Effects of Floral Characters on the Pollination Biology and Breeding System of Iris setosa (Iridaceae): A Cold-Tolerant Ornamental Species from Jilin Province
<p>The characteristics of the flower of <span class="html-italic">I. setosa</span>. (<b>A</b>) The overall structure of the corolla of <span class="html-italic">I. setosa</span>, (<b>B</b>) top view of corolla, (<b>C</b>) floral unit. sti. Stigma, st. Stamen, pi. Pistil, hg. nectar guide, ct. Corolla tube, ov. Ovary, op. Outer perianth, ip. Inner perianth, an. Anther, fi. Filament.</p> "> Figure 2
<p>Changes of stamens and pistils in <span class="html-italic">I. setosa</span> during flowering. From left to right, 3 p.m. the day before bloom, 9 a.m. on the day of bloom, 3 p.m. on the day of bloom, 9 a.m. on the first day of bloom, and 9 a.m. on the second day of bloom.</p> "> Figure 3
<p>Annual phenology of <span class="html-italic">I. setosa</span> group. (<b>A</b>,<b>B</b>) nutritive growth stage, (<b>C</b>) stem extraction stage, (<b>D</b>) squaring period, (<b>E</b>) initial flowering period, (<b>F</b>) blooming period, (<b>G</b>) end flowering period, (<b>H</b>,<b>I</b>) fruit period.</p> "> Figure 4
<p>The flowering process of <span class="html-italic">I. setosa</span>. (<b>A</b>) bracts, buds, (<b>B</b>) buds about to open, (<b>C</b>–<b>E</b>) perianths are scattered one by one, (<b>F</b>) blooming flowers, (<b>G</b>–<b>J</b>) flowers gradually withered, (<b>K</b>,<b>L</b>) ovary enlarged.</p> "> Figure 5
<p>Pollen vitality of <span class="html-italic">I. setosa</span>.</p> "> Figure 6
<p>Stigma receptivity of <span class="html-italic">I. setosa</span>.</p> "> Figure 7
<p>Changes in pollen viability of <span class="html-italic">I. setosa</span> under different storage temperatures.</p> "> Figure 8
<p>Fluorescence observation of pollen tube growth after natural flowering of <span class="html-italic">I. setosa</span>. (<b>A</b>) Natural flowering 0 d in the morning, (<b>B</b>) Natural flowering 0 d in the afternoon, (<b>C</b>) Natural flowering 1 d in the morning, (<b>D</b>) Natural flowering 1 d in the afternoon. PG: Pollen grain, PT: Pollen tube, OU: Ovule.</p> "> Figure 9
<p>Fluorescence observation of pollen tube growth of <span class="html-italic">I. setosa</span> after artificial self-pollination. (<b>A</b>) Pollen morphology under fluorescence, (<b>B</b>) Pollen germinated on the stigma at 1 h after pollination, (<b>C</b>) Pollen tube bundle growth at 2 h after pollination, (<b>D</b>) Pollen tube folds intertwined at 4 h after pollination, (<b>E</b>) Pollen tubes entered the style, (<b>F</b>) Pollen tube continues to grow downward, (<b>G</b>) Pollen tube bending, (<b>H</b>) Pollen tube fracture, (<b>I</b>) Pollen tubes reaches the ovule at 6 h after pollination. PG: Pollen grain, PT: Pollen tube, OU: Ovule.</p> "> Figure 10
<p>Fluorescence observation of pollen tube growth of <span class="html-italic">I. setosa</span> after artificial cross pollination. (<b>A</b>) Pollen morphology under fluorescence, (<b>B</b>) Pollen germinated on the stigma at 1 h after pollination, (<b>C</b>) Pollen tube bundle growth at 2 h after pollination, (<b>D</b>) Pollen tube folds intertwined at 4 h after pollination, (<b>E</b>) Pollen tube continues to grow downward, (<b>F</b>) Pollen tube bending, (<b>G</b>) Pollen tube reaches the bottom of the style, (<b>H</b>) Pollen tubes reaches the ovule at 6 h after pollination, (<b>I</b>) Pollen tube wrapped around the ovule at 8 h after pollination. PG: Pollen grain, PT: Pollen tube, OU: Ovule.</p> "> Figure 11
