractions ranged from 95.890 to 99.392% for S. enterica and
B. subtilis, respectively, and the dot plot displays a continuous high identity alignment to
the combined reference genomes. Flye genome fractions ranged from 69.373 to 92.381%
for P. aeruginosa and E. faecalis, respectively, the genome alignment plot has a similar
disposition as the Miniasm assembly plot (Figure 2). Assembly results for NanoSim-
generated samples with Miniasm followed by Racon polishing assembly genome fractions
ranged from 37.440 to 99.621% for K. pneumoniae and B. subtilis, respectively, and the dot plot
displays a discontinuous identity alignment for K. pneumoniae and S. enterica. Flye genome
fractions ranged from 10.460 to 71.668% for K. pneumoniae and L. fermentum, respectively,
the alignment plot has a similar disposition as the Miniasm assembly plot (Figure 3).
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Table 1. Metagenome assessment statistics through mapping and assembly. SP: simulation platform;
MeStanG (MSG) and NanoSim (NS), RA: Read abundances given as input for sample generation;
absolute for MeStanG and relative for NanoSim, #reads mapped: number of best unique metagenome
reads mapped to the respective reference organism genome, Mapq: mapping quality, MinR: assembly
using Miniasm coupled with Racon, NA: data not reported by MetaQUAST.

Assembly Statistics with MetaQUAST

Organism SP RA LI:;;(:; Mapq # Contigs N50 (kbp) NGA50 (kbp) Frgciril:;l(e% )
MinR Flye MinR Flye MinR Flye MinR Flye
. MSG 110000 110000 59.6 54 1850  436.656 2302  436.656 2303  99.392  83.513
B. subtilis NS 11.518 98823 59.6 53 1335 906356  2.389  897.144 2274 99621 68313
‘ MSG 120000 119999 59.8 605 1741 29770  2.325 34623 2311 96015 75711
E. coli NS 12,565 109231 59.7 243 1369 56722 2407  61.704 2269  98.073  64.021
E. faccalis MSG 75000 74997 59.9 24 1414 322042 2180 321587 2194 97577  92.381
NS 7.853 64507 59.9 402 439 11713 2434 8.771 NA 94618  35.953
K. preumoniae MSG 150000 150000 59.06 500 2764 59197 2253 61.164 2259 96337  88.924
NS 15707 143666 58.64 581 252 3.775 2521 NA NA 37.440  10.460
L. fermentum MSG 55000 54998 59.7 81 999 88.468  2.186 86.192 2192 97247  89.566
NS 5.759 45869 59.7 133 701 38395  2.392 38.395 2293  94.035  71.668
L. monocytogenes MSG 80000 80000 59.65 89 1514  264.636 2237 262428 2246  96.893  90.898
NS 8.377 69162 59.65 93 743 79.871  2.431 59.473 2240 95488  54.202
P acruginosa MSG 160000 160000 59.8 92 2091 304150 2353  304.150 2325  97.888  69.373
NS 16754 165027 59.6 85 1260  296.041 2424  242.860 NA 98.988  45.533
MSG 80000 80000 59.75 86 1116 136220 2340 136220 2325 97494  75.045
S. aureus NS 8.377 69243 59.8 97 692 75472 2.408 51.404 2222 91277 52110
. MSG 125000 125001  58.867 640 1793  31.082 2337 35386 2321 95890  74.873
5. enterica NS 13.089 113958  59.067 599 300 6.159 2.536 3.498 NA 57.236  15.050

Combined_reference Combined_reference
NC_002516.2  NC_0216.NZ_C..| NC_000913.3 | NZ_CP006659.2 |NC_000964.3NC_0218..NZ_CP026052. JjNZ_KBS... NC_002516.2 NC_0216.NZ_C..| NC_000913.3 | NZ_CP006659.2 INC_000964.3NC_0218..NZ_CP026052. JNZ_KBY...
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Figure 2. Genome alignment between the combined reference for nine different bacterial species to
the metagenome assembly of the generated sample with MeStanG using (A) Miniasm + Racon and
(B) Flye.

