Genotypic Characteristics and Correlation of Epidemiology of Staphylococcus aureus in Healthy Pigs, Diseased Pigs, and Environment
<p>Occurrence of <span class="html-italic">S. aureus</span> isolate resistance to antimicrobials based on isolate source. *** <span class="html-italic">p</span> < 0.001; PEN, penicillin, CEP, cephalothin, OXA, oxacillin, FOX, efoxitin, GEN, gentamicin, CHL, chloramphenicol, TET, tetracycline, MIN, minocycline, CLI, clindamycin, CLA, clarithromycin, SXT, trimethoprim-sulfamethoxazole, RIF, rifampicin, CIP, ciprofloxacin, LEV, levofloxacin, MXF, moxifloxacin and QDA, quinupristin-dalfopristin.</p> "> Figure 2
<p>Dendrogram showing the resistance phenotypes and genotypes of <span class="html-italic">S. aureus</span> isolated from the pork production. The dendrogram was established based on the presence and absence of selected determinants or phenotypes using Jaccard’s coefficient of similarity and the unweighted-pair group method with arithmetic averages (UPMGA).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Prevalence of S. aureus and MRSA
2.2. Antimicrobial Susceptibility Profiles
2.3. Prevalence of Resistance Genes
2.4. Molecular Characteristics of S. aureus
2.5. Genetic Relatedness
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Bacterial Isolation and Identification
4.3. Antimicrobial Susceptibility Testing
4.4. Screening of Antimicrobial Resistance Genes
4.5. Molecular Typing
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Gene | Forward Primer Sequence (5′-3′) | Reverse Primer Sequence (5′-3′) | References |
---|---|---|---|
mecA | GTAGAAATGACTGAACGTCCGATAA | CCAATTCCACATTGTTTCGGTCTAA | [40] |
mecC | GAAAAAAAGGCTTAGAACGCCTC | GAAGATCTTTTCCGTTTTCAGC | [41] |
aac(6′)/aph(2″) | ACATGGCAAGCTCTAGGA | GAAGTACGCAGAAGAGA | [42] |
aph(3′)-IIIa | CTTTAAAAAATCATACAGCTCGCG | GGCTAAAATGAGAATATCACCGG | |
ant(4′)-Ia | GGAAAGTTGACCAGACATTACGAACT | CAAACTGCTAAATCGGTAGAAGCC | |
tetK | GTAGCGACAATAGGTAATAGT | GTAGTGACAATAAACCTCCTA | [43] |
tetL | TCGTTAGCGTGCTGTCATTC | GTATCCCACCAATGTAGCCG | [44] |
ermA | AAGCGGTAAACCCCTCTGA | TTCGCAAATCCCTTCTCAAC | [45] |
ermB | CATTTAACGACGAAACTGGC | GGAACATCTGTGGTATGGCG | |
emrC | ATCTTTGAAATCGGCTCAGG | CAAACCCGTATTCCACGATT | |
msrA | TCCAATCATTGCACAAAATC | AATTCCCTCTATTTGGTGGT | [46] |
msrB | TATGATATCCATAATAATTATCCAATC | AAGTTATATCATGAATAGATTGTCCTGTT | [47] |
sulI | CTTCGATGAGAGCCGGCGGC | GCAAGGCGGAAACCCGCGCC | [48] |
cmlA | TGTCATTTACGGCATACTCG | ATCAGGCATCCCATTCCCAT | |
fexA | GTACTTGTAGGTGCAATTACGGCTGA | CGCATCTGAGTAGGACATAGCGTC | [49] |
dfrG | TGCTGCGATGGATAAGAA | TGGGCAAATACCTCATTCC | [50] |
linA | GGTGGCTGGGGGGTAGATGTATTAACTGG | GCTTCTTTTGAAATACATGGATTTTTCGATC | [47] |
lnu(B) | CCTACCTATTGTTTGTGGAA | ATAACGTTACTCTCCTATTC | [51] |
cfr(B) | AAAAGCACAACAATCTACACAA | TCACATGATACAAGTTCCCACT | [52] |
sulII | CGGCATCGTCAACATAACC | GTGTGCGGATGAAGTCAG | [53] |
catI | AGTTGCTCAATGTACCTATAACC | TTGTAATTCATTAAGCATTCTGCC | |
