Finite-Difference Time-Domain Simulation of Double-Ridge Superimposed Structures for Optimizing Light-Trapping Characteristics in Ternary Organic Solar Cells
<p>(<b>a</b>) Schematic diagram of the numerical model of the DRSS. (<b>b</b>) The side view of the simulation model’s unit cell.</p> "> Figure 2
<p>(<b>a</b>) Schematic diagram of the different models. (<b>b</b>) Absorption spectra of the different models; the inset shows the light-trapping mechanism of the DRSS. (<b>c</b>) Corresponding transmission and reflection spectra.</p> "> Figure 3
<p>The normalized cross-section near-field profiles of TM-polarized light for normal-incidence monochromatic illumination at the wavelength of 520 nm in the different models. (<b>a</b>) Model A, (<b>b</b>) Model B, (<b>c</b>) Model C, and (<b>d</b>) Model D.</p> "> Figure 4
<p>Optical properties of the DRSS with different active layer texture morphologies; the size of the ZnO ridge structures is constant and the height of the active layer ridge structures is fixed at 50 nm. (<b>a</b>) Absorption spectra. (<b>b</b>) Transmission and reflection spectra.</p> "> Figure 5
<p>Optical properties of the DRSS with different active layer texture morphologies; the size of the ZnO texture structure is constant and the width of the active layer texture structure is fixed at 325 nm. (<b>a</b>) Absorption spectra. (<b>b</b>) Transmission and reflection spectra.</p> "> Figure 6
<p>The normalized near-field profiles of TM-polarized light for normal-incidence monochromatic illumination at a wavelength of 520 nm, observed in the DRSS with different active layer texture morphologies; the size of the ZnO texture structure is constant. (<b>a</b>) H = 10 nm and W = 325 nm; (<b>b</b>) H = 50 nm and W = 325 nm; (<b>c</b>) H = 50 nm and W = 75 nm.</p> "> Figure 7
<p>Optical properties of the DRSS with different ZnO and active layer texture morphologies; the width of the ZnO and active layer texture structures is fixed at 425 nm and the heights of both remain synchronized. (<b>a</b>) Absorption spectra. (<b>b</b>) Transmission and reflection spectra.</p> "> Figure 8
<p>Absorption spectra of the DRSS with different ZnO and active layer texture morphologies; the height of the ZnO and active layer texture structures is fixed at 50 nm and the widths of both remain synchronized.</p> "> Figure 9
<p>Optical properties of the DRSS with different ZnO and active layer texture morphologies; the height and width of the ZnO and active layer texture structures are kept synchronized, and the detailed aspect ratio settings are shown in <a href="#coatings-14-01583-t001" class="html-table">Table 1</a>. (<b>a</b>) Absorption spectra. (<b>b</b>) Transmission and reflection spectra.</p> ">
Abstract
:1. Introduction
2. Simulation Model and Methods
2.1. Numerical Conditions and Parameters
2.2. Numerical Model
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Wang, L.; Xia, W.; Qiu, K.; Guo, C.; Gan, Z.; Zhou, J.; Sun, Y.; Liu, D.; Li, W.; et al. Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%. Nat. Commun. 2024, 15, 6865. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Yang, Q.; Huang, P.; Chung, S.; Cho, K.; Kan, Z.; Liu, H.; Lu, X.; Lang, Y.; Lai, H.; et al. Rational molecular and device design enables organic solar cells approaching 20% efficiency. Nat. Commun. 2024, 15, 1830. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Fong, P.W.; Liu, H.; Huang, C.S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C.M.; Yang, Y.; et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.R.; Wang, Y.D.; Shao, J.Y.; Ma, D.X.; Liu, Z.; Li, D.; Hou, Y.; Yao, J.; Zhong, Y.W. Surface passivation with diaminopropane dihydroiodide for p-i-n perovskite solar cells with over 25% efficiency. Adv. Funct. Mater. 2024, 34, 2312426. [Google Scholar] [CrossRef]
