A Highly Hydrophobic Siloxane-Nanolignin Coating for the Protection of Wood
<p>Photographs illustrating the procedure to conduct the biological durability soil burial test. The photographs show (<b>a</b>) the samples placed at a depth of 10 cm and (<b>b</b>) the burial site after covering the samples with soil.</p> "> Figure 2
<p>Contact angle of water drops (CA) on coated chestnut and oak vs. the NL concentration.</p> "> Figure 3
<p>SEM images showing the surface structures of chestnut coated with (<b>a</b>) pure Sivo and (<b>b</b>) Sivo + 4% <span class="html-italic">w</span>/<span class="html-italic">w</span> NL. (<b>c</b>) Pinned drop on chestnut tilted to a perpendicular position and coated with Sivo + 4% <span class="html-italic">w</span>/<span class="html-italic">w</span> NL.</p> "> Figure 4
<p>Colour change (<math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="normal">E</mi> </mrow> </semantics></math>) in the coated wood samples vs. the NL concentration. The colours of the wood samples changed due to the application of the coatings.</p> "> Figure 5
<p>Results of the test of water absorption by capillarity: amount of water absorbed per unit area vs. treatment time for uncoated woods, woods coated with Sivo, and woods coated with the selected composite (Sivo + 4.0% <span class="html-italic">w</span>/<span class="html-italic">w</span> NL). Results for (<b>a</b>) chestnut and (<b>b</b>) oak samples are shown.</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) Results of the biological durability soil burial test: mass loss (%) vs. the time wood samples remained buried in the soil. Results for uncoated woods, woods coated with Sivo, and woods coated with the selected composite (Sivo + 4.0% <span class="html-italic">w</span>/<span class="html-italic">w</span> NL) are shown. The two photographs show oak specimens (<b>c</b>) before and (<b>d</b>) after the test.</p> "> Figure 7
<p>CA vs. the pH of drops on woods coated with Sivo and woods coated with the selected composite (Sivo + 4.0% <span class="html-italic">w</span>/<span class="html-italic">w</span> NL). Results for (<b>a</b>) chestnut and (<b>b</b>) oak samples are shown. Photographs of drops on chestnut coated with the composite material are included in (<b>a</b>).</p> "> Figure 8
<p>Results of the tape peeling test: CA vs. peeling cycles on woods coated with Sivo and woods coated with the selected composite (Sivo + 4.0% <span class="html-italic">w</span>/<span class="html-italic">w</span> NL). Results for (<b>a</b>) chestnut and (<b>b</b>) oak samples are shown. The figure includes photographs of water drops on wood surfaces coated with the composite material, captured before testing (0 cycles) and after 100 peeling cycles.</p> "> Figure 9
<p>CA vs. exposure time for wood samples kept (<b>a</b>,<b>b</b>) outdoors and (<b>c</b>,<b>d</b>) within the UV chamber. Results for wood samples coated with Sivo and wood samples coated with the selected composite (Sivo + 4.0% <span class="html-italic">w</span>/<span class="html-italic">w</span> NL) are shown.</p> ">
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Coating Preparation and Characterisation
3. Results and Discussion
3.1. Material Characterisation
3.2. Effects of NL Concentration on Wetting Properties and Colour
3.3. Water Absorption by Capillarity
3.4. Durability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Gao, L.; Wang, M.; Lv, D.; He, P.; Xie, Y.; Zhan, X.; Li, J.; Lin, Z. Recent Development and Emerging Applications of Robust Biomimetic Superhydrophobic Wood. J. Mater. Chem. A 2023, 11, 6772–6795. [Google Scholar] [CrossRef]
- Wang, Y.; Ge-Zhang, S.; Mu, P.; Wang, X.; Li, S.; Qiao, L.; Mu, H. Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review. Int. J. Mol. Sci. 2023, 24, 9675. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, M.; He, Z. Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives. Coatings 2023, 13, 877. [Google Scholar] [CrossRef]
