Enhancing Interface Performance Through Self-Assembly Mechanisms of APTES on Surface-Modified Tuff Aggregates
<p>Tuff aggregate surface modification procedures.</p> "> Figure 2
<p>The experimental procedure.</p> "> Figure 3
<p>Binder bond strength (BBS) test: (<b>a</b>) schematic diagram BBS test; (<b>b</b>) test sample preparation.</p> "> Figure 4
<p>The Marshall stability test procedure.</p> "> Figure 5
<p>Contact angle test: (<b>a</b>) contact angle test; (<b>b</b>) contact angle diagram; (<b>c</b>) asphalt sample; (<b>d</b>) sliced aggregate pieces.</p> "> Figure 6
<p>X-ray diffraction test results of basalt and tuff.</p> "> Figure 7
<p>Binder bond strength (BBS) test results.</p> "> Figure 8
<p>Immersion residue stability test results.</p> "> Figure 9
<p>Adhesion work and energy ratio.</p> "> Figure 10
<p>SEM micrographs: (<b>a</b>) SEM micrographs (500× magnifcation, 2500× magnifcation) of tuff surface treated with APTES. (<b>b</b>) SEM micrographs (500× magnifcation, 2500× magnifcation) of tuff surface treated without APTES.</p> "> Figure 10 Cont.
<p>SEM micrographs: (<b>a</b>) SEM micrographs (500× magnifcation, 2500× magnifcation) of tuff surface treated with APTES. (<b>b</b>) SEM micrographs (500× magnifcation, 2500× magnifcation) of tuff surface treated without APTES.</p> "> Figure 11
<p>EDS analysis results: (<b>a</b>)untreated specimen; (<b>b</b>)treated specimen.</p> "> Figure 12
<p>Elemental composition.</p> "> Figure 13
<p>Schematic diagram of the enhancement mechanism.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Tuff
2.1.2. Silane-Coupling Agent
2.1.3. Bitumen
2.2. Tuff Aggregate Surface Modification Procedures
2.3. Experimental Plan Design
2.4. X-Ray Diffraction
2.5. Binder Bond Strength (BBS) Test
2.6. Immersion Residue Stability Test
2.7. Contact Angle Test
2.8. Scanning Electron Microscopy (SEM) and X-Ray Energy Dispersive Spectroscopy (EDS)
3. Results and Discussions
3.1. X-Ray Diffraction Test Results
3.2. Binder Bond Strength (BBS) Test Results
3.3. Immersion Residue Stability Test Results
3.4. Contact Angle Test Results
3.5. SEM Test Results
3.6. EDS Test Results
3.7. Mechanisms of APTES-Induced Interface Enhancement Between Tuff Aggregates and Asphalt
4. Conclusions
- A mass ratio of water:ethanol:APTES solution of 5:45:50, combined with a curing temperature of 200 °C, significantly enhances the bond strength between tuff and asphalt.
- Under optimal modification conditions, the adhesion work and energy ratio are improved to 55.28 mJ/m2 and 1.42, respectively, indicating substantial enhancements in both adhesion strength and resistance to peeling.
- The APTES treatment results in the formation of a denser silane-coupling agent layer on the tuff surface, which is confirmed by increased silicon content and Si-O-Si bonding, contributing to stronger chemical bonds at the asphalt–aggregate interface.