<p>Flower visiting insect species. (<b>A</b>) <span class="html-italic">Apis mellifera</span>, (<b>B</b>) <span class="html-italic">Megachile</span> sp., (<b>C</b>) <span class="html-italic">Syrphus corollae</span>, (<b>D</b>) <span class="html-italic">Episyrphus balteatus</span>, (<b>E</b>) <span class="html-italic">Lasioglossum</span> sp., (<b>F</b>) Mordellidae.</p> "> Figure 12
<p>Behaviour of flower-visiting insects. (<b>A</b>–<b>C</b>) The pollination process of <span class="html-italic">Apis mellifera</span> (p. pollen ball), (<b>D</b>) Flower Visiting Behaviour of <span class="html-italic">Lasioglossum</span> sp. (p. pollen ball), (<b>E</b>,<b>F</b>) The pollination process of <span class="html-italic">Syrphus corollae</span>, (<b>G</b>) Flower Visiting Behaviour of <span class="html-italic">Episyrphus balteatus</span>, (<b>H</b>,<b>I</b>) The pollination process of <span class="html-italic">Megachile</span> sp. (p. pollen ball).</p> ">
1. Introduction
2. Materials and Methods
2.1. Study Sites and Species
2.2. Observations on Floral Phenology and Morphology
2.3. Determination of Pollen Viability and Stigma Receptivity
2.4. Determination of Pollen Viability at Different Storage Temperatures
2.5. Estimation of Outcrossing Index (OCI) and the Pollen-Ovule Ratio
2.6. Sampling and Calculation of Nectar Characteristics
2.7. Sampling and Preservation of Pollen Tubes
2.8. Observations on Flower Visiting Insect Species and Behavior
2.9. Artificial Pollination Test
2.10. Statistical Analysis
3. Results
3.1. Flowering Characteristics and Flowering Period Characteristics
3.2. Pollen Viability and Stigma Receptivity
3.3. Effect of Different Storage Temperatures on the Determination of Pollen Viability
3.4. Outcrossing Index and Pollen-Ovule Ratio
3.5. Nectar Characteristics
3.6. Fluorescence Microscopy of Pollen Tube Growth
3.7. Observations of Flower-Visiting Insect Species and Behavior
3.8. Artificial Pollination Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haig, D.; Westoby, M. On Limits to Seed Production. Am. Nat. 1988, 131, 757–759. [Google Scholar] [CrossRef]
- García-Camacho, R.; Totland, Ø. Pollen Limitation in the Alpine: A Meta-Analysis. Arct. Antarct. Alp. Res. 2009, 41, 103–111. [Google Scholar] [CrossRef]
- Harder, L.D.; Aizen, M.A. Floral adaptation and diversification under pollen limitation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Ashman, T.L.; Knight, T.M.; Steets, J.A.; Amarasekare, P.; Burd, M.; Campbell, D.R.; Dudash, M.R.; Johnston, M.O.; Mazer, S.J.; Mitchell, R.J.; et al. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 2004, 85, 2408–2421. [Google Scholar] [CrossRef]
- Bierzychudek, P. Pollinator Limitation of Plant Reproductive Effort. Am. Nat. 1981, 117, 838–840. [Google Scholar] [CrossRef]
- Pellegrino, G.; Noce, M.E.; Bellusci, F.; Musacchio, A. Reproductive biology and conservation genetics of Serapias vomerace (Orchidaceae). Folia Geobot. 2006, 41, 21–32. [Google Scholar] [CrossRef]