- Wei, X.; Niu, X. Recent Advances in Superhydrophobic Surfaces and Applications on Wood. Polymers 2023, 15, 1682. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Li, J.; Qiu, J.; Sun, Y. Biomimetic Nano/Microfabrication Techniques in Multi-Bioinspired Superhydrophobic Wood: New Insight on Theory, Design and Applications. Surf. Interfaces 2024, 48, 104217. [Google Scholar] [CrossRef]
- Wang, X.; Tian, W.; Ye, Y.; Chen, Y.; Wu, W.; Jiang, S.; Wang, Y.; Han, X. Surface Modifications Towards Superhydrophobic Wood-Based Composites: Construction Strategies, Functionalization, and Perspectives. Adv. Colloid Interface Sci. 2024, 326, 103142. [Google Scholar] [CrossRef]
- Bansal, R.; Barshilia, H.C.; Pandey, K.K. Nanotechnology in Wood Science: Innovations and Applications. Int. J. Biol. Macromol. 2024, 262, 130025. [Google Scholar]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C. Superhydrophobic Composite Films Produced on Various Substrates. Langmuir 2008, 24, 11225–11232. [Google Scholar] [CrossRef]
- Chatzigrigoriou, A.; Manoudis, P.N.; Karapanagiotis, I. Fabrication of Water Repellent Coatings Using Waterborne Resins for the Protection of the Cultural Heritage. Macromol. Symp. 2013, 331, 158–165. [Google Scholar] [CrossRef]
- Jia, S.; Chen, H.; Luo, S.; Qing, Y.; Deng, S.; Yan, N.; Wu, Y. One-Step Approach to Prepare Superhydrophobic Wood with Enhanced Mechanical and Chemical Durability: Driving of Alkali. Appl. Surf. Sci. 2018, 455, 115–122. [Google Scholar] [CrossRef]
- Mosquera, M.J.; Carrascosa, L.A.M.; Badreldin, N. Producing Superhydrophobic/Oleophobic Coatings on Cultural Heritage Building Materials. Pure Appl. Chem. 2018, 90, 551–561. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Chang, B.S.; Lin, J.Y. Improvement of Water and Oil Repellency on Wood Substrates by Using Fluorinated Silica Nanocoating. Appl. Surf. Sci. 2011, 257, 7997–8002. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Zhang, M.; Ma, M.; Wang, C.; Li, J. Improvement of Mechanical Robustness of the Superhydrophobic Wood Surface by Coating PVA/SiO₂ Composite Polymer. Appl. Surf. Sci. 2013, 280, 686–692. [Google Scholar] [CrossRef]
- Jia, S.; Deng, S.; Luo, S.; Qing, Y.; Yan, N.; Wu, Y. Texturing Commercial Epoxy with Hierarchical and Porous Structure for Robust Superhydrophobic Coatings. Appl. Surf. Sci. 2019, 466, 84–91. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, S.; Wang, S.; Qing, Y.; Yan, N.; Wang, Q.; Meng, T. A Facile and Novel Emulsion for Efficient and Convenient Fabrication of Durable Superhydrophobic Materials. Chem. Eng. J. 2017, 328, 186–196. [Google Scholar] [CrossRef]
- Ntelia, E.; Karapanagiotis, I. Superhydrophobic Paraloid B72. Prog. Org. Coat. 2020, 139, 105224. [Google Scholar] [CrossRef]
- Yi, Z.; Zhao, B. Fabrication of Superhydrophobic Wood Surface by Etching Polydopamine Coating with Sodium Hydroxide. Coatings 2020, 10, 847. [Google Scholar] [CrossRef]
- Gururani, R.; Pandit, S.K.; Kumari, P.; Kumar, A. Towards the Development of One-Step Scalable Self-Cleaning and Stain-Resistant Coating on Cellulosic Wood. Fibers Polym. 2024, 25, 1779–1788. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Liu, G.; Zhang, M.; Li, J.; Wang, C. Fabrication of Superhydrophobic Wood Surface by a Sol–Gel Process. Appl. Surf. Sci. 2011, 258, 806–810. [Google Scholar] [CrossRef]
- Pandit, S.K.; Tudu, B.K. Development of Stain Resistant, Superhydrophobic and Self-Cleaning Coating on Wood Surface. Prog. Org. Coat. 2020, 139, 105453. [Google Scholar] [CrossRef]