NanoSim simulation pipeline generates two sets of reads, aligned and unaligned. The
latter contains reads simulated at random; merging the two sets gives the total number of
reads specified for simulation [19]. Unaligned reads generation results in a ~13% loss in the
RA initially specified by design calculated from all the results presented using mapping.
This makes NanoSim unsuitable for approaches requiring an exact number of reads for
analysis as it is not possible to modify how random reads are generated or estimate a
proper initial relative RA to generate a specific number of reads.

Assembly metrics N50 refers to the contig length such that using contigs of the same
size would produce half of the bases in the assembly, NGA50 is computed as the length
of the aligned blocks that represent 50% of the reference genome size instead of the total
assembly length [40]. While the N50 reflects the assembler performance in getting long
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contigs, NGA50 is a more informative metric for assembly completeness respect to a
reference genome [41]. MetaQUAST fails to esteem NGAS50 in four cases (Table 1) as the
genome fraction is lower than 50%. The results suggest a better assembly performance
for the MeStanG than the NanoSim sample based on NGAS50 (the longer the better) and
genome fraction metrics (the higher the better).

Combined_reference Combined_reference
NC_002516.2  NC_0216.Z_C..| NC_000913.3 | NZ_CP006659.2 |NC_000964.3NC_0218..NZ_CP026052. JjNZ_KBS... NC_002516.2  NC_0216.Z_C..| NC_000913.3 | NZ_CP006659.2 [NC_000964.3NC_0218..NZ_CP026052. {NZ_KBS...
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Figure 3. Genome alignment between the combined reference for nine different bacterial species to
the metagenome assembly of the generated sample with NanoSim using (A) Miniasm + Racon and
(B) Flye.

Taxonomic classification using Kraken2 followed by Bracken reported RA consistent
with the diversity distribution designed for the MeStanG sample, ranging from 96.735% for
K. pneumoniae to 99.511% for B. subtilis (Figure 4). NanoSim sample reported RA ranged
from 50.410% for S. aureus to 85.039% for L. fermentum with overestimations for E. coli
(127.755%), E. faecalis (136.938%), and P. aeruginosa (123.163%) (Figure 5).
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Figure 4. Pavian graph of the taxonomic diversity of the simulated metagenomic sample using
MeStanG containing nine different bacterial species detected using Kraken2 followed by Bracken
with the number of reads assigned to each organism. Taxonomic levels shown as D: Domain,
P: Phylum, F: Family, G: Genus, S: Species.
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Figure 5. Pavian graph of the taxonomic diversity of the simulated metagenomic sample using
NanoSim containing nine different bacterial species detected using Kraken2 followed by Bracken
with the number of reads assigned to each organism. Taxonomic levels shown as D: Domain,
P: Phylum, F: Family, G: Genus, S: Species.

Kraken2 approach to classification is based on k-mers for efficient search against a
database and it might misassign reads to a closely related species whose k-mers are similar
within the same genus [42]. Bracken is used to improve the Kraken2 reported estimated
RA at the species level leading to better estimates [43], however as Bracken redistributes
RA at other taxonomic levels based on the initial classification, any unclassified reads
with Kraken2 will likely remain unclassified. The classification accuracy for the bacterial-
only sample generated with MeStanG was 98.417 4 0.981%, consistent with the Bracken
reported performance [36]. Accuracy for NanoSim generated samples was 69.320 £ 12.273%
excluding the overestimations, this suboptimal read classification might be explained by
the amount of unaligned random reads generated biased towards E. coli and P. aeruginosa.

3.2. Host-Pathogen Sample Generation

Results for mapping and EDNA-MiFi® were consistent with the reported RA by
MeStanG, with high-quality mappings for the pathogens present in the sample ranging
from 16.928 to 60 (97.971 to 99.999% accuracy rate) and low-quality mapping scores when
absent ranging from 0 to 5 (0 to 68.377% accuracy rate). NanoSim samples mappings
were also consistent with high-quality mappings for the pathogens present ranging from
19.584 to 60 (98.899 to 99.999% accuracy rate) and low-quality mapping scores when absent
ranging from 0 to 2.833 (0 to 47.917% accuracy rate) despite failing in retrieving all the
intended abundancies for all samples as per previously discussed (Table 2).

Kraken2 classification was able to assign the RA consistently for MeStanG and
NanoSim samples for each organism to the level of species as no specific strain/biotype
was detected (PAV for Barley yellow dwarf virus/Luteovirus pavhordei, . sp. tritici strain
134E16A+17+33+ for Puccinia striiformis, and pv. undulosa strain XtLr8 for Xanthomonas
translucens) as Kraken2 might underestimate RA when classifying reads to the strain reso-
lution level [42].

It is worth noting that taxonomic classification was more accurate in host-pathogen
NanoSim samples compared to the results of the bacterial-only metagenome. This is
likely due to the diversity in both cases being more homogeneous in the bacterial-only
sample making it more difficult to discriminate between closely related organisms. On
the other hand, taxonomic classification in MeStanG samples was consistent regardless



Biology 2025, 14, 69

8of11

of the diversity, making it suitable for generating samples to be subject of pipelines using
high-accuracy analysis thresholds.

Table 2. Host-pathogen sampling detection of select organisms using mapping, taxonomic classifica-
tion, and EDNA-M;iFi®. Sample: MSG—generated with MeStanG, NS—generated with NanoSim,
RA: Read abundances given as input for sample generation; absolute for MeStanG and relative for
NanoSim. # reads mapped: number of best unique metagenome reads mapped to the respective refer-
ence organism, Mapq: mapping quality, KB: reads assigned to each organism by Kraken2 + Bracken
taxonomic classification, EM: EDNA-MiFi® detection P for Positive and N for Negative.

Barley Yellow Dwarf Virus Puccinia striiformis £. sp. tritici Xanthomonas translucens pv. undulosa
Sample  pa 11\#451‘:;2(51 Mapq KB EM RA 1?/[1:1:;:3 Mapq KB EM RA :/II:;;Z‘Z Mapq KB EM
1_MSG 0 0 0 0 N 19233 19239 30.345 18433 P 0 5 0.333 0 N
1_NS 0 0 0 0 N 19.233 16337 31.923 16304 P 0 3 0.667 0 N
2_MSG 0 0 0 0 N 5303 5308 29.078 5081 P 0 2 5.000 0 N
2_NS 0 0 0 0 N 5.303 4283 29.400 4272 P 0 3 1.110 0 N
3_MSG 0 0 0 0 N 11571 11576 27.886 11377 P 9189 9196 59.967 9147 P
3_NS 0 0 0 0 N 11.571 9566 28.022 9551 P 9.189 7629 59.867 7611 P
4_MSG 0 0 0 0 N 7363 7373 21.974 6953 P 0 84 0.747 0 N
4_NS 0 0 0 0 N 7.363 6150 19.584 6141 P 0 159 1.087 0 N
5_MSG 19793 19793 60 18610 P 4084 4122 33.020 3933 P 0 19 1.157 0 N
5_NS 19.793 17337 60 17324 P 4.084 3346 32.354 3325 P 0 54 1.270 0 N
6_MSG 0 0 0 0 N 0 6 0.167 0 N 2758 2760 59.933 2654 P
6_NS 0 0 0 0 N 0 8 0.185 0 N 2.758 2102 59.000 2102 P
7_MSG 0 0 0 0 N 4476 4481 16.928 4266 P 5322 5322 59.933 5257 P
7_NS 0 0 0 0 N 4.476 3513 17.970 3503 P 5.322 4247 59.700 4244 P
8_MSG 3382 3382 60 3320 P 0 2 0.111 0 N 9310 9454 43280 9260 P
8_NS 3.382 2700 60 2698 P 0 1 0.056 0 N 9.31 8096 42.063 7981 P
9_MSG 0 0 0 0 N 0 10 0.389 0 N 18520 18520 59.933 18099 P
9_NS 0 0 0 0 N 0 12 1.252 0 N 18.52 16025 59.500 16020 P
10_MSG 0 0 0 0 N 0 4 0.222 0 N 16140 16272 59.800 15824 P
10_NS 0 0 0 0 N 0 5 0.167 0 N 16.14 14013 59.533 13915 P
11_MSG 2947 2947 60 2831 P 658 663 28.289 642 P 0 2 1.500 0 N
11_NS 2.947 2324 60 2323 P 0.658 589 25.293 575 P 0 2 2.833 0 N
12.MSG 24813 24812 60 23676 P 0 4 0.389 0 N 0 8 2.500 0 N
12_NS 24.813 21568 60 21555 P 0 6 1.667 0 N 0 11 1.060 0 N
13_MSG 23626 23626 60 22534 P 0 6 0.019 0 N 0 2 0.333 0 N
13_NS 23.626 20117 60 20103 P 0 4 0.069 0 N 0 3 1.890 0 N
14_MSG 9560 9560 60 9280 P 0 13 0.619 0 N 0 0 0 0 N
14_NS 9.56 7666 60 7664 P 0 12 0.234 0 N 0 5 0.600 0 N
15_MSG 2123 2123 60 2039 P 0 10 0.454 0 N 3655 3656 59.967 3613 P
15_NS 2.123 1653 59.900 1654 P 0 3 1.500 0 N 3.655 2838 59.933 2838 P

As a demonstration of the applicability of MeStanG in generating samples for assessing
sensitivity of diagnostic tests, a total of 100 samples resembling a serial dilution routine
were generated (Table 3)

Table 3. Simulated Serial dilution sampling with MeStanG of bread wheat plants infected with Barley
yellow dwarf virus where each RA has 20 replicates displaying mean values with their corresponding
standard deviation where available. Absolute RA: absolute read abundance used as input for number
of reads simulation, Relative RA: relative read abundance respect to the total number of reads in the
sample, # reads mapped: number of best unique reads mapped to the virus genome, Mapq: mapping
quality, K2B: reads assigned to the virus by Kraken2 + Bracken taxonomic classification, EM (TPR%):
EDNA-MiFi® true positive rate detection.

Relative RA # Reads Kraken2 + Bracken

o,
Absolute RA %) Mapped Mapq Hits EM (TPR%)
500 0.5 500 60 490+ 7 100
100 0.1 100 60 98 +1 100
50 0.05 50 60 48 +1 100
10 0.01 10 60 9+1 80

5 0.005 5 60 4+1 40
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The number of mapped reads and their mapping quality was the same throughout
each of the 20 samples for all RA. Taxonomic classification was not able to estimate the exact
number of reads for all samples, and EDNA-MiFi® true positive rate decreases to 80% and
40% when there are 10 and five viral reads in the sample, respectively. The performance of
taxonomic classification makes it more reliable than EDNA-MiFi® detection in the lowest
RA for this virus, which must be considered when using multiple pipelines for detection of
pathogens in HTS samples.

The parameters used to generate the samples used in this study were set according
to optimal values to ensure a proper metagenome assembly in terms of read length and
number of reads, changes in the parameters will reflect in different sequencing depths
obtaining better assemblies with higher depths [27,41]. Error rates from pre-trained models
or customized models impact directly to the accuracy of the assembly and detection
methods, making it necessary to have higher sequencing depths to address the unreliability
generated by high error rates for assembly [22,41] and run polishing or correction pipelines
to address possible misassemblies [44].

4. Conclusions

Based on its capacity of generating samples with exact number of reads per organism
and the performance metrics evaluated using tools for detection of the read abundance
and diversity of HTS samples, MeStanG has potential various applications, including
creating standards for evaluating existing and emerging bioinformatics pipelines, generat-
ing controls for validation assays, improving the estimation of diagnostic tests sensitivity
and specificity by generating exclusion and inclusion panels with sufficient replicates,
benchmarking read classification systems based on sequence alignment by testing their
performance on complex synthetic metagenome compositions resembling natural and
artificial environments, and providing mock samples for teaching basic and advanced
bioinformatic methods.

With the guidance of the user manual available at the MeStanG GitHub repository
found in the Data Availability Statement section, we want to enable users to choose prede-
fined reported performance models for common usage and customized profiles for research
and training purposes depending on the requirements for sample generation, expecting to
nurture more research based on artificial controls to estimate performance indicators before
translating technologies into real scenarios.

Author Contributions: Conceptualization, D.R.L., A.S.E. and E].F.; Methodology, D.R.L., A.S.E. and
FJ.E; Software, D.R.L.; Validation, D.R.L.; Formal analysis, D.R.L.; Investigation, D.R.L. and A.S.E.;
Resources, D.R.L. and A.S.E.; Data curation, D.R.L.; Writing—original draft preparation, D.R.L.;
Writing—review and editing, D.R.L., A.S.E. and E].E; Visualization, D.R.L.; Supervision, A.S.E. and
D.R.L.; Project administration, A.S.E.; Funding acquisition, A.S.E. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by Oklahoma State University—Oklahoma Agricultural Experi-
ment Station—Hatch OKL03271.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The generated samples by MeStanG used to assess its performance can
be found at https://doi.org/10.5281/zenodo.13858384. MeStanG source code and user manual can
be found at: https:/ /github.com/ibmf-bioinformatics /MeStanG, 11 December 2024.


https://doi.org/10.5281/zenodo.13858384
https://github.com/ibmf-bioinformatics/MeStanG

Biology 2025, 14, 69 10 of 11

Acknowledgments: Some of the computing for this project was performed at the High Performance
Computing Center at Oklahoma State University, supported in part through the National Science
Foundation grant OAC-1531128.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Handelsman, J.; Rondon, M.R,; Brady, S.F,; Clardy, J.; Goodman, R.M. Molecular Biological Access to the Chemistry of Unknown
Soil Microbes: A New Frontier for Natural Products. Chem. Biol. 1998, 5, R245-R249. [CrossRef] [PubMed]

2. Vecherskii, M.V,; Semenov, M.V,; Lisenkova, A.A.; Stepankov, A.A. Metagenomics: A New Direction in Ecology. Biol. Bull. Russ.
Acad. Sci. 2021, 48, S107-5117. [CrossRef]

3. Fierer, N.; Leff, JW.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G.
Cross-Biome Metagenomic Analyses of Soil Microbial Communities and Their Functional Attributes. Proc. Natl. Acad. Sci. USA
2012, 109, 21390-21395. [CrossRef] [PubMed]

4. Tyson, G.W,; Chapman, J.; Hugenholtz, P.; Allen, E.E.; Ram, R.J.; Richardson, P.M.; Solovyev, V.V.; Rubin, E.M.; Rokhsar, D.S.;
Banfield, ].F. Community Structure and Metabolism through Reconstruction of Microbial Genomes from the Environment. Nature
2004, 428, 37-43. [CrossRef]

5. Von Meijenfeldt, EA.B.; Arkhipova, K.; Cambuy, D.D.; Coutinho, FH.; Dutilh, B.E. Robust Taxonomic Classification of Uncharted
Microbial Sequences and Bins with CAT and BAT. Genome Biol. 2019, 20, 217. [CrossRef]

6. Benoit, G.; Raguideau, S.; James, R.; Phillippy, A.M.; Chikhi, R.; Quince, C. High-Quality Metagenome Assembly from Long
Accurate Reads with metaMDBG. Nat. Biotechnol. 2024, 42, 1378-1383. [CrossRef]

7. Chuzel, L; Sinha, A.; Cunningham, C.V.; Taron, C.H. High-Throughput Nanopore DNA Sequencing of Large Insert Fosmid
Clones Directly from Bacterial Colonies. Appl. Environ. Microbiol. 2024, 90, €00243-24. [CrossRef]

8.  Zhou,].;He, Z; Yang, Y.; Deng, Y.; Tringe, S.G.; Alvarez-Cohen, L. High-Throughput Metagenomic Technologies for Complex
Microbial Community Analysis: Open and Closed Formats. mBio 2015, 6, €02288-14. [CrossRef]

9.  Setubal, ].C. Metagenome-Assembled Genomes: Concepts, Analogies, and Challenges. Biophys. Rev. 2021, 13, 905-909. [CrossRef]

10. Lu, C;Peng, Y. Computational Viromics: Applications of the Computational Biology in Viromics Studies. Virol. Sin. 2021, 36,
1256-1260. [CrossRef]

11.  Liu, S.; Moon, C.D.; Zheng, N.; Huws, S.; Zhao, S.; Wang, J. Opportunities and Challenges of Using Metagenomic Data to Bring
Uncultured Microbes into Cultivation. Microbiome 2022, 10, 76. [CrossRef] [PubMed]

12.  Sekse, C.; Holst-Jensen, A.; Dobrindt, U.; Johannessen, G.S.; Li, W.; Spilsberg, B.; Shi, ]. High Throughput Sequencing for Detection
of Foodborne Pathogens. Front. Microbiol. 2017, 8, 2029. [CrossRef] [PubMed]

13. Espindola, A.S. Simulated High Throughput Sequencing Datasets: A Crucial Tool for Validating Bioinformatic Pathogen Detection
Pipelines. Biology 2024, 13, 700. [CrossRef]

14. Schlaberg, R.; Chiu, C.Y.; Miller, S.; Procop, G.W.; Weinstock, G.; the Professional Practice Committee and Committee on
Laboratory Practices of the American Society for Microbiology; the Microbiology Resource Committee of the College of American
Pathologists. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch. Pathol. Lab.
Med. 2017, 141, 776-786. [CrossRef]

15.  Dulanto Chiang, A.; Dekker, J.P. From the Pipeline to the Bedside: Advances and Challenges in Clinical Metagenomics. J. Infect.
Dis. 2020, 221, S331-5340. [CrossRef]

16. Milhaven, M.; Pfeifer, S.P. Performance Evaluation of Six Popular Short-Read Simulators. Heredity 2023, 130, 55-63. [CrossRef]

17.  Tanner, G.; Westhead, D.R.; Droop, A.; Stead, L.F. Simulation of Heterogeneous Tumour Genomes with HeteroGenesis and in
Silico Whole Exome Sequencing. Bioinformatics 2019, 35, 2850-2852. [CrossRef]

18. Fritz, A.; Hofmann, P; Majda, S.; Dahms, E.; Droge, J.; Fiedler, J.; Lesker, T.R.; Belmann, P.; DeMaere, M.Z.; Darling, A.E.; et al.
CAMISIM: Simulating Metagenomes and Microbial Communities. Microbiome 2019, 7, 17. [CrossRef]

19. Yang, C.; Lo, T,; Nip, K.M.; Hafezqorani, S.; Warren, R.L.; Birol, I. Characterization and Simulation of Metagenomic Nanopore
Sequencing Data with Meta-NanoSim. GigaScience 2023, 12, giad013. [CrossRef]

20. Wick, RR. ONT-Only Accuracy: 5 kHz and Dorado 2023. Zenodo. Available online: https://zenodo.org/records /10038673
(accessed on 20 September 2024).

21.  Wick, R.R. Yet Another ONT Accuracy Test: Dorado v0.5.0 2023. Zenodo. Available online: https://zenodo.org/records /10397818
(accessed on 20 September 2024).

22. Zeng,].; Cai, H,; Peng, H.; Wang, H.; Zhang, Y.; Akutsu, T. Causalcall: Nanopore Basecalling Using a Temporal Convolutional
Network. Front. Genet. 2020, 10, 1332. [CrossRef]

23. BioRender. Available online: https:/ /app.biorender.com/citation/677829ec555ed7c8e986a946 (accessed on 10 January 2025).


https://doi.org/10.1016/S1074-5521(98)90108-9
https://www.ncbi.nlm.nih.gov/pubmed/9818143
https://doi.org/10.1134/S1062359022010150
https://doi.org/10.1073/pnas.1215210110
https://www.ncbi.nlm.nih.gov/pubmed/23236140
https://doi.org/10.1038/nature02340
https://doi.org/10.1186/s13059-019-1817-x
https://doi.org/10.1038/s41587-023-01983-6
https://doi.org/10.1128/aem.00243-24
https://doi.org/10.1128/mBio.02288-14
https://doi.org/10.1007/s12551-021-00865-y
https://doi.org/10.1007/s12250-021-00395-7
https://doi.org/10.1186/s40168-022-01272-5
https://www.ncbi.nlm.nih.gov/pubmed/35546409
https://doi.org/10.3389/fmicb.2017.02029
https://www.ncbi.nlm.nih.gov/pubmed/29104564
https://doi.org/10.3390/biology13090700
https://doi.org/10.5858/arpa.2016-0539-RA
https://doi.org/10.1093/infdis/jiz151
https://doi.org/10.1038/s41437-022-00577-3
https://doi.org/10.1093/bioinformatics/bty1063
https://doi.org/10.1186/s40168-019-0633-6
https://doi.org/10.1093/gigascience/giad013
https://zenodo.org/records/10038673
https://zenodo.org/records/10397818
https://doi.org/10.3389/fgene.2019.01332
https://app.biorender.com/citation/677829ec555ed7c8e986a946

Biology 2025, 14, 69 11 of 11

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Latorre-Pérez, A.; Villalba-Bermell, P.; Pascual, J.; Vilanova, C. Assembly Methods for Nanopore-Based Metagenomic Sequencing:
A Comparative Study. Sci. Rep. 2020, 10, 13588. [CrossRef] [PubMed]

Abou Kubaa, R.; Amoia, S.S.; Altamura, G.; Minafra, A.; Chiumenti, M.; Cillo, F. Nanopore Technology Applied to Targeted
Detection of Tomato Brown Rugose Fruit Virus Allows Sequencing of Related Viruses and the Diagnosis of Mixed Infections.
Plants 2023, 12, 999. [CrossRef] [PubMed]

Diao, Z.; Lai, H.; Han, D.; Yang, B.; Zhang, R; Li, ]. Validation of a Metagenomic Next-Generation Sequencing Assay for Lower
Respiratory Pathogen Detection. Microbiol. Spectr. 2023, 11, 03812-22. [CrossRef]

Khrenova, M.G.; Panova, T.V,; Rodin, V.A.; Kryakvin, M.A.; Lukyanov, D.A.; Osterman, I.A.; Zvereva, M.I. Nanopore Sequencing
for De Novo Bacterial Genome Assembly and Search for Single-Nucleotide Polymorphism. Int. J. Mol. Sci. 2022, 23, 8569.
[CrossRef] [PubMed]

Li, H. New Strategies to Improve Minimap2 Alignment Accuracy. Bioinformatics 2021, 37, 4572-4574. [CrossRef] [PubMed]
Danecek, P.; Bonfield, ].K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, RM.;
et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [CrossRef]

Li, H. Minimap and Miniasm: Fast Mapping and de Novo Assembly for Noisy Long Sequences. Bioinformatics 2016, 32, 2103-2110.
[CrossRef]

Vaser, R.; Sovi¢, I.; Nagarajan, N.; Siki¢, M. Fast and Accurate de Novo Genome Assembly from Long Uncorrected Reads. Genome
Res. 2017, 27, 737-746. [CrossRef]

Kolmogorov, M.; Bickhart, D.M.; Behsaz, B.; Gurevich, A.; Rayko, M.; Shin, S.B.; Kuhn, K; Yuan, J.; Polevikov, E.; Smith, T.P.L.;
et al. metaFlye: Scalable Long-Read Metagenome Assembly Using Repeat Graphs. Nat. Methods 2020, 17, 1103-1110. [CrossRef]
Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile Genome Assembly Evaluation with QUAST-LG.
Bioinformatics 2018, 34, 1142-i150. [CrossRef]

Cabanettes, F.; Klopp, C. D-GENIES: Dot Plot Large Genomes in an Interactive, Efficient and Simple Way. Peer] 2018, 6, e4958.
[CrossRef] [PubMed]

Wood, D.E; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [CrossRef]
[PubMed]

Lu, J.; Breitwieser, EP; Thielen, P,; Salzberg, S.L. Bracken: Estimating Species Abundance in Metagenomics Data. Peer] Comput.
Sci. 2017, 3, €104. [CrossRef]

Breitwieser, F.P.; Salzberg, S.L. Pavian: Interactive Analysis of Metagenomics Data for Microbiome Studies and Pathogen
Identification. Bioinformatics 2020, 36, 1303—-1304. [CrossRef]

Espindola, A.S.; Cardwell, K.E. Microbe Finder (MiFi®): Implementation of an Interactive Pathogen Detection Tool in Metagenomic
Sequence Data. Plants 2021, 10, 250. [CrossRef]

Stobbe, A.H.; Daniels, J.; Espindola, A.S.; Verma, R.; Melcher, U.; Ochoa-Corona, E; Garzon, C.; Fletcher, ]J.; Schneider, W.
E-Probe Diagnostic Nucleic Acid Analysis (EDNA): A Theoretical Approach for Handling of next Generation Sequencing Data
for Diagnostics. . Microbiol. Methods 2013, 94, 356-366. [CrossRef]

Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29,
1072-1075. [CrossRef]

Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long
Sequencing Reads. PLoS Comput. Biol. 2017, 13, €1005595. [CrossRef]

DaSilva, K.; Pons, N.; Berland, M.; Plaza Onate, F.; Almeida, M.; Peterlongo, P. StrainFLAIR: Strain-Level Profiling of Metagenomic
Samples Using Variation Graphs. Peer] 2021, 9, e11884. [CrossRef]

Zhu, K,; Schiffer, A.A.; Robinson, W.; Xu, J.; Ruppin, E.; Ergun, A.F,; Ye, Y,; Sahinalp, S.C. Strain Level Microbial Detection and
Quantification with Applications to Single Cell Metagenomics. Nat. Commun. 2022, 13, 6430. [CrossRef]

Chen, Y.; Nie, E; Xie, S.-Q.; Zheng, Y.-F,; Dai, Q.; Bray, T.; Wang, Y.-X.; Xing, J.-F.; Huang, Z.-].; Wang, D.-P,; et al. Efficient
Assembly of Nanopore Reads via Highly Accurate and Intact Error Correction. Nat. Commun. 2021, 12, 60. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1038/s41598-020-70491-3
https://www.ncbi.nlm.nih.gov/pubmed/32788623
https://doi.org/10.3390/plants12050999
https://www.ncbi.nlm.nih.gov/pubmed/36903859
https://doi.org/10.1128/spectrum.03812-22
https://doi.org/10.3390/ijms23158569
https://www.ncbi.nlm.nih.gov/pubmed/35955702
https://doi.org/10.1093/bioinformatics/btab705
https://www.ncbi.nlm.nih.gov/pubmed/34623391
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1093/bioinformatics/bty266
https://doi.org/10.7717/peerj.4958
https://www.ncbi.nlm.nih.gov/pubmed/29888139
https://doi.org/10.1186/s13059-019-1891-0
https://www.ncbi.nlm.nih.gov/pubmed/31779668
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.1093/bioinformatics/btz715
https://doi.org/10.3390/plants10020250
https://doi.org/10.1016/j.mimet.2013.07.002
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1371/journal.pcbi.1005595
https://doi.org/10.7717/peerj.11884
https://doi.org/10.1038/s41467-022-33869-7
https://doi.org/10.1038/s41467-020-20236-7
https://www.ncbi.nlm.nih.gov/pubmed/33397900

	Introduction 
	Materials and Methods 
	Bacterial-Only Metagenome 
	Host-Pathogen Metagenome Sample Generation 

	Results and Discussion 
	Bacterial-Only Metagenome Assessment 
	Host-Pathogen Sample Generation 

	Conclusions 
	References