- The chemical reaction between APTES and the tuff surface introduces γ-aminopropyl groups, significantly enhancing interfacial adhesion with asphalt. This stronger chemical bond reduces water infiltration and mitigates moisture-induced damage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills-Beale, J.; You, Z. The mechanical properties of asphalt mixtures with recycled concrete aggregates. Constr. Build. Mater. 2010, 24, 230–235. [Google Scholar] [CrossRef]
- Lewis, S.; Coleri, E.; Sukhija, M.; Sreedhar, S. Blending of Virgin and RAP Binder for Asphalt Mixes with High RAP Contents: A Pilot Study. Int. J. Pavement Res. Technol. 2024, 1–15. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, G.; Luo, Y.; Zhao, Y.; Zhao, Y.; Zhang, J. Evaluation of aggregate distribution homogeneity for asphalt pavement based on the fractal characteristic of three-dimensional texture. Int. J. Pavement Res. Technol. 2024, 17, 577–594. [Google Scholar] [CrossRef]
- Fang, M.; Park, D.; Singuranayo, J.L.; Chen, H.; Li, Y. Aggregate gradation theory, design and its impact on asphalt pavement performance: A review. Int. J. Pavement Eng. 2019, 20, 1408–1424. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.-W.; Luhar, I. Incorporation of natural waste from agricultural and aquacultural farming as supplementary materials with green concrete: A review. Compos. Part B Eng. 2019, 175, 107076. [Google Scholar] [CrossRef]
- Gautam, P.K.; Kalla, P.; Jethoo, A.S.; Agrawal, R.; Singh, H. Sustainable use of waste in flexible pavement: A review. Constr. Build. Mater. 2018, 180, 239–253. [Google Scholar] [CrossRef]
- Fang, F.T.; Chong, Y.C.; Nyunt, T.T.; Loi, S.S. Development of environmentally sustainable pavement mix. Int. J. Pavement Res. Technol. 2013, 6, 440. [Google Scholar]
- Zhang, X.; Zhang, Y.; Yang, H.; Lin, Q.; Tang, B. Laboratory Investigation of the Water Damage Resistance of Tuff Asphalt Mixture Modified with Additives. Coatings 2023, 13, 302. [Google Scholar] [CrossRef]
- Al-Omari, A.A.; Al-Rousan, T.M.; Al-Facara, E.A.S. Laboratory Characterization of Pozzolan-Modified Asphalt Binder. Int. J. Pavement Res. Technol. 2022, 15, 1051–1061. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, J.; Xie, B. Experimental study on high and low temperature and water stability of tuff asphalt mixture. J. Highw. Transp. Res. Dev. 2016, 33, 1–6. (In Chinese) [Google Scholar]
- Chen, C.; Xu, J.; Okubo, S.; Peng, S. Damage evolution of tuff under cyclic tension–compression loading based on 3D digital image correlation. Eng. Geol. 2020, 275, 105736. [Google Scholar] [CrossRef]
- Alkofahi, N.; Khedaywi, T. Stripping potential of asphalt mixtures: State of the art. Int. J. Pavement Res. Technol. 2022, 15, 29–43. [Google Scholar] [CrossRef]
- Abouelsaad, A.; White, G. Review of asphalt mixture ravelling mechanisms, causes and testing. Int. J. Pavement Res. Technol. 2021, 15, 1448–1462. [Google Scholar] [CrossRef]
- Chakravarty, H.; Sinha, S.; Kumar, A. Influence of air voids and aggregates composition on moisture damage sensitivity of bituminous mixes. Int. J. Pavement Res. Technol. 2023, 16, 862–872. [Google Scholar] [CrossRef]
- Wang, L.; Shen, A.; Yao, J. Effect of different coarse aggregate surface morphologies on cement emulsified asphalt adhesion. Constr. Build. Mater. 2020, 262, 120030. [Google Scholar] [CrossRef]