blaZ | ACTTCAACACCTGCTGCTTTC | TGACCACTTTTATCAGCAACC | [54] |
tetM | AGT GGA GCG ATT ACA GAA | CAT ATG TCC TGG CGT GTC TA | |
lsa(E) | TTGTACGGAATGTATGG | TTCGCTTCTATTAAGCACTCTT | [55] |
aadE | GCAGAACAGGATGAACGTATTCG | TTATCCCAACCTTCCACGAC | |
PCR 1 | GCAGAACAGGATGAACGTATTCG | CCTTTGGTCCCAAAAGGTTA | |
PCR 2 | TTGGATTGCAGCATTATTGG | ATTTGGTCGAAGCCTTGTTG | |
PCR 3 | TTCCATAGCTTCGATCTCACC | ACGTTTTGTTCTCCCACCAA | |
PCR 4 | TCCCAAGGAGAAACGAGAACAG | TGAGTCAAGACATCAGGAAGCC |
Resistance Pattern a | No. of Antimicrobial Classes | No. of Antimicrobials | No. of Isolates | |||||
---|---|---|---|---|---|---|---|---|
Environment (n = 7) | Healthy Pigs (n = 121) | Disease Pigs (n = 28) | All (n = 156) | |||||
Farm (n = 22) | Abattoir (n = 62) | Market (n = 37) | ||||||
- | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN | 1 | 1 | 0 | 0 | 22 | 5 | 1 | 28 |
PEN-TET | 2 | 2 | 0 | 0 | 9 | 2 | 0 | 11 |
PEN-CLA | 2 | 2 | 0 | 0 | 6 | 0 | 0 | 6 |
PEN-CHL | 2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 |
PEN-CLI | 2 | 2 | 0 | 0 | 3 | 0 | 0 | 3 |
PEN-CIP | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN-CIP-LEV-MXF | 2 | 4 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-GEN-CLA | 3 | 3 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN-TET-CLA | 3 | 3 | 0 | 0 | 0 | 2 | 0 | 2 |
PEN-TET-CLI | 3 | 3 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN-CLA-CLI-LEV-MXF | 3 | 5 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN-GEN-TET-CLA | 4 | 4 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-TET-CLA-CLI | 4 | 4 | 0 | 0 | 0 | 2 | 0 | 2 |
PEN-CLA-SXT-CLI | 4 | 4 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN-GEN-CLA-SXT-CLI | 5 | 5 | 0 | 0 | 2 | 0 | 0 | 2 |
PEN-GEN-CLA-CLI-CIP | 5 | 5 | 0 | 0 | 0 | 0 | 1 | 1 |
PEN-TET-CHL-RIF-CLI | 5 | 5 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-TET-CLA-CHL-CLI | 5 | 5 | 0 | 0 | 0 | 2 | 0 | 2 |
PEN-TET-CLA-CLI-CIP | 5 | 5 | 0 | 0 | 0 | 4 | 0 | 4 |
PEN-FOX-TET-CLA-CHL-CLI | 5 | 6 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-FOX-TET-CLA-CLI-CIP | 5 | 6 | 0 | 0 | 0 | 0 | 2 | 2 |
PEN-CLA-SXT-CLI-CIP-MXF | 5 | 6 | 1 | 0 | 0 | 0 | 0 | 1 |
PEN-OXA-FOX-TET-CLA-SXT-RIF | 5 | 7 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-GEN-TET-CHL-RIF-CLI | 6 | 6 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-GEN-TET-CHL-RIF-CLI | 6 | 6 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN-GEN-TET-CLA-CLI-CIP | 6 | 6 | 0 | 0 | 0 | 0 | 9 | 9 |
PEN-GEN-TET-CLA-SXT-CLI | 6 | 6 | 0 | 0 | 3 | 0 | 0 | 3 |
PEN-TET-CLA-CHL-RIF-CLI | 6 | 6 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-TET-CLA-SXT-CLI-CIP | 6 | 6 | 0 | 0 | 0 | 0 | 2 | 2 |
PEN-FOX-TET-CHL-RIF-CLI-CIP | 6 | 7 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-FOX-GEN-TET-CLA-CHL-CLI | 6 | 7 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-GEN-TET-SXT-CLI-CIP-MXF | 6 | 7 | 0 | 1 | 0 | 0 | 0 | 1 |
