Shear Bond Strength and Microleakage of Pit and Fissure Sealants Placed after Saliva-Contaminated Etched Enamel
<p>Diagram of the experimental design. SBS, Shear bond strength.</p> "> Figure 2
<p>The process of sealant cylinder adhering to the enamel surface. (<bold>a</bold>) The tooth surface was embedded in self-curing acrylic resin; (<bold>b</bold>) a polypropylene mold with a central hole 2 mm in diameter × 3 mm height was applied over the enamel surface and fixed with wax; (<bold>c</bold>) the mold was removed, leaving a sealant cylinder adhering to the enamel surface.</p> "> Figure 3
<p>Failure modes of the samples after 24 h storage at 37 °C by operation microscope with 20-fold magnification. (<bold>a</bold>–<bold>e</bold>) Adhesive failure in groups 1, 2, 3, 4, and 5; (<bold>f</bold>,<bold>g</bold>) cohesive failure in the sealant in groups 1 and 4; (<bold>h</bold>–<bold>l</bold>) mixed failure in groups 1, 2, 3, 4, and 5.</p> "> Figure 4
<p>Failure modes of the samples after 5000 cycles of thermocycling by operation microscope with 20-fold magnification. (<bold>a</bold>–<bold>e</bold>) Adhesive failure in groups 1′, 2′, 3′, 4′, and 5′; (<bold>f</bold>) cohesive failure in the sealant in group 4′; (<bold>g</bold>–<bold>k</bold>) mixed failure in groups 1′, 2′, 3′, 4′, and 5′.</p> "> Figure 5
<p>Distribution of failure modes in each group. Group 1, etching; group 2, etching + contamination; group 3, etching + contamination + rinsing; group 4, etching + contamination+ re-etching; group 5, etching + contamination + universal adhesive. For groups 1–5, 24 h storage; groups 1′–5′, 5000× thermocycling.</p> "> Figure 6
<p>Microscopic images showing microleakage between the enamel surface and the fissure sealant (20×). (<bold>a</bold>) No dye penetration; (<bold>b</bold>) dye penetration up to one-half or less of the sealant depth; (<bold>c</bold>) dye penetration extending to the inner half of the sealant; (<bold>d</bold>) dye penetration to the sealant base. The dotted lines indicate dye penetration.</p> "> Figure 7
<p>Scanning electron microscope images of the enamel surface after treatment in each group. (<bold>a</bold>–<bold>c</bold>) Etched enamel in groups 1 and 1′ (magnification ×500, 1000, 2000); (<bold>d</bold>–<bold>f</bold>) etched enamel that has been saliva-contaminated in groups 2 and 2′ (magnification ×500, 1000, 2000); (<bold>g</bold>–<bold>i</bold>) etched enamel that has been saliva-contaminated and rinsed in groups 3 and 3′ (magnification ×500, 1000, 2000); (<bold>j</bold>–<bold>l</bold>) etched enamel that has been saliva-contaminated and re-etched in groups 4 and 4′ (magnification ×500, 1000, 2000); (<bold>m</bold>–<bold>o</bold>) etched enamel that has been saliva-contaminated and applied with adhesive in groups 5 and 5′ (magnification ×500, 1000, 2000).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Placing the Fissure Sealant Material
2.3. Notched-Edge SBS Testing and Failure Mode Analysis
2.4. Microleakage Testing
2.5. SEM Observation
2.6. Statistical Analysis
3. Results
3.1. Notched-Edge SBS Testing
3.2. Failure Mode Analysis
3.3. Microleakage Testing
3.4. SEM Observation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, D.A.; Nový, B.B.; Zeller, G.G.; Hale, R.; Hart, T.C.; Truelove, E.L.; American Dental Association Council on Scientific Affairs; American Dental Association Council on Scientific Affairs. The American Dental Association Caries Classification System for clinical practice: A report of the American Dental Association Council on Scientific Affairs. J. Am. Dent. Assoc. 2015, 146, 79–86. [Google Scholar] [CrossRef]