- Shen, H.; Cao, J.; Jiang, J.; Xu, J. Antiweathering Properties of a Thermally Treated Wood Surface by Two-Step Treatment with Titanium Dioxide Nanoparticle Growth and Polydimethylsiloxane Coating. Prog. Org. Coat. 2018, 125, 1–7. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Yi, Z.; Liao, M.; Qin, Z. Stable Superhydrophobic Wood Surface Constructing by KH580 and Nano-Al₂O₃ on Polydopamine Coating with Two Process Methods. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128219. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, X.; Yan, Y.; Qian, T.; Wang, J.; Sun, Q.; Jin, C. Facile Fabrication of a PDMS @ Stearic Acid−Al(OH)₃ Coating on Lignocellulose Composite with Superhydrophobicity and Flame Retardancy. Appl. Surf. Sci. 2018, 450, 387–395. [Google Scholar] [CrossRef]
- Duan, X.; Liu, S.; Huang, E.; Shen, X.; Wang, Z.; Li, S.; Jin, C. Superhydrophobic and Antibacterial Wood Enabled by Polydopamine-Assisted Decoration of Copper Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125145. [Google Scholar] [CrossRef]
- Liu, M.; Qing, Y.; Wu, Y.; Liang, J.; Luo, S. Facile Fabrication of Superhydrophobic Surfaces on Wood Substrates via a One-Step Hydrothermal Process. Appl. Surf. Sci. 2015, 330, 332–338. [Google Scholar] [CrossRef]
- Lu, Q.; Cheng, R. Superhydrophobic Wood Fabricated by Epoxy/Cu₂(OH)₃Cl NPs/Stearic Acid with Performance of Desirable Self-Cleaning, Anti-Mold, Dimensional Stability, Mechanical and Chemical Durability. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129162. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, L. Superhydrophobic Poplar Scrimber via In Situ Synthesis of Cu₇Cl₄(OH)₁₀·H₂O Heterostructure Inspired by Pine Cone with Superultraviolet Resistance. ACS Sustain. Chem. Eng. 2022, 10, 16169–16181. [Google Scholar] [CrossRef]
- Yang, M.; Chen, X.; Lin, H.; Han, C.; Zhang, S. A Simple Fabrication of Superhydrophobic Wood Surface by Natural Rosin Based Compound via Impregnation at Room Temperature. Eur. J. Wood Prod. 2018, 76, 1417–1425. [Google Scholar] [CrossRef]
- Xing, Y.; Xue, Y.; Song, J.; Sun, Y.; Huang, L.; Liu, X.; Sun, J. Superhydrophobic Coatings on Wood Substrate for Self-Cleaning and EMI Shielding. Appl. Surf. Sci. 2018, 436, 865–872. [Google Scholar] [CrossRef]
- Wang, K.; Dong, Y.; Yan, Y.; Zhang, S.; Li, J. Mussel-Inspired Chemistry for Preparation of Superhydrophobic Surfaces on Porous Substrates. RSC Adv. 2017, 7, 29149–29158. [Google Scholar] [CrossRef]
- Li, M.; Huang, W.; Ren, C.; Wu, Q.; Wang, S.; Huang, J. Preparation of Lignin Nanospheres-Based Superhydrophobic Surfaces with Good Robustness and Long UV Resistance. RSC Adv. 2022, 12, 11517–11525. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, C.; Fu, C.; Xi, Y.; Fatehi, P.; Zhao, J.R.; Wang, S.; Gibril, M.E.; Kong, F. Preparation and Performance of Lignin-Based Multifunctional Superhydrophobic Coating. Molecules 2022, 27, 1440. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Li, M.; Huang, W.; Zhang, Y.; Huang, J. Superhydrophobic Coating with Excellent Robustness and UV Resistance Fabricated Using Hydrothermal Treated Lignin Nanoparticles by One-Step Spray. J. Mater. Sci. 2022, 57, 18356–18369. [Google Scholar] [CrossRef]
- Huang, J.; Li, M.; Ren, C.; Huang, W.; Miao, Y.; Wu, Q.; Wang, S. Construction of HLNPs/Fe₃O₄ Based Superhydrophobic Coating with Excellent Abrasion Resistance, UV Resistance, Flame Retardation and Oil Absorbency. J. Environ. Chem. Eng. 2023, 11, 109046. [Google Scholar] [CrossRef]
- Ma, B.; Xiong, F.; Wang, H.; Qing, Y.; Chu, F.; Wu, Y. Tailorable and Scalable Production of Eco-Friendly Lignin Micro-Nanospheres and Their Application in Functional Superhydrophobic Coating. Chem. Eng. J. 2023, 457, 141309. [Google Scholar] [CrossRef]
- Ma, B.; Wei, Z.; Chen, L.; Tu, S.; Qiu, X. Superhydrophobic Coatings with Robustness and Multifunctionality for Wood Protection by Rod-Like ZnO/Lignin Nanosphere Composites Design. Constr. Build. Mater. 2024, 457, 139490. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, C.; Sun, Y.; Miao, Y.; Deng, L.; Wang, Z.; Cao, Y.; Zhang, W.; Huang, J. Construction of CNC@SiO₂@PL Based Superhydrophobic Wood with Excellent Abrasion Resistance Based on Nanoindentation Analysis and Good UV Resistance. Polymers 2023, 15, 933. [Google Scholar] [CrossRef]