PEN-GEN-TET-SXT-CLI-CIP-LEV-MXF | 6 | 8 | 1 | 0 | 0 | 0 | 0 | 1 |
PEN-TET-CLA-CHL-CLI-CIP-LEV-MXF | 6 | 8 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-TET-CHL-RIF-CLI-CIP-LEV-MXF | 6 | 8 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-OXA-FOX-GEN-CHL-SXT-CLI-CIP-LEV-MXF | 6 | 10 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-TET-CLA-CHL-SXT-RIF-CLI | 7 | 7 | 0 | 0 | 0 | 0 | 1 | 1 |
PEN-GEN-TET-CLA-SXT-CLI-CIP | 7 | 7 | 0 | 1 | 0 | 1 | 6 | 8 |
PEN-GEN-TET-CLA-SXT-CLI-CIP-MXF | 7 | 8 | 2 | 7 | 0 | 0 | 0 | 9 |
PEN-OXA-TET-CLA-CHL-SXT-RIF-CLI | 7 | 8 | 0 | 0 | 0 | 2 | 0 | 2 |
PEN-GEN-TET-CLA-SXT-CLI-CIP-LEV-MXF | 7 | 9 | 0 | 10 | 0 | 0 | 0 | 10 |
PEN-OXA-CEP-TET-CLA-CHL-SXT-RIF-CLI | 7 | 9 | 0 | 0 | 0 | 2 | 0 | 2 |
PEN-CEP-GEN-TET-CLA-SXT-CLI-CIP-LEV-MXF | 7 | 10 | 0 | 2 | 0 | 0 | 0 | 2 |
PEN-FOX-GEN-TET-CLA-SXT-CLI-CIP-LEV-MXF | 7 | 10 | 1 | 0 | 0 | 0 | 0 | 1 |
PEN-GEN-TET-CLA-CHL-SXT-CLI-CIP | 8 | 8 | 0 | 0 | 2 | 1 | 0 | 3 |
PEN-GEN-TET-CLA-SXT-RIF-CLI-CIP-MXF | 8 | 9 | 0 | 1 | 0 | 0 | 0 | 1 |
PEN-FOX-GEN-TET-CLA-CHL-SXT-CLI-CIP | 8 | 9 | 0 | 0 | 2 | 0 | 0 | 2 |
PEN-GEN-TET-CLA-CHL-SXT-CLI-CIP-MXF | 8 | 9 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN-TET-CLA-CHL-SXT-RIF-CLI-CIP-MXF | 8 | 9 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-GEN-TET-CLA-CHL-SXT-CLI-CIP-LEV-MXF | 8 | 10 | 2 | 0 | 3 | 0 | 0 | 5 |
PEN-FOX-TET-CLA-CHL-SXT-RIF-CLI-CIP-LEV-MXF | 8 | 11 | 0 | 0 | 1 | 0 | 0 | 1 |
PEN-OXA-FOX-GEN-TET-CHL-SXT-RIF-CLI-CIP-MXF | 8 | 11 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-GEN-TET-CLA-CHL-SXT-RIF-CLI-CIP-LEV-MXF | 9 | 11 | 0 | 0 | 0 | 1 | 0 | 1 |
PEN-OXA-FOX-TET-CLA-CHL-SXT-RIF-CLI-CIP-QDA | 9 | 11 | 0 | 0 | 0 | 0 | 2 | 2 |
PEN-OXA-FOX-TET-CLA-CHL-SXT-RIF-CLI-CIP-MXF-QDA | 9 | 12 | 0 | 0 | 0 | 0 | 1 | 1 |
PEN-OXA-FOX-CEP-GEN-TET-CLA-CHL-SXT-RIF-CLI-CIP-MXF | 9 | 13 | 0 | 0 | 0 | 1 | 0 | 1 |
Combined all above | ≥3 | - | 7 | 22 | 19 | 32 | 24 | 104 |
References
- Crombé, F.; Argudín, M.A.; Vanderhaeghen, W.; Hermans, K.; Haesebrouck, F.; Butaye, P. Transmission dynamics of methicillin-resistant Staphylococcus aureus in pigs. Front Microbiol. 2013, 4, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Belkum, A.; Durand, G.; Peyret, M.; Chatellier, S.; Zambardi, G.; Schrenzel, J.; Shortridge, D.; Engelhardt, A.; Dunne, W.M., Jr. Rapid clinical bacteriology and its future impact. Ann. Lab. Med. 2013, 33, 14–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thammavongsa, V.; Missiakas, D.M.; Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 2013, 342, 863–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Jiang, N.S.; Ke, Y.B.; Fessler, A.T.; Wang, Y.; Schwarz, S.; Wu, C.M. Characterization of pig-associated methicillin-resistant Staphylococcus aureus. Vet. Microbiol. 2017, 201, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhang, R.Q.; Lai, H.J.; Chen, Z.F.; Pan, C.G. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ. 2013, 444, 183–195. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, Multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Yu, X.; Tao, X.; Zhang, J.; Zhang, B.; Dong, R.; Xue, C.; Grundmann, H.; Zhang, J. Staphylococcus aureus ST398 from slaughter pigs in northeast China. Int. J. Med. Microbiol. IJMM 2014, 304, 379–383. [Google Scholar] [CrossRef]