- Dye, B.A.; Tan, S.; Smith, V.; Lewis, B.G.; Barker, L.K.; Thornton-Evans, G.; Eke, P.I.; Beltrán-Aguilar, E.D.; Horowitz, A.M.; Li, C.H. Trends in oral health status: United States, 1988–1994 and 1999–2004. Vital Health Stat. 11 2007, 1–92. [Google Scholar]
- Kashbour, W.; Gupta, P.; Worthington, H.V.; Boyers, D. Pit and fissure sealants versus fluoride varnishes for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database Syst. Rev. 2020, 11, CD003067. [Google Scholar] [PubMed]
- Splieth, C.H.; Ekstrand, K.R.; Alkilzy, M.; Clarkson, J.; Meyer-Lueckel, H.; Martignon, S.; Paris, S.; Pitts, N.B.; Ricketts, D.N.; van Loveren, C. Sealants in dentistry: Outcomes of the ORCA Saturday Afternoon Symposium 2007. Caries Res. 2010, 44, 3–13. [Google Scholar] [CrossRef]
- Lam, P.P.; Sardana, D.; Lo, E.C.; Yiu, C.K. Fissure sealant in a nutshell. Evidence-based meta-evaluation of sealants’ effectiveness in caries prevention and arrest. J. Evid. Based Dent. Pract. 2021, 21, 101587. [Google Scholar] [CrossRef]
- Wright, J.T.; Crall, J.J.; Fontana, M.; Gillette, E.J.; Nový, B.B.; Dhar, V.; Donly, K.; Hewlett, E.R.; Quinonez, R.B.; Chaffin, J.; et al. Evidence-based clinical practice guideline for the use of pit-and-fissure sealants: A report of the American Dental Association and the American Academy of Pediatric Dentistry. J. Am. Dent. Assoc. 2016, 147, 672–682. [Google Scholar] [CrossRef] [Green Version]
- Naaman, R.; El-Housseiny, A.A.; Alamoudi, N. The Use of Pit and Fissure Sealants-A Literature Review. Dent. J. 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Ahovuo-Saloranta, A.; Forss, H.; Walsh, T.; Nordblad, A.; Mäkelä, M.; Worthington, H.V. Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database Syst. Rev. 2017, 7, CD001830. [Google Scholar] [CrossRef] [Green Version]
- Barroso, J.M.; Torres, C.P.; Lessa, F.C.; Pécora, J.D.; Palma-Dibb, R.G.; Borsatto, M.C. Shear bond strength of pit-and-fissure sealants to saliva-contaminated and noncontaminated enamel. J. Dent. Child. 2005, 72, 95–99. [Google Scholar]
- Prabhakar, A.R.; Murthy, S.A.; Sugandhan, S. Comparative evaluation of the length of resin tags, viscosity and microleakage of pit and fissure sealants—An in vitro scanning electron microscope study. Contemp. Clin. Dent. 2011, 2, 324–330. [Google Scholar] [CrossRef]
- Cvikl, B.; Moritz, A.; Bekes, K. Pit and Fissure Sealants-A Comprehensive Review. Dent. J. 2018, 6, 18. [Google Scholar]
- Chabadel, O.; Véronneau, J.; Montal, S.; Tramini, P.; Moulis, E. Effectiveness of pit and fissure sealants on primary molars: A 2-yr split-mouth randomized clinical trial. Eur. J. Oral Sci. 2021, 129, e12758. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, L.P.; Moses, J.; Rangeeth, B.N.; Sivakumar, S. Comparative Evaluation of the Marginal Sealing Ability of two Commercially Available Pit and Fissure Sealants. J. Clin. Diagn. Res. 2016, 10, ZC01–ZC04. [Google Scholar] [CrossRef]
- Buonocore, M.G. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J. Dent. Res. 1955, 34, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Silverstone, L.M.; Hicks, M.J.; Featherstone, M.J. Oral fluid contamination of etched enamel surfaces: An SEM study. J. Am. Dent. Assoc. 1985, 110, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Silva, J.M.; Torres, C.P.; Contente, M.M.; Oliveira, M.A.; Palma-Dibb, R.G.; Borsatto, M.C. Bond strength of a pit-and-fissure sealant associated to etch-and-rinse and self-etching adhesive systems to saliva-contaminated enamel: Individual vs. simultaneous light curing. Braz. Dent. J. 2008, 19, 341–347. [Google Scholar]