- Aizen, M.A.; Harder, L.D. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 2007, 88, 271–281. [Google Scholar] [CrossRef]
- Glaettli, M.; Barrett, S.C.H. Pollinator responses to variation in floral display and flower size in dioecious Sagittaria latifolia (Alismataceae). New Phytol. 2008, 179, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, M.L.; Hormaza, J.I. Inadequate Pollination Is a Key Factor Determining Low Fruit-to-Flower Ratios in Avocado. Horticulturae 2024, 10, 140. [Google Scholar] [CrossRef]
- Mathew, B. The Iris; Professional Horticulture, Chartered Institute of Horticulture: New York, NY, USA, 1981; Volume 4, pp. 91–92. [Google Scholar]
- Lê, H.G.; Hwang, B.S.; Choi, J.S.; Jeong, Y.T.; Kang, J.M.; Võ, T.C.; Oh, Y.T.; Na, B.K. Iris setosa Pall. ex Link Extract Reveals Amoebicidal Activity against Acanthamoeba castellanii and Acanthamoeba polyphaga with Low Toxicity to Human Corneal Cells. Microorganisms 2024, 12, 1658. [Google Scholar] [CrossRef] [PubMed]
- Goldblatt, P. Phylogeny and classification of Iridaceae. Ann. Mo. Bot. Gard. 1990, 77, 607–627. [Google Scholar] [CrossRef]
- Rudall, P.J.; Manning, J.C.; Goldblatt, P. Evolution of Floral Nectaries in Iridaceae. Ann. Mo. Bot. Gard. 2003, 90, 613–631. [Google Scholar] [CrossRef]
- Crisan, I.; Vidican, R.; Plesa, A.; Mihăiescu, T. Phytoremediation Potential of Iris spp. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca 2021, 78, 1. [Google Scholar] [CrossRef]
- Konarska, A. Morphological, anatomical, ultrastructural, and histochemical study of flowers and nectaries of Iris sibirica L. Micron 2022, 158, 103288. [Google Scholar] [CrossRef] [PubMed]
- Goldblatt, P.; Manning, J.C. The Iris Family: Natural History and Classification; Timber Press: Portland, OR, USA, 2008. [Google Scholar]
- Segal, B.; Sapir, Y.; Carmel, Y. Fragmentation and Pollination Crisis in the Self-Incompatible Iris Bismarckiana (IRIDACEAE), with Implications for Conservation. Isr. J. Ecol. Evol. 2006, 52, 111–122. [Google Scholar] [CrossRef]
- Imbert, E.; Wang, H.; Anderson, B.; Hervouet, B.; Talavera, M.; Schatz, B. Reproductive biology and colour polymorphism in the food-deceptive Iris lutescens (Iridaceae). Acta Bot. Gall. 2014, 161, 117–127. [Google Scholar] [CrossRef]
- Goldblatt, P.; Manning, J.C. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa. Ann. Bot. 2006, 97, 317–344. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.C.; Jiao, Z.J.; Dong, X.S.; Dai, J.X. Floral Syndrome and Breeding System of Iris tectorum. Acta Hortic. Sin. 2011, 38, 1333–1340. [Google Scholar]
- Goldblatt, P.; Manning, J.C. The Long-Proboscid Fly Pollination System in Gladiolus (Iridaceae). Ann. Mo. Bot. Gard. 1999, 86, 758–774. [Google Scholar] [CrossRef]
- Liu, L.L.; Cao, X.D.; Xu, Z.R.; Zhang, J.F.; Wu, Y.H. Studies on Floral Syndrome and Mating System of Iris halophila. Acta Agrestia Sin. 2021, 29, 2733–2741. [Google Scholar] [CrossRef]
- Fan, S.R.; Fu, J.H.; Zhuang, Q.R.; Zhang, Y.X.; Wang, Y.J.; Zhang, T.; Liu, Q.Q.; Tian, S.Q.; Yuan, H.Y. Studies on Floral Syndrome and Breeding Habits of Iris pseudacorus. Acta Agrestia Sin. 2023, 31, 96–104. [Google Scholar] [CrossRef]