- Tang, Y.; Larsen, J.; Kjeldgaard, J.; Andersen, P.S.; Skov, R.; Ingmer, H. Methicillin-resistant and -susceptible Staphylococcus aureus from retail meat in Denmark. Int. J. Food Microbiol. 2017, 249, 72–76. [Google Scholar] [CrossRef]
- Chao, G.; Bao, G.; Jiao, X. Molecular epidemiological characteristics and clonal genetic diversity of Staphylococcus aureus with different origins in China. Foodborne Pathog. Dis. 2014, 11, 503–510. [Google Scholar] [CrossRef]
- Cui, S.; Li, J.; Hu, C.; Jin, S.; Li, F.; Guo, Y.; Ran, L.; Ma, Y. Isolation and characterization of methicillin-resistant Staphylococcus aureus from swine and workers in China. J. Antimicrob. Chemother. 2009, 64, 680–683. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Meng, J.; Zhou, T.; Zhang, Y.; Yang, B.; Xi, M.; Sheng, J.; Zhi, S.; Xia, X. Antimicrobial susceptibility testing and genotypic characterization of Staphylococcus aureus from food and food animals. Foodborne Pathog. Dis. 2012, 9, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.L.; Chow, K.H.; Lai, E.L.; Law, P.Y.; Chan, P.Y.; Ho, A.Y.; Ng, T.K.; Yam, W.C. Clonality and antimicrobial susceptibility of Staphylococcus aureus and methicillin-resistant S. aureus isolates from food animals and other animals. J. Clin. Microbiol. 2012, 50, 3735–3737. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Liu, Y.; Qi, J.; Chen, H.; Zhao, C.; Zhang, F.; Li, H.; Wang, H. Food-animal related Staphylococcus aureus multidrug-resistant ST9 strains with toxin genes. Foodborne Pathog. Dis. 2013, 10, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Beneke, B.; Klees, S.; Stührenberg, B.; Fetsch, A.; Kraushaar, B.; Tenhagen, B.A. Prevalence of methicillin-resistant Staphylococcus aureus in a fresh meat pork production chain. J. Food Prot. 2011, 74, 126–129. [Google Scholar] [CrossRef]
- Leedom Larson, K.R.; Harper, A.L.; Hanson, B.M.; Male, M.J.; Wardyn, S.E.; Dressler, A.E.; Wagstrom, E.A.; Tendolkar, S.; Diekema, D.J.; Donham, K.J.; et al. Methicillin-resistant Staphylococcus aureus in pork production shower facilities. Appl. Environ. Microbiol. 2011, 77, 696–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normanno, G.; Dambrosio, A.; Lorusso, V.; Samoilis, G.; Di Taranto, P.; Parisi, A. Methicillin-resistant Staphylococcus aureus (MRSA) in slaughtered pigs and abattoir workers in Italy. Food Microbiol. 2015, 51, 51–56. [Google Scholar] [CrossRef]
- Fang, H.W.; Chiang, P.H.; Huang, Y.C. Livestock-associated methicillin-resistant Staphylococcus aureus ST9 in pigs and related personnel in Taiwan. PLoS ONE 2014, 9, e88826. [Google Scholar] [CrossRef] [Green Version]
