Farnesol Emulsion as an Effective Broad-Spectrum Agent against ESKAPE Biofilms
<p>Inhibition of <span class="html-italic">E. faecium</span> biofilm formation. (<b>A</b>) <span class="html-italic">E. faecium</span> biofilm development is inhibited with exposure to farnesol for 24 h. Data are represented as the mean ± standard deviation (SD) (n = 3). (<b>B</b>) Flattened views of three-dimensional stacked Live/Dead images of <span class="html-italic">E. faecium</span> biofilms after 24 h exposure to farnesol. Green indicates live cells (SYTO<sup>®</sup> 9 staining), while red indicates dead cells (propidium iodide staining). Scale bars are 20 μm. (<b>C</b>) Quantitative evaluation of fluorescence intensity by Photoshop<sup>®</sup> from the images in (<b>B</b>), with data representing the mean ± SD (n = 3). (<b>D</b>) Quantitative evaluation of fluorescence intensity by Comstat2 from the images in (<b>B</b>) (biomass (µm<sup>3</sup>/µm<sup>2</sup>) and average thickness (µm)), using Otsu thresholding [<a href="#B31-antibiotics-13-00778" class="html-bibr">31</a>]. Ctrl indicates the ethanol control corresponding to the same volume of ethanol used to carry farnesol. Ctrl_0.5 = 1.7%, Ctrl_1 = 3.3%, and Ctrl_2 = 6.7% of ethanol. * <span class="html-italic">p</span> < 0.0001 against each of other groups.</p> "> Figure 2
<p>Inhibition of <span class="html-italic">K. pneumoniae</span> biofilm formation. (<b>A</b>) <span class="html-italic">K. pneumoniae</span> biofilm development is inhibited with exposure to farnesol for 24 h. Data are represented as the mean ± SD (n = 3). (<b>B</b>) Flattened views of three-dimensional stacked Live/Dead images of <span class="html-italic">K. pneumoniae</span> biofilms after 24 h exposure to farnesol. Green indicates live cells (SYTO<sup>®</sup> 9 staining), while red indicates dead cells (propidium iodide staining). Scale bars are 20 μm. (<b>C</b>) Quantitative evaluation of fluorescence intensity by Photoshop<sup>®</sup> from the images in (<b>B</b>), with data representing the mean ± SD (n = 3). (<b>D</b>) Quantitative evaluation of fluorescence intensity by Comstat2 from the images in (<b>B</b>) (biomass (µm<sup>3</sup>/µm<sup>2</sup>) and average thickness (µm)), using Otsu thresholding [<a href="#B31-antibiotics-13-00778" class="html-bibr">31</a>]. Ctrl indicates the ethanol control corresponding to the same volume of ethanol used to carry farnesol. Ctrl_0.5 = 1.7%, Ctrl_1 = 3.3%, and Ctrl_3 = 10% of ethanol. * <span class="html-italic">p</span> < 0.0001 against each of other groups.</p> "> Figure 3
<p>Inhibition of <span class="html-italic">E. cloacae</span> biofilm formation. (<b>A</b>) <span class="html-italic">E. cloacae</span> biofilm development is inhibited with exposure to farnesol for 24 h. Data are represented as the mean ± SD (n = 3). (<b>B</b>) Flattened views of three-dimensional stacked Live/Dead images of <span class="html-italic">E. cloacae</span> biofilms after 24 h exposure to farnesol. Green indicates live cells (SYTO<sup>®</sup> 9 staining), while red indicates dead cells (propidium iodide staining). Scale bars are 20 μm. (<b>C</b>) Quantitative evaluation of fluorescence intensity by Photoshop<sup>®</sup> from the images in (<b>B</b>), with data representing the mean ± SD (n = 3). (<b>D</b>) Quantitative evaluation of fluorescence intensity by Comstat2 from the images in (<b>B</b>) (biomass (µm<sup>3</sup>/µm<sup>2</sup>) and average thickness (µm)), using Otsu thresholding [<a href="#B31-antibiotics-13-00778" class="html-bibr">31</a>]. Ctrl indicates the ethanol control corresponding to the same volume of ethanol used to carry farnesol. Ctrl_0.2 = 0.67%, Ctrl_0.5 = 1.7%, and Ctrl_1 = 3.3% of ethanol. * <span class="html-italic">p</span> < 0.0001 against each of other groups.</p> "> Figure 4