- Panchanan, S.; Dastgeer, G.; Dutta, S.; Hu, M.; Lee, S.U.; Im, J.; Seok, S.I. Cerium-based halide perovskite derivatives: A promising alternative for lead-free narrowband UV photodetection. Matter 2024, 7, 3949–3969. [Google Scholar] [CrossRef]
- Sun, X.; Li, C.; Ni, J.; Huang, L.; Xu, R.; Li, Z.; Cai, H.; Li, J.; Zhang, Y.; Zhang, J. A facile two-step interface engineering strategy to boost the efficiency of inverted ternary-blend polymer solar cells over 10%. ACS Sustain. Chem. Eng. 2017, 5, 8997–9005. [Google Scholar] [CrossRef]
- Günther, M.; Kazerouni, N.; Blätte, D.; Perea, J.D.; Thompson, B.C.; Ameri, T. Models and mechanisms of ternary organic solar cells. Nat. Rev. Mater. 2023, 8, 456–471. [Google Scholar] [CrossRef]
- Zhang, M.; Chang, B.; Zhang, R.; Li, S.; Liu, X.; Zeng, L.; Chen, Q.; Wang, L.; Yang, L.; Wang, H.; et al. Tethered small-molecule acceptor refines hierarchical morphology in ternary polymer solar cells: Enhanced stability and 19% efficiency. Adv. Mater. 2024, 36, 2308606. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jeong, D.; Kim, C.; Lee, C.; Kang, H.; Woo, H.Y.; Kim, B.J. Eco-friendly polymer solar cells: Advances in green-solvent processing and material design. ACS Nano 2020, 14, 14493–14527. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, R.; Kozma, E.; Luzzati, S.; Po, R. Interlayers for non-fullerene based polymer solar cells: Distinctive features and challenges. Energy Environ. Sci. 2021, 14, 180–223. [Google Scholar] [CrossRef]
- Yao, H.; Hou, J. Recent advances in single-junction organic solar cells. Angew. Chem. Int. Ed. 2022, 61, e202209021. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Nan, G.J.; Yang, X.D.; Peng, Q.; Li, Q.K.; Shuai, Z.G. Computational methods for design of organic materials with high charge mobility. Chem. Soc. Rev. 2010, 39, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Liang, Z.Z.; Li, X.M.; Qin, J.C.; Ren, M.L.; Yang, C.Y.; Bao, X.C.; Xia, Y.J.; Li, J.F. Self-doping n-type polymer as a cathode interface layer enables efficient organic solar cells by increasing built-in electric field and boosting interface contact. J. Mater. Chem. C 2019, 7, 11152–11159. [Google Scholar] [CrossRef]
- Gao, W.; An, Q.S.; Hao, M.H.; Sun, R.; Yuan, J.; Zhang, F.J.; Ma, W.; Min, J.; Yang, C.L. Thick-film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm. Adv. Funct. Mater. 2020, 30, 1908336. [Google Scholar] [CrossRef]
- Camaioni, N.; Carbonera, C.; Ciammaruchi, L.; Corso, G.; Mwaura, J.; Po, R.; Tinti, F. Polymer solar cells with active layer thickness compatible with scalable fabrication processes: A meta-analysis. Adv. Mater. 2023, 35, 2210146. [Google Scholar] [CrossRef]