- Guardabassi, L.; O’Donoghue, M.; Moodley, A.; Ho, J.; Boost, M. Novel lineage of methicillin-resistant Staphylococcus aureus, Hong Kong. Emerg. Infect. Dis. 2009, 15, 1998–2000. [Google Scholar] [CrossRef]
- Neela, V.; Mohd Zafrul, A.; Mariana, N.S.; van Belkum, A.; Liew, Y.K.; Rad, E.G. Prevalence of ST9 methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia. J. Clin. Microbiol. 2009, 47, 4138–4140. [Google Scholar] [CrossRef] [Green Version]
- Vestergaard, M.; Cavaco, L.M.; Sirichote, P.; Unahalekhaka, A.; Dangsakul, W.; Svendsen, C.A.; Aarestrup, F.M.; Hendriksen, R.S. SCCmec type IX element in methicillin resistant Staphylococcus aureus spa type t337 (CC9) isolated from pigs and pork in Thailand. Front Microbiol. 2012, 3, 103. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, H.; Du, N.; Shen, E.; Chen, H.; Niu, J.; Ye, H.; Chen, M. Molecular evidence for spread of two major methicillin-resistant Staphylococcus aureus clones with a unique geographic distribution in Chinese hospitals. Antimicrob. Agents Chemother. 2009, 53, 512–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.W.; Park, J.Y.; Park, K.D.; Kim, T.H.; Lee, W.J.; Lee, S.J.; Kim, J. Are there predominant strains and toxins of Staphylococcus aureus in atopic dermatitis patients? Genotypic characterization and toxin determination of S. aureus isolated in adolescent and adult patients with atopic dermatitis. J. Dermatol. 2009, 36, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Ghaznavi-Rad, E.; Goering, R.V.; Nor Shamsudin, M.; Weng, P.L.; Sekawi, Z.; Tavakol, M.; van Belkum, A.; Neela, V. Mec-associated dru typing in the epidemiological analysis of ST239 MRSA in Malaysia. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2011, 30, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Yu, F.Y.; Qin, Z.Q.; Chen, C.; He, S.S.; Chen, Z.Q.; Zhang, X.Q.; Wang, L.X. Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections (SSTIs). BMC Infect. Dis. 2010, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Chuang, Y.Y.; Huang, Y.C. Livestock-associated meticillin-resistant Staphylococcus aureus in Asia. An emerging issue? Int. J. Antimicrob. Agents 2015, 45, 334–340. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus. molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [Green Version]
- Peeters, L.E.; Argudín, M.A.; Azadikhah, S.; Butaye, P. Antimicrobial resistance and population structure of Staphylococcus aureus recovered from pigs farms. Vet. Microbiol. 2015, 180, 151–156. [Google Scholar] [CrossRef]
- Lowder, B.V.; Guinane, C.M.; Ben Zakour, N.L.; Weinert, L.A.; Conway-Morris, A.; Cartwright, R.A.; Simpson, A.J.; Rambaut, A.; Nübel, U.; Fitzgerald, J.R. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2009, 106, 19545–19550. [Google Scholar] [CrossRef] [Green Version]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.O.; Lee, J.K.; Jung, Y.H.; Yoo, J.I.; Park, Y.K.; Kim, B.S.; Lee, Y.S. Molecular analysis of Staphylococcus aureus isolates associated with staphylococcal food poisoning in South Korea. J. Appl. Microbiol. 2006, 101, 864–871. [Google Scholar] [CrossRef]