<p>Farnesol disrupts established <span class="html-italic">E. faecium</span> biofilms. (<b>A</b>) The 24 h old established biofilms exposed to farnesol for 24 h have reduced cell viability, indicative of biofilm disruption and cell killing. Data are represented as the mean ± SD (n = 3). (<b>B</b>) Flattened views of three-dimensional stacked Live/Dead images of 24 h old established <span class="html-italic">E. faecium</span> biofilms after 24 h exposure to farnesol. Green indicates live cells (SYTO<sup>®</sup> 9 staining), while red indicates dead cells (propidium iodide staining). Scale bars are 20 μm. (<b>C</b>) Quantitative evaluation of fluorescence intensity by Photoshop<sup>®</sup> from the images in (<b>B</b>), with data representing the mean ± SD (n = 3). (<b>D</b>) Quantitative evaluation of fluorescence intensity by Comstat2 from the images in (<b>B</b>) (biomass (µm<sup>3</sup>/µm<sup>2</sup>) and average thickness (µm)), using Otsu thresholding [<a href="#B31-antibiotics-13-00778" class="html-bibr">31</a>]. Ctrl indicates the ethanol control corresponding to the same volume of ethanol used to carry farnesol. Ctrl_3 = 10%, Ctrl_6 = 20%, and Ctrl_10 = 33.3% of ethanol. * <span class="html-italic">p</span> < 0.0001 against each of other groups.</p> "> Figure 5
<p>Farnesol disrupts established <span class="html-italic">K. pneumoniae</span> biofilms. (<b>A</b>) The 24 h old established biofilms exposed to farnesol for 24 h have reduced cell viability, indicative of biofilm disruption and cell killing. Data are represented as the mean ± SD (n = 3). (<b>B</b>) Flattened views of three-dimensional stacked Live/Dead images of 24 h old established <span class="html-italic">K. pneumoniae</span> biofilms after 24 h exposure to farnesol. Green indicates live cells (SYTO<sup>®</sup> 9 staining), while red indicates dead cells (propidium iodide staining). Scale bars are 20 μm. (<b>C</b>) Quantitative evaluation of fluorescence intensity by Photoshop<sup>®</sup> from the images in (<b>B</b>), with data representing the mean ± SD (n = 3). (<b>D</b>) Quantitative evaluation of fluorescence intensity by Comstat2 from the images in (<b>B</b>) (biomass (µm<sup>3</sup>/µm<sup>2</sup>) and average thickness (µm), using Otsu thresholding [<a href="#B31-antibiotics-13-00778" class="html-bibr">31</a>]. Ctrl indicates the ethanol control corresponding to the same volume of ethanol used to carry farnesol. Ctrl_1 = 3.3%, Ctrl_3 = 10%, and Ctrl_6 = 20% of ethanol. * <span class="html-italic">p</span> < 0.0001 against each of other groups.</p> "> Figure 6
<p>Farnesol disrupts established <span class="html-italic">E. cloacae</span> biofilms. (<b>A</b>) The 24 h old established biofilms exposed to farnesol for 24 h have reduced cell viability, indicative of biofilm disruption and cell killing. Data are represented as the mean ± SD (n = 3). (<b>B</b>) Flattened views of three-dimensional stacked Live/Dead images of 24 h old established <span class="html-italic">E. cloacae</span> biofilms after 24 h exposure to farnesol. Green indicates live cells (SYTO<sup>®</sup> 9 staining), while red indicates dead cells (propidium iodide staining). Scale bars are 20 μm. (<b>C</b>) Quantitative evaluation of fluorescence intensity by Photoshop<sup>®</sup> from the images in (<b>B</b>), with data representing the mean ± SD (n = 3). (<b>D</b>) Quantitative evaluation of fluorescence intensity by Comstat2 from the images in (<b>B</b>) (biomass (µm<sup>3</sup>/µm<sup>2</sup>) and average thickness (µm)), using Otsu thresholding [<a href="#B31-antibiotics-13-00778" class="html-bibr">31</a>]. Ctrl indicates the ethanol control corresponding to the same volume of ethanol used to carry farnesol. Ctrl_0.2 = 0.67%, Ctrl_0.5 = 1.7%, and Ctrl_1 = 3.3% of ethanol. * <span class="html-italic">p</span> ≤ 0.0005 against each of other groups.</p> "> Figure 7
<p>Farnesol kills <span class="html-italic">E. faecium</span> cells and facilitates biofilm detachment without inducing resistance. (<b>A</b>) <span class="html-italic">E. faecium</span> development of resistance to rifampicin or farnesol with serial passaging at sub-MIC doses. (<b>B</b>) Propidium iodide (PI) influx into <span class="html-italic">E. faecium</span> indicates cell killing. Data include the mean of three replicates. (<b>C</b>) The ethanol vehicle does not detach or kill <span class="html-italic">E. faecium</span> cells following 24 h exposure of established biofilms to the ethanol control, as indicated by no green or red fluorescence. Supernatants recovered from the biofilms indicate that live (green) biomass is detached from the surface at a low dose of farnesol. Increasing farnesol doses disrupt the live biomass and further kill the <span class="html-italic">E. faecium</span> cells (red floating material in the supernatant). Scale bars, 20 μm. Ctrl_1 = 3.3%, and Ctrl_3 = 10% of ethanol.</p> "> Figure 8