- Wang, W.; Luo, R.; Yang, H.; Wang, L. Analysis of water erosion on asphalt binder using multi-scale experimental methods. Int. J. Pavement Res. Technol. 2022, 15, 485–495. [Google Scholar] [CrossRef]
- Nazirizad, M.; Kavussi, A.; Abdi, A. Evaluation of the effects of anti-stripping agents on the performance of asphalt mixtures. Constr. Build. Mater. 2015, 84, 348–353. [Google Scholar] [CrossRef]
- Alam, M.N.; Aggarwal, P. Effectiveness of anti stripping agents on moisture susceptibility of bituminous mix. Constr. Build. Mater. 2020, 264, 120274. [Google Scholar]
- Ameli, A.; Norouzi, N.; Khabbaz, E.H.; Babagoli, R. Influence of anti stripping agents on performance of binders and asphalt mixtures containing Crumb Rubber and Styrene-Butadiene-Rubber. Constr. Build. Mater. 2020, 261, 119880. [Google Scholar] [CrossRef]
- Wu, H.; Li, P.; Nian, T.; Zhang, G.; He, T.; Wei, X. Evaluation of asphalt and asphalt mixtures’ water stability method under multiple freeze-thaw cycles. Constr. Build. Mater. 2019, 228, 117089. [Google Scholar] [CrossRef]
- Sun, H.; Ding, Y.; Jiang, P.; Wang, B.; Zhang, A.; Wang, D. Study on the interaction mechanism in the hardening process of cement-asphalt mortar. Constr. Build. Mater. 2019, 227, 116663. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, H.; Tang, J. Effects of different anti-stripping agents on physical, rheological and aging properties of asphalt. J. Highw. Transp. Res. Dev. 2021, 38, 1–9+111+18. (In Chinese) [Google Scholar]
- Peng, C.; Lu, L.; You, Z.; Xu, F.; You, L.; Miljković, M.; Guo, C.; Huang, S.; Ma, H.; Hu, Y. Influence of silane-hydrolysate coupling agents on bitumen–aggregate interfacial adhesion: An exploration from molecular dynamics simulation. Int. J. Adhes. Adhes. 2022, 112, 102993. [Google Scholar] [CrossRef]
- Pérez-Martínez, M.; Moreno-Navarro, F.; Martín-Marín, J.; Ríos-Losada, C.; Rubio-Gámez, M.C. Analysis of cleaner technologies based on waxes and surfactant additives in road construction. J. Clean. Prod. 2014, 65, 374–379. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Wang, H. Effects of surfactants on the performance of diluted asphalt and its mixtures. J. Highw. Transp. Res. Dev. 2023, 40, 1–8. (In Chinese) [Google Scholar]
- Nejad, F.M.; Asadi, M.; Hamedi, G.H. Determination of moisture damage mechanism in asphalt mixtures using thermodynamic and mix design parameters. Int. J. Pavement Res. Technol. 2020, 13, 176–186. [Google Scholar] [CrossRef]
- Han, X.; Cao, Z.; Wang, R.; He, P.; Zhang, Y.; Yu, J.; Ge, Y. Effect of silane coupling agent modified zeolite warm mix additives on properties of asphalt. Constr. Build. Mater. 2020, 259, 119713. [Google Scholar] [CrossRef]
- Hao, H.; Zhang, A.; Cheng, Y.; Cong, P. The modification mechanisms of silane coupling agent (SCA) on the physical properties of thermosetting polyurethane asphalt binder (PUAB). Constr. Build. Mater. 2022, 350, 128836. [Google Scholar] [CrossRef]
- Maslennikova, V.V.; Filatov, S.N.; Orlov, A.V.; Surin, N.M.; Svidchenko, E.A.; Chistyakov, E.M. Luminescent coatings based on (3-Aminopropyl) triethoxysilane and europium complex β-Diketophosphazene. Polymers 2022, 14, 728. [Google Scholar] [CrossRef]
- Nurdina, A.; Mariatti, M.; Samayamutthirian, P. Effect of filler surface treatment on mechanical properties and thermal properties of single and hybrid filler–filled PP composites. J. Appl. Polym. Sci. 2011, 120, 857–865. [Google Scholar] [CrossRef]