- Pan, F.L.; Luo, M.; Liu, X.C.; Jiang, H.Y.; Wang, Z.; Yuan, D.; Wang, Q.; Qing, L.C.; Zhang, Z.S.; Zhang, L.J.; et al. Binary non-fullerene-based polymer solar cells with a 430 nm thick active layer showing 15.39% efficiency and 73.38% fill factor. J. Mater. Chem. A 2021, 9, 7129–7136. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, C.; Sun, Y.; Li, Q.; Islam, M.R.; Liu, K.; Wang, Z.; Qu, S.; Wang, Z. Optical management in organic photovoltaic devices. Carbon Energy 2021, 3, 4–23. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, M.; Mei, H.; Chang, P.; Wang, X.; Cheng, L. 3D printing technology toward state-of-the-art photoelectric devices. Adv. Mater. Technol. 2023, 8, 2200827. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, R.; Li, M.; Yu, R.; Wang, F.; Tan, Z.A. Synergistic electrical and light management enables efficient monolithic inorganic perovskite/organic tandem solar cells with over 24% efficiency. Energy Environ. Sci. 2024, 17, 219–226. [Google Scholar] [CrossRef]
- Shi, Y.; Pan, J.; Yu, J.; Zhang, J.; Gao, F.; Lu, K.; Wei, Z. Optimizing the charge carrier and light management of nonfullerene acceptors for efficient organic solar cells with small nonradiative energy losses. Sol. RRL 2021, 5, 2100008. [Google Scholar] [CrossRef]
- Hadipour, A.; de Boer, B.; Blom, P. Solution-processed organic tandem solar cells with embedded optical spacers. J. Appl. Phys. 2007, 102, 074506–074511. [Google Scholar] [CrossRef]
- Roy, A.; Park, S.; Cowan, S.; Tong, M.; Cho, S.; Lee, K.; Heeger, A. Titanium suboxide as an optical spacer in polymer solar cells. Appl. Phys. Lett. 2009, 95, 013302. [Google Scholar] [CrossRef]
- Ko, D.; Tumbleston, J.; Zhang, L.; Williams, S.; DeSimone, J.; Lopez, R.; Samulski, E. Photonic crystal geometry for organic solar cells. Nano Lett. 2009, 9, 2742–2746. [Google Scholar] [CrossRef] [PubMed]
- Na, S.; Kim, S.; Jo, J.; Oh, S.; Kim, J.; Kim, D. Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography. Adv. Funct. Mater. 2008, 18, 3956–3963. [Google Scholar] [CrossRef]
- Nalwa, K.; Park, J.; Ho, K.; Chaudhary, S. On realizing higher efficiency polymer solar cells using a textured substrate platform. Adv. Mater. 2011, 23, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Choy, W.; Xie, F.; Duan, C.; Wang, C.; He, W.; Huang, F.; Cao, Y. A study of optical properties enhancement in low-bandgap polymer solar cells with embedded PEDOT:PSS gratings. Sol. Energy Mater. Sol. Cells 2012, 99, 327–332. [Google Scholar] [CrossRef]
- Wu, J.; Chen, F.; Hsiao, Y.S.; Chien, F.C.; Chen, P.; Kuo, C.; Huang, M.; Hsu, C.S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967. [Google Scholar] [CrossRef]
- Pastorelli, F.; Romero-Gomez, P.; Betancur, R.; Martinez-Otero, A.; Mantilla-Perez, P.; Bonod, N.; Martorell, J. Enhanced light harvesting in semitransparent organic solar cells using an optical metal cavity configuration. Adv. Energy Mater. 2015, 5, 1400614. [Google Scholar] [CrossRef]
- Yang, Y.; Mielczarek, K.; Aryal, M.; Zakhidov, A.; Hu, W. Nanoimprinted polymer solar cell. ACS Nano 2012, 6, 2877–2892. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Song, W.; Ge, J.; Tang, B.; Zhang, X.; Wu, T.; Ge, Z. Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy 2021, 82, 105770. [Google Scholar] [CrossRef]
- Li, C.; Tao, J.Y.; Zou, Z.J.; Liao, G.H.; Li, F.; Wang, J.F.; Sun, X.X.; Ni, J.; Zhang, J.J. Broad spectrum light-trapping ternary polymer solar cells based on self-assembled nano-ridged active layer. Sol. Energy 2020, 198, 1–7. [Google Scholar] [CrossRef]
- Li, C.; Chen, M.; Li, F.; Sun, X.; Yu, Z.; Tao, J.; Zou, Z.; Liao, G.; Zhang, J. Simulation of light-trapping characteristics of self-assembled nano-ridges in ternary organic film. Coatings 2022, 12, 1340. [Google Scholar] [CrossRef]
- Oskooi, A.F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J.D.; Johnson, S.G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687–702. [Google Scholar] [CrossRef]