<p>Farnesol kills <span class="html-italic">K. pneumoniae</span> cells and facilitates biofilm detachment without inducing resistance. (<b>A</b>) <span class="html-italic">K. pneumoniae</span> development of resistance to rifampicin or farnesol with serial passaging at sub-MIC doses. (<b>B</b>) Propidium iodide (PI) influx into <span class="html-italic">K. pneumoniae</span> indicates cell killing. Data include the mean of three replicates. (<b>C</b>) The ethanol vehicle does not detach or kill <span class="html-italic">K. pneumoniae</span> cells following 24 h exposure of established biofilms to the ethanol control, as indicated by no green or red fluorescence. Supernatants recovered from the biofilms indicate that live (green) biomass is detached from the surface at a low dose of farnesol. Increasing farnesol doses disrupt the live biomass and further kill the <span class="html-italic">K. pneumoniae</span> cells (red floating material in the supernatant). Scale bars, 20 μm. Ctrl_1 = 3.3% of ethanol.</p> "> Figure 9
<p>Farnesol prevents biofilm development and disrupts established <span class="html-italic">E. faecium</span> biofilm<span class="html-italic">s</span> on ex vivo intact or burned human skin. (<b>A</b>,<b>B</b>) <span class="html-italic">E. faecium</span> biofilm development on ex vivo human skin is inhibited by exposure to farnesol at 1 mg/mL for 24 h, as visualized by H&E-stained images (<b>A</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per square centimeter (cm<sup>2</sup>) of skin (<b>B</b>). (<b>C</b>,<b>D</b>) The same concentration of farnesol (1 mg/mL) is also effective for inhibiting <span class="html-italic">E. faecium</span> biofilm development on burned ex vivo human skin treated for 24 h, as visualized by H&E-stained images (<b>C</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>D</b>). (<b>E</b>,<b>F</b>) Established <span class="html-italic">E. faecium</span> biofilms developed for 24 h on ex vivo human skin, and then exposed to farnesol for 24 h (15 mg/mL), have reductions in biofilm development, as visualized by H&E-stained images (<b>E</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>F</b>). (<b>G</b>,<b>H</b>) The same concentration of farnesol (15 mg/mL) is also effective for inhibiting <span class="html-italic">E. faecium</span> biofilm development on burned ex vivo human skin treated for 24 h, as visualized by H&E-stained images (<b>G</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>H</b>). The presence of biofilm is indicated by arrowheads in (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>). Quantitative data in (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>) represent the mean ± SD (n = 3 separate pieces of skin) from two independent donors. Ctrl_1 = 3.3 and Ctrl_15 = 50% of ethanol.</p> "> Figure 10
<p>Farnesol prevents biofilm development and disrupts established <span class="html-italic">K. pneumoniae</span> biofilm<span class="html-italic">s</span> on ex vivo intact or burned human skin. (<b>A</b>,<b>B</b>) <span class="html-italic">K. pneumoniae</span> biofilm development on ex vivo human skin is inhibited by exposure to farnesol at 1 mg/mL for 24 h, as visualized by H&E-stained images (<b>A</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>B</b>). (<b>C</b>,<b>D</b>) The same concentration of farnesol (1 mg/mL) is also effective for inhibiting <span class="html-italic">K. pneumoniae</span> biofilm development on burned ex vivo human skin treated for 24 h, as visualized by H&E-stained images (<b>C</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>D</b>). (<b>E</b>,<b>F</b>) Established <span class="html-italic">K. pneumoniae</span> biofilms developed for 24 h on ex vivo human skin, and then exposed to farnesol for 24 h (15 mg/mL), have reductions in biofilm development, as visualized by H&E-stained images (<b>E</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>F</b>). (<b>G</b>,<b>H</b>) The