- Tee, D.; Mariatti, M.; Azizan, A.; See, C.; Chong, K. Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites. Compos. Sci. Technol. 2007, 67, 2584–2591. [Google Scholar] [CrossRef]
- Shang, X.; Zhu, Y.; Li, Z. Surface modification of silicon carbide with silane coupling agent and hexadecyl iodiele. Appl. Surf. Sci. 2017, 394, 169–177. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Y.; Wang, K.; Yu, J. Characterization of surface interaction of inorganic fillers with silane coupling agents. J. Anal. Appl. Pyrolysis 2003, 70, 413–425. [Google Scholar] [CrossRef]
- Wang, L.; Tang, C.; Wang, X.; Zheng, W. Molecular dynamics simulation on the thermodynamic properties of insulating paper cellulose modified by silane coupling agent grafted nano-SiO2. AIP Adv. 2019, 9, 125134. [Google Scholar] [CrossRef]
- Min, Y.; Fang, Y.; Huang, X.; Zhu, Y.; Li, W.; Yuan, J.; Tan, L.; Wang, S.; Wu, Z. Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage. Appl. Surf. Sci. 2015, 346, 497–502. [Google Scholar] [CrossRef]
- Feng, X.; Chen, W.; Li, W. Effects of silane coupling agent modified coal waste powder on performance of asphalt mortar and asphalt mixture. Int. J. Pavement Res. Technol. 2020, 13, 383–391. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Pinxue; Zhang, Y. Effect of basalt fiber surface modification on asphalt mortar performance. J. Highw. Transp. Res. Dev. 2023, 40, 9–15+25. (In Chinese) [Google Scholar]
- Ahangaran, F.; Navarchian, A.H. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review. Adv. Colloid Interface Sci. 2020, 286, 102298. [Google Scholar] [CrossRef]
- Han, X.; Yu, J.; Cao, Z.; Wang, R.; Du, W.; He, P.; Ge, Y. Preparation and properties of silane coupling agent modified zeolite as warm mix additive. Constr. Build. Mater. 2020, 244, 118408. [Google Scholar] [CrossRef]
- Chmielewska, B.; Czarnecki, L.; Sustersic, J.; Zajc, A. The influence of silane coupling agents on the polymer mortar. Cem. Concr. Compos. 2006, 28, 803–810. [Google Scholar] [CrossRef]
- Magdaleno-López, C.; de Jesús Pérez-Bueno, J. Quantitative evaluation for the ASTM D4541-17/D7234 and ASTM D3359 adhesion norms with digital optical microscopy for surface modifications with flame and APPJ. Int. J. Adhes. Adhes. 2020, 98, 102551. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, R. Modifying the BET model for accurately determining specific surface area and surface energy components of aggregates. Constr. Build. Mater. 2018, 175, 653–663. [Google Scholar] [CrossRef]
- Wayner, P.C., Jr. Spreading of a liquid film with a finite contact angle by the evaporation/condensation process. Langmuir 1993, 9, 294–299. [Google Scholar] [CrossRef]
- Gouin, H. The wetting problem of fluids on solid surfaces. Part 2: The contact angle hysteresis. Continuum Mech. Thermodyn. 2003, 15, 597–611. [Google Scholar] [CrossRef]
- Lou, K.; Xiao, P.; Tang, Q.; Wu, Y.; Wu, Z.; Pan, X. Research on the micro-nano characteristic of basalt fiber and its impact on the performance of relevant asphalt mastic. Constr. Build. Mater. 2022, 318, 126048. [Google Scholar] [CrossRef]
- Feng, P.; Wang, H.; Ding, H.; Xiao, J.; Hassan, M. Effects of surface texture and its mineral composition on interfacial behavior between asphalt binder and coarse aggregate. Constr. Build. Mater. 2020, 262, 120869. [Google Scholar] [CrossRef]
- Gao, J.; Liu, P.; Wu, Y.; Xu, Y.; Lu, H. Moisture damage of asphalt mixture and its evaluation under the long-term soaked duration. Int. J. Pavement Res. Technol. 2021, 14, 607–614. [Google Scholar] [CrossRef]