- Yan, X.; Wang, B.; Tao, X.; Hu, Q.; Cui, Z.; Zhang, J.; Lin, Y.; You, Y.; Shi, X.; Grundmann, H. Characterization of Staphylococcus aureus strains associated with food poisoning in Shenzhen, China. Appl. Environ. Microbiol. 2012, 78, 6637–6642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, R.M.C.; Gebhart, C.J. Comparison of intestinal mucosa homogenate and pure culture of the homologous Lawsonia intracellularis isolate in reproducing proliferative enteropathy in swine. Vet. Microbiol. 2003, 93, 159–166. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, C.; Yue, H.; Ren, Y.; Song, Z. Viral metagenomics analysis demonstrates the diversity of viral flora in piglet diarrhoeic faeces in China. J. Gen. Virol. 2014, 95, 1603–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, S.N.; Ruan, W.Q.; Yue, H.; Tang, C.; Zhou, K.L.; Zhang, B. Viral communities associated with porcine respiratory disease complex in intensive commercial farms in Sichuan province, China. Sci. Rep. 2018, 8, 13341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Cai, R.; Shi, L.; Li, C.; Yan, H. Prevalence of enterotoxin genes in Staphylococcus aureus isolates from pork production. Foodborne Pathog. Dis. 2018, 15, 437–443. [Google Scholar] [CrossRef]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Li, X.; Shi, L.; Wang, H.H.; Yan, H. Novel SCCmec type XII methicillin-resistant Staphylococcus aureus isolates identified from a swine production and processing chain. Vet. Microbiol. 2018, 225, 105–113. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.K.; Han, L.Z.; Liu, Y.; Zhang, H.; Tang, J.; Liu, Q.Z.; Huangfu, Y.C.; Ni, Y.X. Epidemiological and genetic diversity of Staphylococcus aureus causing bloodstream infection in Shanghai, 2009–2011. PLoS ONE 2013, 8, e72811. [Google Scholar] [CrossRef]
- Harmsen, D.; Claus, H.; Witte, W.; Rothganger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative Staphylococci. J. Clin. Microbiol. 2004, 42, 4947–4955. [Google Scholar] [CrossRef] [Green Version]
- Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 395–400. [Google Scholar]
- Vakulenko, S.B.; Donabedian, S.M.; Voskresenskiy, A.M.; Zervos, M.J.; Lerner, S.A.; Chow, J.W. Multiplex PCR for detection of aminoglycoside resistance genes in Enterococci. Antimicrob. Agents Chemother. 2003, 47, 1423–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strommenger, B.; Kettlitz, C.; Werner, G.; Witte, W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 2003, 41, 4089–4094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, J.; Grebe, T.; Tait-Kamradt, A.; Wondrack, L. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 1996, 40, 2562–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martineau, F.; Picard, F.J.; Lansac, N.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lina, G.; Quaglia, A.; Reverdy, M.E.; Leclercq, R.; Vandenesch, F.; Etienne, J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among Staphylococci. Antimicrob. Agents Chemother. 1999, 43, 1062–1066. [Google Scholar] [CrossRef] [Green Version]