- Silveira, R.E.; Vivanco, R.G.; de Morais, R.C.; Da Col Dos Santos Pinto, G.; Pires-de-Souza, F. Bioactive glass ceramic can improve the bond strength of sealant/enamel? Eur. Arch. Paediatr. Dent. 2019, 20, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Hormati, A.A.; Fuller, J.L.; Denehy, G.E. Effects of contamination and mechanical disturbance on the quality of acid-etched enamel. J. Am. Dent. Assoc. 1980, 100, 34–38. [Google Scholar] [CrossRef]
- Thomson, J.L.; Main, C.; Gillespie, F.C.; Stephen, K.W. The effect of salivary contamination on fissure sealant—Enamel bond strength. J. Oral Rehabil. 1981, 8, 11–18. [Google Scholar] [CrossRef]
- Paryab, M. Sealant microleakage after using nano-filled bonding agents on saliva-contaminated enamel. J. Dent. 2013, 10, 227–232. [Google Scholar]
- Eliades, A.; Birpou, E.; Eliades, T.; Eliades, G. Self-adhesive restoratives as pit and fissure sealants: A comparative laboratory study. Dent. Mater. 2013, 29, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Seraj, B.; Meighani, G.; Milani, S.; Fatemi, M. Effect of Precuring and Postcuring of Total-Etch and Self-Etch Bonding Agents on the Microleakage of Fissure Sealants. Front. Dent. 2019, 16, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.; Forjanic, M.; Cavalleri, A. Microleakage of Class II restorations with different tracers—Comparison with SEM quantitative analysis. J. Adhes. Dent. 2008, 10, 259–267. [Google Scholar] [PubMed]
- Lo, Y.F.; Pitchika, V.; Ilie, N.; Hickel, R.; KÜhnisch, J. Does etching time affect the in vitro performance of a sealant material? Dent. Mater. J. 2020, 39, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.L.; Birlbauer, S.; Lo, Y.F.; Pitchika, V.; Crispin, A.; Ilie, N.; Hickel, R.; Kühnisch, J. Which Factors Influence the Shear Bond Strength of Sealant Materials? J. Adhes. Dent. 2016, 18, 397–404. [Google Scholar] [PubMed]
- Memarpour, M.; Rafiee, A.; Shafiei, F.; Dorudizadeh, T.; Kamran, S. Adhesion of three types of fissure sealant in saliva-contaminated and noncontaminated conditions: An in vitro study. Eur. Arch. Paediatr. Dent. 2021, 22, 813–821. [Google Scholar] [CrossRef]
- Correr, G.M.; Caldo-Teixeira, A.S.; Alonso, R.C.; Puppin-Rontani, R.M.; Sinhoreti, M.A.; Correr-Sobrinho, L. Effect of saliva contamination and re-etching time on the shear bond strength of a pit and fissure sealant. J. Appl. Oral Sci. 2004, 12, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Mesquita-Guimarães, K.S.; Sabbatini, I.F.; Almeida, C.G.; Galo, R.; Nelson-Filho, P.; Borsatto, M.C. Bond Strength of a Bisphenol-A-Free Fissure Sealant with and without Adhesive Layer under Conditions of Saliva Contamination. Braz. Dent. J. 2016, 27, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Memarpour, M.; Shafiei, F.; Zarean, M.; Razmjoei, F. Sealing effectiveness of fissure sealant bonded with universal adhesive systems on saliva-contaminated and noncontaminated enamel. J. Clin. Exp. Dent. 2018, 10, e1–e6. [Google Scholar] [CrossRef]
- Mattar, R.E.; Sulimany, A.M.; Binsaleh, S.S.; Al-Majed, I.M. Comparison of Fissure Sealant Chair Time and Patients’ Preference Using Three Different Isolation Techniques. Children 2021, 8, 444. [Google Scholar] [CrossRef]
- Jeffrey, A.; Avery, D.R.; McDonald, R.E. McDonald and Avery’s Dentistry for the Child and Adolescent, 10th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016; p. 179. [Google Scholar]