- Kassaun, B.B.; Fatehi, P. Solvent-Free Lignin-Silsesquioxane Wood Coating Formulation with Superhydrophobic and Flame-Retardant Functionalities. Chem. Eng. J. 2024, 493, 152582. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, Y.; Han, W.; Cai, Y.; Wang, E.; Huang, J.; Zhang, W. Construction of Lignin/CaCO₃/CS Superhydrophobic Coating with Excellent Heat Resistance, Abrasion Resistance, UV Resistance and Oil-Water Separation. Prog. Org. Coat. 2024, 188, 108256. [Google Scholar] [CrossRef]
- Österberg, M.; Sipponen, M.H.; Mattos, B.D.; Rojas, O.J. Spherical Lignin Particles: A Review on their Sustainability and Applications. Green Chem. 2020, 22, 2712–2733. [Google Scholar] [CrossRef]
- Pappa, C.P.; Cailotto, S.; Gigli, M.; Crestini, C.; Triantafyllidis, K.S. Kraft (Nano)Lignin as Reactive Additive in Epoxy Polymer Bio-composites. Polym 2024, 16, 553. [Google Scholar] [CrossRef] [PubMed]
- Terzopoulou, Z.; Pappa, C.; Triantafyllidis, K.; Bikiaris, D.N. Unravelling the Impact of Lignin Particle Size and Content on Enhanced Value in Plastic Composites. SCENV 2025, 9, 100194. [Google Scholar] [CrossRef]
- Antonelli, F.; Galotta, G.; Sidoti, G.; Zikeli, F.; Nisi, R.; Davidde Petriaggi, B.; Romagnoli, M. Cellulose and Lignin Nano- Scale Consolidants for Waterlogged Archaeological Wood. Front. Chem. 2020, 8, 32. [Google Scholar] [CrossRef]
- Zikeli, F.; Vinciguerra, V.; D’Annibale, A.; Capitani, D.; Romagnoli, M.; Scarascia Mugnozza, G. Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials 2019, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Camargos, C.H.M.; Poggi, G.; Chelazzi, D.; Baglioni, P.; Rezende, C.A. Protective Coatings Based on Cellulose Nanofibrils, Cellulose Nanocrystals, and Lignin Nanoparticles for the Conservation of Cellulosic Artifacts. ACS Appl. Nano Mater. 2022, 5, 13245–13259. [Google Scholar] [CrossRef]
- Gilca, I.A.; Popa, V.I.; Crestini, C. Obtaining Lignin Nanoparticles by Sonication. Ultrason. Sonochem. 2015, 23, 369–375. [Google Scholar] [CrossRef]
- Matsakas, L.; Karnaouri, A.; Cwirzen, A.; Rova, U.; Christakopoulos, P. Formation of Lignin Nanoparticles by Combining Organosolv Pretreatment of Birch Biomass and Homogenization Processes. Molecules 2018, 23, 1822. [Google Scholar] [CrossRef]
- Gigli, M.; Crestini, C. Fractionation of Industrial Lignins: Opportunities and Challenges. Green Chem. 2020, 22, 4722–4746. [Google Scholar] [CrossRef]
- Pylypchuk, I.V.; Karlsson, M.; Lindén, P.A.; Lindström, M.E.; Elder, T.; Sevastyanova, O.; Lawoko, M. Molecular Understanding of the Morphology and Properties of Lignin Nanoparticles: Unravelling the Potential for Tailored Applications. Green Chem. 2023, 25, 4415–4428. [Google Scholar] [CrossRef]
- Pappa, C.P.; Torofias, S.; Triantafyllidis, K.S. Sub-micro Organosolv Lignin as Bio-based Epoxy Polymer Component: A Sustainable Curing Agent and Additive. ChemSusChem 2023, 16, e202300076. [Google Scholar] [CrossRef]
- Haneca, K.; Čufar, K.; Beeckman, H. Oaks, Tree-Rings and Wooden Cultural Heritage: A Review of the Main Characteristics and Applications of Oak Dendrochronology in Europe. J. Archaeol. Sci. 2009, 36, 1–11. [Google Scholar] [CrossRef]
- Voulgaridis, E. Quality and Uses of Wood; Kallipos, Open Academic Publications: Athens, Greece, 2015. [Google Scholar]
- Chavenetidou, M.; Kamperidou, V. Impact of Wood Structure Variability on the Surface Roughness of Chestnut Wood. Appl. Sci. 2024, 14, 6326. [Google Scholar] [CrossRef]
- ISO 3601-1; Fluid Power Systems—O-Rings Part 1: Inside Diameters, Cross-Sections, Tolerances and Designation Codes. ISO: Geneva, Switzerland, 2012.