- Guerra, B.; Soto, S.M.; Argüelles, J.M.; Mendoza, M.C. Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype [4,5,12.i.-]. Antimicrob Agents Chemother. 2001, 45, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- Kehrenberg, C.; Schwarz, S. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn558. Antimicrob. Agents Chemother. 2005, 49, 813–815. [Google Scholar] [CrossRef] [Green Version]
- Argudín, M.A.; Tenhagen, B.A.; Fetsch, A.; Sachsenröder, J.; Käsbohrer, A.; Schroeter, A.; Hammerl, J.A.; Hertwig, S.; Helmuth, R.; Bräunig, J.; et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl. Environ. Microbiol. 2011, 77, 3052–3060. [Google Scholar] [CrossRef] [Green Version]
- Bozdogan, B.; Berrezouga, L.; Kuo, M.S.; Yurek, D.A.; Farley, K.A.; Stockman, B.J.; Leclercq, R. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob. Agents Chemother. 1999, 43, 925–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshpande, L.M.; Ashcraft, D.S.; Kahn, H.P.; Pankey, G.; Jones, R.N.; Farrell, D.J.; Mendes, R.E. Detection of a New cfr-Like Gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the sentry antimicrobial surveillance program. Antimicrob. Agents Chemother. 2015, 59, 6256–6261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.B.; Zhang, Z.G.; Yan, H.; Li, J.R.; Shi, L. Isolation and Molecular Characterization of Multidrug-Resistant Enterobacteriaceae Strains from Pork and Environmental Samples in Xiamen, China. J. Food Prot. 2015, 78, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Duran, N.; Ozer, B.; Duran, G.G.; Onlen, Y.; Demir, C. Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian J. Med. Res. 2012, 135, 389–396. [Google Scholar]
- Li, B.; Wendlandt, S.; Yao, J.; Liu, Y.; Zhang, Q.; Shi, Z.; Wei, J.; Shao, D.; Schwarz, S.; Wang, S.; et al. Detection and new genetic environment of the pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in methicillin-resistant Staphylococcus aureus of swine origin. J. Antimicrob. Chemother. 2013, 68, 1251–1255. [Google Scholar] [CrossRef] [Green Version]
Source | No. of Samples | No. (%) of Positive Samples | ||
---|---|---|---|---|
S. aureus Including MRSA *** | MRSA * | |||
Healthy pigs | Farm | 97 | 22 (22.7) | 0 (0) |
Abattoir | 173 | 62 (35.8) | 9 (5.2) | |
Market | 160 | 37 (23.1) | 10 (6.3) | |
Environment | 71 | 7 (9.9) | 2 (2.8) | |
Diseased pigs | 165 | 28 (17.0) | 3 (1.8) | |
All | 666 | 156 (23.4) | 24 (3.6) |
Antibiotics | Resistance Genes | No. (%) of Positive Isolates | |||||
---|---|---|---|---|---|---|---|