- Simonsen, R.J. Pit and fissure sealant: Review of the literature. Pediatr. Dent. 2002, 24, 393–414. [Google Scholar]
- Eskandarian, T.; Baghi, S.; Alipoor, A. Comparison of Clinical Success of Applying a Kind of Fissure Sealant on the Lower Permanent Molar Teeth in Dry and Wet Conditions. J. Dent. 2015, 16, 162–168. [Google Scholar]
- Feigal, R.J.; Hitt, J.; Splieth, C. Retaining sealant on salivary contaminated enamel. J. Am. Dent. Assoc. 1993, 124, 88–97. [Google Scholar] [CrossRef]
- Xie, J.; Powers, J.M.; McGuckin, R.S. In vitro bond strength of two adhesives to enamel and dentin under normal and contaminated conditions. Dent. Mater. 1993, 9, 295–299. [Google Scholar] [CrossRef]
- Panigrahi, A.; Srilatha, K.T.; Panigrahi, R.G.; Mohanty, S.; Bhuyan, S.K.; Bardhan, D. Microtensile Bond Strength of Embrace Wetbond Hydrophilic Sealant in Different Moisture Contamination: An In-Vitro Study. J. Clin. Diagn. Res. 2015, 9, ZC23–ZC25. [Google Scholar] [CrossRef]
- Espinosa, R.; Valencia, R.; Uribe, M.; Ceja, I.; Saadia, M. Enamel deproteinization and its effect on acid etching: An in vitro study. J. Clin. Pediatr. Dent. 2008, 33, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagherian, A.; Sarraf Shirazi, A.; Sadeghi, R. Adhesive systems under fissure sealants: Yes or no?: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2016, 147, 446–456. [Google Scholar] [CrossRef]
- Botton, G.; Morgental, C.S.; Scherer, M.M.; Lenzi, T.L.; Montagner, A.F.; Rocha, R.O. Are self-etch adhesive systems effective in the retention of occlusal sealants? A systematic review and meta-analysis. Int. J. Paediatr. Dent. 2016, 26, 402–411. [Google Scholar] [CrossRef]
- Khare, M.; Suprabha, B.S.; Shenoy, R.; Rao, A. Evaluation of pit-and-fissure sealants placed with four different bonding protocols: A randomized clinical trial. Int. J. Paediatr. Dent. 2017, 27, 444–453. [Google Scholar] [CrossRef]
- Hebling, J.; Feigal, R.J. Use of one-bottle adhesive as an intermediate bonding layer to reduce sealant microleakage on saliva-contaminated enamel. Am. J. Dent. 2000, 13, 187–191. [Google Scholar]
- Torres, C.P.; Balbo, P.; Gomes-Silva, J.M.; Ramos, R.P.; Palma-Dibb, R.G.; Borsatto, M.C. Effect of individual or simultaneous curing on sealant bond strength. J. Dent. Child. 2005, 72, 31–35. [Google Scholar]
- Borsatto, M.C.; Corona, S.A.; Alves, A.G.; Chimello, D.T.; Catirse, A.B.; Palma-Dibb, R.G. Influence of salivary contamination on marginal microleakage of pit and fissure sealants. Am. J. Dent. 2004, 17, 365–367. [Google Scholar]
- Hosseinipour, Z.S.; Heidari, A.; Shahrabi, M.; Poorzandpoush, K. Microleakage of a Self-Adhesive Flowable Composite, a Self-Adhesive Fissure Sealant and a Conventional Fissure Sealant in Permanent Teeth with/without Saliva Contamination. Front. Dent. 2019, 16, 239–247. [Google Scholar] [PubMed]
- Mézquita-Rodrigo, I.; Scougall-Vilchis, R.J.; Moyaho-Bernal, M.A.; Rodríguez-Vilchis, L.E.; Rubio-Rosas, E.; Contreras-Bulnes, R. Using self-etch adhesive agents with pit and fissure sealants. In vitro analysis of shear bond strength, adhesive remnant index and enamel etching patterns. Eur. Arch. Paediatr. Dent. 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Sofan, E.; Sofan, A.; Palaia, G.; Tenore, G.; Romeo, U.; Migliau, G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. Stomatol. 2017, 8, 1–17. [Google Scholar]
- Reda, R.; Zanza, A.; Cicconetti, A.; Bhandi, S.; Miccoli, G.; Gambarini, G.; Di Nardo, D. Ultrasound Imaging in Dentistry: A Literature Overview. J. Imaging 2021, 7, 238. [Google Scholar] [CrossRef] [PubMed]