- Vedraine, S.; Torchio, P.; Duché, D.; Flory, F.; Simon, J.J.; Le Rouzo, J.; Escoubas, L. Intrinsic absorption of plasmonic structures for organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, S57–S64. [Google Scholar] [CrossRef]
- Duche, D.; Torchio, P.; Escoubas, L.; Monestier, F.; Simon, J.J.; Flory, F.; Mathian, G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells 2009, 93, 1377–1382. [Google Scholar] [CrossRef]
- Aguilar, O.; de Castro, S.; Godoy, M.P.F.; Dias, M.R.S. Optoelectronic characterization of Zn1-xCdxO thin films as an alternative to photonic crystals in organic solar cells. Opt. Mater. Express 2019, 9, 3638–3648. [Google Scholar] [CrossRef]
- Shin, S.C.; Vincent, P.; Bae, J.H.; Lee, J.J.; Nam, M.; Ko, D.H.; Kim, H.; Shim, J.W. Quaternary indoor organic photovoltaic device demonstrating panchromatic absorption and power conversion efficiency of 10%. Dyes Pigments 2019, 163, 48–54. [Google Scholar] [CrossRef]
- Razzell-Hollis, J.; Wade, J.; Tsoi, W.C.; Soon, Y.; Durrant, J.; Kim, J.S. Photochemical stability of high efficiency PTB7:PC70BM solar cell blends. J. Mater. Chem. A 2014, 2, 20189–20195. [Google Scholar] [CrossRef]
- Sharma, N.; Gupta, S.K.; Negi, C.M.S. New insights into the impact of graphene oxide incorporation on molecular ordering and photophysical properties of PTB7:C70 blends. J. Mater. Sci. Mater. Electron. 2020, 31, 22274–22283. [Google Scholar] [CrossRef]
- Chen, J.D.; Cui, C.H.; Li, Y.Q.; Zhou, L.; Ou, Q.D.; Li, C.; Li, Y.F.; Tang, J.X. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 2015, 27, 1035–1041. [Google Scholar] [CrossRef]
- Palanchoke, U.; Jovanov, V.; Kurz, H.; Dewan, R.; Magnus, P.; Stiebig, H.; Knipp, D. Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells. Appl. Phys. Lett. 2013, 102, 083501. [Google Scholar] [CrossRef]
- Qiu, W.; Xiao, S.; Tong, Y.; Yang, S. Toward efficient charge collection and light absorption: A perspective of light trapping for advanced photoelectrodes. J. Phys. Chem. C 2019, 123, 18753–18770. [Google Scholar] [CrossRef]
Height (nm) | Width (nm) | Aspect Ratio (W/H) |
---|---|---|
30 | 708 | 23.6 |
40 | 531 | 13.3 |
50 | 425 | 8.5 |
60 | 354 | 5.9 |
70 | 304 | 4.3 |
80 | 266 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Song, J.; Tan, W.; Chen, J.; Chen, M.; Li, F.; Li, C.; Yu, Z. Finite-Difference Time-Domain Simulation of Double-Ridge Superimposed Structures for Optimizing Light-Trapping Characteristics in Ternary Organic Solar Cells. Coatings 2024, 14, 1583. https://doi.org/10.3390/coatings14121583
Sun X, Song J, Tan W, Chen J, Chen M, Li F, Li C, Yu Z. Finite-Difference Time-Domain Simulation of Double-Ridge Superimposed Structures for Optimizing Light-Trapping Characteristics in Ternary Organic Solar Cells. Coatings. 2024; 14(12):1583. https://doi.org/10.3390/coatings14121583
Chicago/Turabian StyleSun, Xiaoxiang, Jinglin Song, Weijun Tan, Jing Chen, Mingxin Chen, Fen Li, Chang Li, and Zhuoliang Yu. 2024. "Finite-Difference Time-Domain Simulation of Double-Ridge Superimposed Structures for Optimizing Light-Trapping Characteristics in Ternary Organic Solar Cells" Coatings 14, no. 12: 1583. https://doi.org/10.3390/coatings14121583
APA StyleSun, X., Song, J., Tan, W., Chen, J., Chen, M., Li, F., Li, C., & Yu, Z. (2024). Finite-Difference Time-Domain Simulation of Double-Ridge Superimposed Structures for Optimizing Light-Trapping Characteristics in Ternary Organic Solar Cells. Coatings, 14(12), 1583. https://doi.org/10.3390/coatings14121583