- European Committee for Standardization (CEN). EN 15801:2009; Conservation of Cultural Property–Test Methods–Determination of Water Absorption by Capillarity. European Committee for Standardization: Brussels, Belgium, 2009.
- ISO 846; Plastics—Evaluation of the Action of Microorganisms. ISO: Geneva, Switzerland, 2024.
- ASTM International. ASTM D3359-97; Standard Test Methods for Measuring Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 1997.
- ISO 16053; Paints and Varnishes—Coating Materials and Coating Systems for Exterior Wood—Natural Weathering Test. ISO: Geneva, Switzerland, 2022.
- Karapanagiotis, I.; Manoudis, P.N.; Savva, A.; Panayiotou, C. Superhydrophobic Polymer-Particle Composite Films Produced Using Various Particle Sizes. Surf. Interface Anal. 2012, 44, 870–875. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I. Modification of the Wettability of Polymer Surfaces Using Nanoparticles. Prog. Org. Coat. 2014, 77, 331–338. [Google Scholar] [CrossRef]
- Notley, S.M.; Norgren, M. Surface Energy and Wettability of Spin-Coated Thin Films of Lignin Isolated from Wood. Langmuir 2010, 26, 5484–5490. [Google Scholar] [CrossRef] [PubMed]
- Borrega, M.; Päärnilä, S.; Greca, L.G.; Jääskeläinen, A.-S.; Ohra-aho, T.; Rojas, O.J.; Tamminen, T. Morphological and Wettability Properties of Thin Coating Films Produced from Technical Lignins. Langmuir 2020, 36, 9675–9684. [Google Scholar] [CrossRef]
- Karapanagiotis, I.; Manoudis, P.N. Superhydrophobic and Superamphiphobic Materials for the Conservation of Natural Stone: An Overview. Constr. Build. Mater. 2022, 320, 126175. [Google Scholar] [CrossRef]
- Tsoumis, G. Wood Science and Technology, Wood Structure and Properties; Aristotle University of Thessaloniki, AUTh: Thessaloniki, Greece, 2002; p. 346. [Google Scholar]
- Topaloglu, E.; Ustaomer, D.; Ozturk, M.; Pesman, E. Changes in wood properties of chestnut wood structural elements with natural aging. Maderas-Cienc. Tecnol. 2021, 23, 20. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119. [Google Scholar] [CrossRef]
- Rodrigues, J.D.; Grossi, A. Indicators and ratings for the compatibility assessment of conservation actions. J. Cult. Herit. 2007, 8, 32–43. [Google Scholar] [CrossRef]
- Filippou, I. Chemistry and Chemical Technology of Wood; Giahoudi-Giapouli Publications: Thessaloniki, Greece, 2014; p. 357. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, M.M.M.; Pappa, C.P.; Manoudis, P.N.; Kamperidou, V.; Pavlidou, E.; Tsiridis, V.; Petala, M.; Triantafyllidis, K.S.; Spathis, P.K.; Karapanagiotis, I. A Highly Hydrophobic Siloxane-Nanolignin Coating for the Protection of Wood. Coatings 2025, 15, 293. https://doi.org/10.3390/coatings15030293
Ramos MMM, Pappa CP, Manoudis PN, Kamperidou V, Pavlidou E, Tsiridis V, Petala M, Triantafyllidis KS, Spathis PK, Karapanagiotis I. A Highly Hydrophobic Siloxane-Nanolignin Coating for the Protection of Wood. Coatings. 2025; 15(3):293. https://doi.org/10.3390/coatings15030293
Chicago/Turabian StyleRamos, Mariana M. M., Christina P. Pappa, Panagiotis N. Manoudis, Vasiliki Kamperidou, Eleni Pavlidou, Vasilios Tsiridis, Maria Petala, Konstantinos S. Triantafyllidis, Panagiotis K. Spathis, and Ioannis Karapanagiotis. 2025. "A Highly Hydrophobic Siloxane-Nanolignin Coating for the Protection of Wood" Coatings 15, no. 3: 293. https://doi.org/10.3390/coatings15030293
APA StyleRamos, M. M. M., Pappa, C. P., Manoudis, P. N., Kamperidou, V., Pavlidou, E., Tsiridis, V., Petala, M., Triantafyllidis, K. S., Spathis, P. K., & Karapanagiotis, I. (2025). A Highly Hydrophobic Siloxane-Nanolignin Coating for the Protection of Wood. Coatings, 15(3), 293. https://doi.org/10.3390/coatings15030293