Environment (n = 7) | Healthy Pigs (n = 121) | Disease Pigs (n = 28) | All (n = 156) | ||||
Farm (n = 22) | Abattoir (n = 62) | Market (n = 37) | |||||
Penicillin | mecA | 2 (28.6) | 0 (0) | 9 (14.5) | 10 (27.0) | 3 (10.7) | 24 (15.4) |
blaZ | 7 (100) | 22 (100) | 62 (100) | 37 (100) | 28 (100) | 156 (100) | |
Gentamycin | ant(4′)-Ia | 7 (100) | 22 (100) | 53 (85.5) | 28 (75.7) | 9 (32.1) | 119 (76.3) |
aadE | 6 (85.7) | 21 (95.5) | 48 (77.4) | 14 (37.8) | 27 (96.4) | 116 (74.4) | |
aacA-aphD | 7 (100) | 22 (100) | 58 (93.5) | 28 (75.7) | 28 (100) | 143 (91.7) | |
aac(6′)/aph(2”) | 5 (71.4) | 21 (95.5) | 35 (56.5) | 22 (59.5) | 3 (10.7) | 86 (55.1) | |
Chloramphenicol | fexA | 0 (0) | 1 (4.5) | 25 (40.3) | 9 (24.3) | 4 (14.3) | 39 (25.0) |
catI | 3 (42.9) | 18 (81.8) | 51 (82.3) | 32 (86.5) | 13 (46.4) | 117 (75.0) | |
cmlA | 0 (0) | 0 (0) | 0(0) | 0 (0) | 9 (32.1) | 9 (5.8) | |
Tetracycline | tetK | 6 (85.7) | 21 (95.5) | 51 (82.3) | 32 (86.5) | 13 (46.4) | 123 (78.8) |
Tetracycline | tetM | 0 (0) | 0 (0) | 1 (1.6) | 6 (16.2) | 19 (67.9) | 26 (16.7) |
tetL | 6 (85.7) | 22 (100) | 53 (85.5) | 19 (51.4) | 27 (96.4) | 127 (81.4) | |
Clindamycin | linA | 0 (0) | 0 (0) | 2 (3.2) | 17 (45.9) | 0 (0) | 19 (12.2) |
lnu(B) | 7 (100) | 22 (100) | 39 (62.9) | 5 (13.5) | 28 (100) | 101 (64.7) | |
quinupristin-dalfopristin | lsa(E) | 7 (100) | 22 (100) | 58(93.5) | 33 (89.2) | 27(96.4) | 147 (94.2) |
Clarithromycin | ermA | 0 (0) | 0 (0) | 1 (1.6) | 2 (5.4) | 24 (85.7) | 27 (17.3) |
ermB | 1 (14.3) | 4 (18.2) | 5 (8.1) | 5 (13.5) | 24 (85.7) | 39 (25.0) | |
ermC | 0 (0) | 2 (9.1) | 1 (1.6) | 0 (0) | 0 (0) | 3 (1.9) | |
Trimethoprim-sulfamethoxazole | sulI | 0(0) | 2 (9.1) | 4 (6.5) | 5 (13.5) | 25 (89.3) | 36 (23.1) |
sulII | 0 (0) | 0 (0) | 0 (0) | 1 (2.7) | 12 (42.9) | 13 (8.3) | |
dfrA | 0 (0) | 0 (0) | 0 (0) | 10 (27.0) | 3 (10.7) | 13 (8.3) | |
dfrG | 6 (85.7) | 22 (100) | 42 (67.7) | 17 (45.9) | 7 (25.0) | 94 (60.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, X.; Yan, H. Genotypic Characteristics and Correlation of Epidemiology of Staphylococcus aureus in Healthy Pigs, Diseased Pigs, and Environment. Antibiotics 2020, 9, 839. https://doi.org/10.3390/antibiotics9120839
Zhou Y, Li X, Yan H. Genotypic Characteristics and Correlation of Epidemiology of Staphylococcus aureus in Healthy Pigs, Diseased Pigs, and Environment. Antibiotics. 2020; 9(12):839. https://doi.org/10.3390/antibiotics9120839
Chicago/Turabian StyleZhou, Yuanyuan, Xinhui Li, and He Yan. 2020. "Genotypic Characteristics and Correlation of Epidemiology of Staphylococcus aureus in Healthy Pigs, Diseased Pigs, and Environment" Antibiotics 9, no. 12: 839. https://doi.org/10.3390/antibiotics9120839
APA StyleZhou, Y., Li, X., & Yan, H. (2020). Genotypic Characteristics and Correlation of Epidemiology of Staphylococcus aureus in Healthy Pigs, Diseased Pigs, and Environment. Antibiotics, 9(12), 839. https://doi.org/10.3390/antibiotics9120839