- Liu, K.; Deng, L.; Zheng, J. Nanoscale study on water damage for different warm mix asphalt binders. Int. J. Pavement Res. Technol. 2016, 9, 405–413. [Google Scholar] [CrossRef]
- Guo, F.; Pei, J.; Zhang, J.; Xue, B.; Sun, G.; Li, R. Study on the adhesion property between asphalt binder and aggregate: A state-of-the-art review. Constr. Build. Mater. 2020, 256, 119474. [Google Scholar] [CrossRef]
- Bhasin, A.; Little, D.N.; Vasconcelos, K.L.; Masad, E. Surface free energy to identify moisture sensitivity of materials for asphalt mixes. Transp. Res. Rec. 2007, 2001, 37–45. [Google Scholar] [CrossRef]
Testing Indexes | Unit | Requirements | Tested Parameters | Test Methods |
---|---|---|---|---|
Crushing value | % | ≤26% | 14.4 | T0316: Determines the crushing value to assess aggregate resistance to compressive loads. |
Los Angeles abrasion value | % | ≤28% | 7.9 | T0317: Measures the Los Angeles abrasion value to evaluate wear resistance. |
Bulk volume relative density | g/cm3 | ≥2.60 | 2.684 | T0304: Tests bulk volume relative density, apparent relative density, and water absorption. |
Apparent relative density | g/cm3 | ≥2.70 | 2.749 | |
Water absorption | % | ≤2.0 | 1.034 | |
Acicular content | % | ≤12 | 8.5 | T0312: Assesses the acicular content, indicating the percentage of elongated and flaky particles. |
Molecular Formula | Boiling Point (°C) | Refractive Index (nD25) | Flash Point (°C) | Purity (%) |
---|---|---|---|---|
C9H23O3NSi | 214 | 1.415 | 86 | >99 |
PG Grade | Penetration (25 °C, 0.1 mm) | Ductility (10 °C, cm) | Softening Point (°C) | Dynamic Viscosity (60 °C, Pa·s) | Ignition Point (°C) |
---|---|---|---|---|---|
58-16 | 66 | 46 | 49.3 | 286 | 354 |
Item | APTES (m) | Water (m) | Ethanol (m) | Curing Temperature |
---|---|---|---|---|
A1 | 0 | 0 | 0 | 150 |
A2 | 0 | 0 | 0 | 180 |
A3 | 0 | 0 | 0 | 200 |
B1 | 2 | 49 | 49 | 150 |
B2 | 2 | 49 | 49 | 180 |
B3 | 2 | 49 | 49 | 200 |
C1 | 5 | 45 | 50 | 150 |
C2 | 5 | 45 | 50 | 180 |
C3 | 5 | 45 | 50 | 200 |
D1 | 10 | 45 | 45 | 150 |
D2 | 10 | 45 | 45 | 180 |
D3 | 10 | 45 | 45 | 200 |
E1 | 15 | 45 | 40 | 150 |
E2 | 15 | 45 | 40 | 180 |
E3 | 15 | 45 | 40 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, M.; Gao, X.; Kong, L.; Chen, L.; Gan, G.; Lin, H.; Zhang, J.; Zhang, G.; Lin, Y.; Zhu, H.; et al. Enhancing Interface Performance Through Self-Assembly Mechanisms of APTES on Surface-Modified Tuff Aggregates. Coatings 2024, 14, 1422. https://doi.org/10.3390/coatings14111422
Lai M, Gao X, Kong L, Chen L, Gan G, Lin H, Zhang J, Zhang G, Lin Y, Zhu H, et al. Enhancing Interface Performance Through Self-Assembly Mechanisms of APTES on Surface-Modified Tuff Aggregates. Coatings. 2024; 14(11):1422. https://doi.org/10.3390/coatings14111422
Chicago/Turabian StyleLai, Mingxin, Xiaoying Gao, Lin Kong, Lizong Chen, Guoan Gan, Haixing Lin, Jiakang Zhang, Gen Zhang, Yueling Lin, Hongming Zhu, and et al. 2024. "Enhancing Interface Performance Through Self-Assembly Mechanisms of APTES on Surface-Modified Tuff Aggregates" Coatings 14, no. 11: 1422. https://doi.org/10.3390/coatings14111422
APA StyleLai, M., Gao, X., Kong, L., Chen, L., Gan, G., Lin, H., Zhang, J., Zhang, G., Lin, Y., Zhu, H., & Zhang, X. (2024). Enhancing Interface Performance Through Self-Assembly Mechanisms of APTES on Surface-Modified Tuff Aggregates. Coatings, 14(11), 1422. https://doi.org/10.3390/coatings14111422