same concentration of farnesol (15 mg/mL) is also effective for inhibiting <span class="html-italic">K. pneumoniae</span> biofilm development on burned ex vivo human skin treated for 24 h, as visualized by H&E-stained images (<b>G</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>H</b>). The presence of biofilm is indicated by arrowheads in (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>). Quantitative data in (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>) represent the mean ± SD (n = 3 separate pieces of skin) from two independent donors. Ctrl_6 = 20% of ethanol; Ctrl_15 = 50% of ethanol.</p> "> Figure 11
<p>Farnesol prevents biofilm development and disrupts established <span class="html-italic">E. cloacae</span> biofilm<span class="html-italic">s</span> on ex vivo intact or burned human skin. (<b>A</b>,<b>B</b>) <span class="html-italic">E. cloacae</span> biofilm development on ex vivo human skin is inhibited by exposure to farnesol at 1 mg/mL for 24 h, as visualized by H&E-stained images (<b>A</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>B</b>). (<b>C</b>,<b>D</b>) The same concentration of farnesol (1 mg/mL) is also effective for inhibiting <span class="html-italic">E. cloacae</span> biofilm development on burned ex vivo human skin treated for 24 h, as visualized by H&E-stained images (<b>C</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>D</b>). (<b>E</b>,<b>F</b>) Established <span class="html-italic">E. cloacae</span> biofilms developed for 24 h on ex vivo human skin, and then exposed to farnesol for 24 h (15 mg/mL), have reductions in biofilm development, as visualized by H&E-stained images (<b>E</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>F</b>). (<b>G</b>,<b>H</b>) The same concentration of farnesol (15 mg/mL) is also effective for <span class="html-italic">E. cloacae</span> biofilm development on burned ex vivo human skin treated for 24 h, as visualized by H&E-stained images (<b>G</b>), and quantification of viable bacteria in log<sub>10</sub> CFU per cm<sup>2</sup> of skin (<b>H</b>). The presence of biofilm is indicated by black arrowheads in (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>). The gray arrows in (<b>C,G</b>) indicate broken stratum corneum of burned epidermis, which was penetrated by <span class="html-italic">E. cloacae</span> to develop biofilm. Quantitative data in (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>) represent the mean ± SD (n = 3 separate pieces of skin) from two independent donors. Ctrl_1 = 3.3% of ethanol; Ctrl_15 = 50% of ethanol.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Farnesol Impedes Biofilm Development
2.2. Farnesol Disrupts Established Biofilms
2.3. No Resistance to Farnesol Was Observed
2.4. Farnesol Directly Kills Bacteria and Also Detaches Biofilms
2.5. Farnesol Is Effective against Biofilm-Associated Skin Infections
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture
4.2. OD600 and Determining CFU/mL
4.3. Inhibiting Biofilm Formation
4.4. Disrupting Established Biofilms
4.5. Viability Assay Using Live/Dead with Quantitative Microscopy
4.6. Evaluation of Antimicrobial Resistance
4.7. Evaluation of Cell Membrane Damage Using Propidium Iodide (PI)
4.8. Developing and Treating Biofilms on Ex Vivo Human Skin
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016, 2016, e2475067. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Davies, D. Understanding Biofilm Resistance to Antibacterial Agents. Nat. Rev. Drug. Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.W.; Mah, T.-F. Molecular Mechanisms of Biofilm-Based Antibiotic Resistance and Tolerance in Pathogenic Bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial Co-Infection and Secondary Infection in Patients with COVID-19: A Living Rapid Review and Meta-Analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Pellegrino, M.; Giuzio, F.; Marra, M.; Rosano, C.; Saturnino, C.; Sinicropi, M.S.; Aquaro, S. Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic. Viruses 2023, 15, 1843. [Google Scholar] [CrossRef] [PubMed]
- Loyola-Cruz, M.Á.; Gonzalez-Avila, L.U.; Martínez-Trejo, A.; Saldaña-Padilla, A.; