Can Cryptogonimids of the Same Genus Influence Each Other’s Level of Genetic Variation?
<p>Variable sites of nucleotide sequences of the <span class="html-italic">cox1</span> gene for <span class="html-italic">Exorchis</span> spp. <span class="html-italic">Hap</span>—haplotype; <span class="html-italic">n</span>—number of sequences in the haplotypes. The numbers above the nucleotide sequences show the numbers of the variable sites (should be read vertically). Squares, triangles, and stars represent parasites from catfish 1 from the Elduga River, catfish 2 from the Elduga River, and catfish from the Razdolnaya River, respectively.</p> "> Figure 2
<p>Mismatch distribution graphs for the partial sequence of the <span class="html-italic">cox1</span> mtDNA gene of <span class="html-italic">Exorchis oviformis</span> (<b>A</b>) and <span class="html-italic">Exorchis convictus</span> (<b>B</b>). <span class="html-italic">Exp</span>, expected distribution, <span class="html-italic">Obs</span>, observed distribution.</p> "> Figure 3
<p>Minimum spanning tree (MST) based on the <span class="html-italic">cox1</span> mtDNA gene sequences for <span class="html-italic">Exorchis</span> spp. <span class="html-italic">Hap</span>—haplotype; <span class="html-italic">n</span>—number of sequences in the haplotypes. Square, triangle, and star are parasites from catfish 1 from the Elduga River, catfish 2 from the Elduga River, and catfish from the Razdolnaya River, respectively.</p> ">
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solodovnik, D.A.; Tatonova, Y.V.; Urabe, M.; Besprozvannykh, V.V.; Nakao, M.; Inoue, K. Three species of Exorchis Kobayashi, 1921 (Digenea: Cryptogonimidae) in the East-Asian region: Morphological and molecular data. Parasitology 2021, 148, 1578–1587. [Google Scholar] [CrossRef] [PubMed]
- Besprozvannykh, V.V.; Ermolenko, A.V.; Shedko, M.B. To the record of Exorchis oviformis (Trematoda: Cryptogonimidae) in the southern Prymorye. Parazitologiia 2000, 34, 446–451. (In Russian) [Google Scholar] [PubMed]
- Shimazu, T. Digeneans parasitic in freshwater fishes (Osteichthyes) of Japan. XI. Cryptogonimidae and Heterophyidae. Bull. Natl. Mus. Nat. Sci. Ser. A. 2017, 43, 101–118. [Google Scholar]
- Dunham, R.A.; Elaswad, A. Catfish biology and farming. Annu. Rev. Anim. Biosci. 2018, 6, 305–325. [Google Scholar] [CrossRef]
- Salem, M.A.; Mahdy, O.A.; Ramadan, R.M. Ultra-structure, genetic characterization and Immunological approach of fish borne zoonotic trematodes (Family: Heterophyidae) of a redbelly tilapia. Res. Vet. Sci. 2024, 166, 105097. [Google Scholar] [CrossRef]
- Yan, W.; Dibo, N.; Cao, Y.; Peng, W.; Tang, C.; Huang, S. Exorchis sp. in the catfish Silurus asotus and Oncomelania hupensis in marshlands of Poyang Lake, China: A potential biological control tool for Schistosoma japonicum. Int. J. Parasitol. Parasites Wildl. 2023, 21, 129–133. [Google Scholar] [CrossRef]
- Truett, G.E.; Heeger, P.; Mynatt, R.L.; Walker, J.A.; Warman, M.L. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (Hot SHOT). Biotechniques 2000, 29, 52–54. [Google Scholar] [CrossRef]
- Katokhin, A.V.; Shekhovtsov, S.V.; Konkow, S.; Yurlova, N.I.; Serbina, E.A.; Vodianitskai, S.N.; Fedorov, K.P.; Loktev, V.B.; Muratov, I.V.; Ohyama, F.; et al. Assessment of the genetic distinctions of Opisthorchis felineus from O. viverrini and Clonorchis sinensis by ITS2 and CO1 sequences. Dokl. Biochem. Biophys. 2008, 421, 214–217. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Tatonova, Y.V.; Shumenko, P.G.; Besprozvannykh, P.G. Description of Metagonimus pusillus sp. nov. (Trematoda: Heterophyidae): Phylogenetic relationships within the genus. J. Helminthol. 2018, 92, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Besprozvannykh, V.V.; Tatonova, Y.V.; Shumenko, P.G. Life cycle, morphology of developmental stages of Metorchis ussuriensis sp. nov. (Trematoda: Opisthorchiidae) and phylogenetic relationships with other opisthorchiids. J. Zool. Syst. Evol. Res. 2019, 57, 24–40. [Google Scholar] [CrossRef]
- Razo-Mendivil, U.; Rosas-Valdez, R.; Rubio-Godoy, M.; Pérez-Ponce de León, G. The use of mitochondrial and nuclear sequences in prospecting for cryptic species in Tabascotrema verai (Digenea: Cryptogonimidae), a parasite of Petenia splendida (Cichlidae) in Middle America. Parasitol. Int. 2015, 64, 173–181. [Google Scholar] [CrossRef]
- Vélez-Sampedro, V.; Uruburu, M.; Lenis, C. Morphological, molecular, and life cycle study of a new species of Oligogonotylus Watson, 1976 (Digenea, Cryptogonimidae) from Colombia. ZooKeys 2022, 1115, 169–186. [Google Scholar] [CrossRef]
- Yong, R.Q.; Martin, S.B.; Smit, N.J. A new species of Siphoderina Manter, 1934 (Digenea: Cryptogonimidae) infecting the Dory Snapper Lutjanus fulviflamma (Teleostei: Lutjanidae) from the east coast of South Africa. Syst. Parasitol. 2023, 100, 673–686. [Google Scholar] [CrossRef]
- Excoffier, L.; Schneider, S. Why hunter-gathered populations do not show signs of Pleistocene demographic expansions. Proc. Natl. Acad. Sci. USA 1999, 96, 10597–10602. [Google Scholar] [CrossRef]
- Tatonova, Y.V.; Besprozvannykh, V.V.; Shumenko, P.G.; Nguyen, M.H.; Solodovnik, D.A. First description of genetic diversity for the genus Metagonimus using the complete cox1 gene sequence. Int. J. Parasitol. 2019, 49, 985–992. [Google Scholar] [CrossRef]
- Buckingham, L.J.; Ashby, B. Coevolutionary theory of hosts and parasites. J. Evol. Biol. 2022, 35, 205–224. [Google Scholar] [CrossRef]
- Turner, W.C.; Kamath, P.L.; van Heerden, H.; Huang, Y.H.; Barandongo, Z.R.; Bruce, S.A.; Kausrud, K. The roles of environmental variation and parasite survival in virulence-transmission relationships. R. Soc. Open Sci. 2021, 8, 210088. [Google Scholar] [CrossRef]
- Gordy, M.A.; Koprivnikar, J.; McPhail, B.; Hanington, P.C. Environmental and ecological factors driving trematode parasite community assembly in central Alberta lakes. Int. J. Parasitol. Parasites Wildl. 2020, 13, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Atopkin, D.M.; Chalenko, K.P.; Nguyen, H.V. Population genetic analysis of trematode Parasaccocoelium mugili Zhukov, 1971 (Haploporidae Nicoll, 1914) from the Russian Far East and Vietnam based on ribosomal ITS and mitochondrial COI gene partial sequence data. Parasitol. Res. 2019, 118, 2575–2581. [Google Scholar] [CrossRef] [PubMed]
- Cezilly, F.; Perrot-Minnot, M.-J.; Rigaud, T. Cooperation and conflict in host manipulation: Interactions among macro-parasites and micro-organisms. Front. Microbiol. 2014, 5, 87727. [Google Scholar] [CrossRef]
- Mouritsen, K.N.; Elkjær, C.K. Cost of interspecific competition between trematode colonies. J. Helminthol. 2020, 94, e139. [Google Scholar] [CrossRef]
Species/ Developmental Stage | Locality | Length, bp | n | Accession Numbers | Reference | ||
---|---|---|---|---|---|---|---|
Country | Region | Water Body | |||||
Exorchis oviformis, adult | Russia | Primorsky Region | Elduga River | 715 | 16 | OR995367- OR995382 | This study |
Razdolnaya River | 715 | 2 | OR995383, OR995384 | This study | |||
753 | 3 | MW022453- MW022455 | [1] | ||||
Lebedinoe Lake | 753 | 3 | MW022450-MW022452 | [1] | |||
Exorchis oviformis, metacercaria | Japan | Kyushu Island | Tara River | 753 | 3 | MW022447-MW022449 | [1] |
Saga | 813 | 9 | MW014273-MW014281 | [1] | |||
Honshu Island | Aomori | 804 | 1 | MW014285 | [1] | ||
Exorchis convictus, adult | Russia | Primorsky Region | Elduga River | 715 | 11 | OR995385- OR995395 | This study |
Razdolnaya River | 715 | 1 | OR995396 | This study | |||
759 | 6 | MW022456-MW022461 | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokarskaya, E.S.; Tatonova, Y.V.; Amissah, H.A.; Shumenko, P.G.; Shchelkanov, M.Y. Can Cryptogonimids of the Same Genus Influence Each Other’s Level of Genetic Variation? Biology 2025, 14, 6. https://doi.org/10.3390/biology14010006
Tokarskaya ES, Tatonova YV, Amissah HA, Shumenko PG, Shchelkanov MY. Can Cryptogonimids of the Same Genus Influence Each Other’s Level of Genetic Variation? Biology. 2025; 14(1):6. https://doi.org/10.3390/biology14010006
Chicago/Turabian StyleTokarskaya, Ekaterina S., Yulia V. Tatonova, Haneef Ahmed Amissah, Polina G. Shumenko, and Mikhail Yu. Shchelkanov. 2025. "Can Cryptogonimids of the Same Genus Influence Each Other’s Level of Genetic Variation?" Biology 14, no. 1: 6. https://doi.org/10.3390/biology14010006
APA StyleTokarskaya, E. S., Tatonova, Y. V., Amissah, H. A., Shumenko, P. G., & Shchelkanov, M. Y. (2025). Can Cryptogonimids of the Same Genus Influence Each Other’s Level of Genetic Variation? Biology, 14(1), 6. https://doi.org/10.3390/biology14010006