- Liu, R.; Gao, Y.; Fan, Z.; Wang, X.; Xiao, J.; Zhang, Q. Within-day temporal isolation of two species of Iris (Iridaceae) sharing the same pollinator. Biol. J. Linn. Soc. 2020, 130, 447–457. [Google Scholar] [CrossRef]
- Szőllősi, R.; Medvegy, A.; Benyes, E.; Németh, A.; Mihalik, E. Flowering phenology, floral display and reproductive success of Iris sibirica. Acta Bot. Hung. 2011, 53, 409–422. [Google Scholar] [CrossRef]
- Goldblatt, P.; Manning, J.C. Systematics and biology of the African genus Ferraria (Iridaceae: Irideae). Bothalia 2011, 41, 1–40. [Google Scholar] [CrossRef]
- Yuan, S.-C.; Chin, S.-W.; Lee, C.-Y.; Chen, F.-C. Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Bot. Stud. 2018, 59, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Ye, C.L.; Shang, X.C.; Wang, J.; Zhang, B.; Wang, Z.Z.; Zhang, G.T. Study on breeding and pollination characteristics of Gleditsia sinensis. Zhongguo Zhong Yao Za Zhi 2018, 43, 4831–4836. [Google Scholar] [CrossRef] [PubMed]
- Dafni, A. Pollination Ecology: A Practical Approach; The Practical Approach Series; Oxford University Press: Oxford, UK, 1992; Volume 6, pp. 763–778. ISBN 0-19-963298-7A. [Google Scholar]
- Cruden, R.W. Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 1977, 31, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.; Luo, G.; Li, Z.; Zhao, C.; Zhang, H.; Zhu, M.; Xu, Q.; Wang, X.; Zhao, C.; et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379. [Google Scholar] [CrossRef]
- Pyke, G.H.; Ren, Z.-X.; Trunschke, J.; Lunau, K.; Wang, H. Salvage of floral resources through re-absorption before flower abscission. Sci. Rep. 2020, 29, 15960. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.; Pauw, A.; Cole, W.W.; Barrett, S.C.H. Pollination, mating and reproductive fitness in a plant population with bimodal floral-tube length. J. Evol. Biol. 2016, 29, 1631–1642. [Google Scholar] [CrossRef]
- Budečević, S.; Hočevar, K.; Jovanović, S.M.; Vuleta, A. Phenotypic Selection on Flower Traits in Food-Deceptive Plant Iris pumila L. The Role of Pollinators. Symmetry 2023, 15, 1149. [Google Scholar] [CrossRef]
- Crişan, I.; Vidican, R.; Oltean, I.; Stoie, A.; Stoian, V. Iris spp. flower visitors: Pollinators vs. nectar thieves. Rom. J. Grassl. Forage Crops 2018, 17, 11–20, ISSN 2068-3065. [Google Scholar]
- Tong, Z.Y.; Wang, X.P.; Wu, L.Y.; Huang, S.Q. Nectar supplementation changes pollinator behaviour and pollination mode in Pedicularis dichotoma: Implications for evolutionary transitions. Ann. Bot. 2019, 123, 373–380. [Google Scholar] [CrossRef]
- Wang, B.; Ma, G.; Lin, S.; He, X.; Chen, B.; Li, H.; Huang, L.; Yang, Y.; Wei, J. Floral Biology of Aquilaria sinensis (Lour.) Spreng. Horticulturae 2024, 10, 109. [Google Scholar] [CrossRef]
- Yuan, B.; Hu, G.X.; Zhang, X.X.; Yuan, J.K.; Fan, X.M.; Yuan, D.Y. What Are the Best Pollinator Candidates for Camelia oleifera: Do Not Forget Hoverflies and Flies. Insects 2022, 13, 539. [Google Scholar] [CrossRef] [PubMed]
- Barranco, D.; Arroyo, J.; Santos-Gally, R. Avoiding sexual interference: Herkogamy and dichogamy in style dimorphic flowers of Narcissus broussonetii (Amaryllidaceae). AoB Plants 2019, 11, plz038. [Google Scholar] [CrossRef] [PubMed]