Group | Contamination | Rinsing/Re-Etching/ Universal Adhesive | 24 h Storage at 37 °C/5000 Cycles of Thermocycling |
---|---|---|---|
1 | No | - | 24 h storage at 37 °C |
1′ | No | - | 5000 cycles of thermocycling |
2 | Yes | - | 24 h storage at 37 °C |
2′ | Yes | - | 5000 cycles of thermocycling |
3 | Yes | Rinsing | 24 h storage at 37 °C |
3′ | Yes | Rinsing | 5000 cycles of thermocycling |
4 | Yes | Re-etching | 24 h storage at 37 °C |
4′ | Yes | Re-etching | 5000 cycles of thermocycling |
5 | Yes | Universal Adhesive | 24 h storage at 37 °C |
5′ | Yes | Universal Adhesive | 5000 cycles of thermocycling |
Group | Mean ± SD | Comparison of the Group | p-Value |
---|---|---|---|
1 | 17.40 ± 6.36 | 1 vs. 2 | 0.815 |
1 vs. 3 | 0.369 | ||
1 vs. 4 | 0.028 * | ||
1 vs. 5 | 0.000 * | ||
2 | 16.93 ± 4.14 | 2 vs. 1 | 0.815 |
2 vs. 3 | 0.259 | ||
2 vs. 4 | 0.016 * | ||
2 vs. 5 | 0.000 * | ||
3 | 19.22 ± 3.19 | 3 vs. 1 | 0.369 |
3 vs. 2 | 0.259 | ||
3 vs. 4 | 0.181 | ||
3 vs. 5 | 0.000 * | ||
4 | 21.96 ± 4.94 | 4 vs. 1 | 0.028 * |
4 vs. 2 | 0.016 * | ||
4 vs. 3 | 0.181 | ||
4 vs. 5 | 0.002 * | ||
5 | 28.61 ± 2.96 | 5 vs. 1 | 0.000 * |
5 vs. 2 | 0.000 * | ||
5 vs. 3 | 0.000 * | ||
5 vs. 4 | 0.002 * | ||
1′ | 12.79 ± 2.13 | 1′ vs. 2′ | 0.000 * |
1′ vs. 3′ | 0.097 | ||
1′ vs. 4′ | 0.018 * | ||
1′ vs. 5′ | 0.099 | ||
2′ | 8.55 ± 1.84 | 2′ vs. 1′ | 0.000 * |
2′ vs. 3′ | 0.044 * | ||
2′ vs. 4′ | 0.000 * | ||
2′ vs. 5′ | 0.000 * | ||
3′ | 10.88 ± 2.31 | 3′ vs. 1′ | 0.097 |
3′ vs. 2′ | 0.044 * | ||
3′ vs. 4′ | 0.000 * | ||
3′ vs. 5′ | 0.001 * | ||
4′ | 15.56 ± 3.73 | 4′ vs. 1′ | 0.018 * |
4′ vs. 2′ | 0.000* | ||
4′ vs. 3′ | 0.000 * | ||
4′ vs. 5′ | 0.444 | ||
5′ | 14.69 ± 2.13 | 5′ vs. 1′ | 0.099 |
5′ vs. 2′ | 0.000 * | ||
5′ vs. 3′ | 0.001 * | ||
5′ vs. 4′ | 0.444 |
Group | Number of Teeth (N) | Number of all Available Tooth Slides with Fissure Sealants N (%) | Grade 0 | Grade 1 | Grade 2 | Grade 3 |
---|---|---|---|---|---|---|
1′ | 3 | 30 (100.00) | 28 (93.33) | 0 | 1 (3.33) | 1 (3.33) |
2′ | 3 | 29 (100.00) | 17 (58.62) | 1 (3.45) | 0 | 11 (37.93) |
3′ | 3 | 29 (100.00) | 26 (89.66) | 0 | 0 | 3 (10.34 |
4′ | 3 | 27 (100.00) | 25 (92.59) | 1 (3.70) | 0 | 1 (3.70) |
5′ | 3 | 28 (100.00) | 27 (96.43) | 0 | 0 | 1 (3.57) |
Group | |||||||
---|---|---|---|---|---|---|---|
1‘ | 2′ | 3′ | 4′ | 5‘ | |||
Grade | 0 | Number | 28 a | 17 b | 26 a,b | 25 a | 27 a |
% within group | 93.30% | 58.60% | 89.70% | 92.60% | 96.40% | ||
1–3 | Number | 2 a | 12 b | 3 a,b | 2 a | 1 a | |
% within group | 6.70% | 41.40% | 10.30% | 7.40% | 3.60% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Z.; Sun, H.; Fan, D.; Wang, X.; Wang, Q. Shear Bond Strength and Microleakage of Pit and Fissure Sealants Placed after Saliva-Contaminated Etched Enamel. Coatings 2022, 12, 441. https://doi.org/10.3390/coatings12040441
Bao Z, Sun H, Fan D, Wang X, Wang Q. Shear Bond Strength and Microleakage of Pit and Fissure Sealants Placed after Saliva-Contaminated Etched Enamel. Coatings. 2022; 12(4):441. https://doi.org/10.3390/coatings12040441
Chicago/Turabian StyleBao, Zhifan, Hui Sun, Dongyang Fan, Xin Wang, and Qiang Wang. 2022. "Shear Bond Strength and Microleakage of Pit and Fissure Sealants Placed after Saliva-Contaminated Etched Enamel" Coatings 12, no. 4: 441. https://doi.org/10.3390/coatings12040441
APA StyleBao, Z., Sun, H., Fan, D., Wang, X., & Wang, Q. (2022). Shear Bond Strength and Microleakage of Pit and Fissure Sealants Placed after Saliva-Contaminated Etched Enamel. Coatings, 12(4), 441. https://doi.org/10.3390/coatings12040441