- Hicks, D.M.; Ouvrard, P.; Baldock, K.C.; Baude, M.; Goddard, M.A.; Kunin, W.E.; Mitschunas, N.; Memmott, J.; Morse, H.; Nikolitsi, M.; et al. Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows. PLoS ONE 2016, 11, e0158117. [Google Scholar] [CrossRef]
- Arafeh, R.; Sapir, Y.; Shmida, A.; Iraki, N.; Fragman, O.; Comes, H. Patterns of genetic and phenotypic variation in Iris haynei and I. atrofusca (Iris sect. royal irises) along an ecogeographical gradient in Israel and the West Bank. Mol. Ecol. 2002, 11, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Sapir, Y.; Shmida, A.; Ne’eman, G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 2006, 147, 53–59. [Google Scholar] [CrossRef]
Floral Organ | mm Size |
---|---|
Outer perianth length | 45.1 ± 3.8 |
Outer perianth breadth | 23.1 ± 1.9 |
Inner perianth length | 10.1 ± 0.6 |
Inner perianth breadth | 4.5 ± 0.6 |
Ovary height | 11.7 ± 1.8 |
Style height | 29.9 ± 2.2 |
Stigma height | 2.2 ± 0.4 |
Stamen height | 20.3 ± 1.7 |
Flower diameter | 67.9 ± 9.1 |
Time/d | Pollen Viability/% | Stigma Receptive |
---|---|---|
−1 | 91 ± 3 | − |
1 | 96 ± 2 | +++ |
2 | 66 ± 9 | ++ |
3 | 29 ± 7 | + |
Visitor | Visitation Rates | Number (%) of Visits | Visitor Type | Reward |
---|---|---|---|---|
Apis mellifera | 0.438 ± 0.080 a | 112 (42) | Pollinator | Nectar, pollen |
Megachile sp. | 0.406 ± 0.087 a | 106 (40) | Pollinator | Nectar, pollen |
Lasioglossum sp. | 0.154 ± 0.039 b | 32 (12) | Pollinator | Nectar, pollen |
Syrphus corollae | 0.080 ± 0.058 c | 10 (4) | Pollen thief | pollen |
Episyrphus balteatus | 0.066 ± 0.052 c | 6 (2) | Pollen thief | pollen |
Pollination Test | Number of Flowers | Fruit Setting Rate/% | Seed Number/% | Seed Setting Rate/% |
---|---|---|---|---|
T1 | 20 | 90.00 | 85 ± 10 a | 63 ± 11 a |
T2 | 20 | 0.00 | 0 ± 0 d | 0 ± 0 d |
T3 | 20 | 0.00 | 0 ± 0 d | 0 ± 0 d |
T4 | 20 | 55.00 | 37 ± 23 c | 29 ± 14 c |
T5 | 20 | 85.00 | 59 ± 9 b | 43 ± 10 b |
T6 | 20 | 95.00 | 88 ± 5 a | 63 ± 9 a |
T7 | 20 | 100.00 | 86 ± 7 a | 65 ± 9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, R.; Chen, L.; Pei, T.; Gao, Y.; Lu, X.; Zhou, Y. Effects of Floral Characters on the Pollination Biology and Breeding System of Iris setosa (Iridaceae): A Cold-Tolerant Ornamental Species from Jilin Province. Biology 2025, 14, 2. https://doi.org/10.3390/biology14010002
Zhang X, Liu R, Chen L, Pei T, Gao Y, Lu X, Zhou Y. Effects of Floral Characters on the Pollination Biology and Breeding System of Iris setosa (Iridaceae): A Cold-Tolerant Ornamental Species from Jilin Province. Biology. 2025; 14(1):2. https://doi.org/10.3390/biology14010002
Chicago/Turabian StyleZhang, Xiyue, Ruoqi Liu, Lifei Chen, Tianhao Pei, Yu Gao, Xi Lu, and Yunwei Zhou. 2025. "Effects of Floral Characters on the Pollination Biology and Breeding System of Iris setosa (Iridaceae): A Cold-Tolerant Ornamental Species from Jilin Province" Biology 14, no. 1: 2. https://doi.org/10.3390/biology14010002
APA StyleZhang, X., Liu, R., Chen, L., Pei, T., Gao, Y., Lu, X., & Zhou, Y. (2025). Effects of Floral Characters on the Pollination Biology and Breeding System of Iris setosa (Iridaceae): A Cold-Tolerant Ornamental Species from Jilin Province. Biology, 14(1), 2. https://doi.org/10.3390/biology14010002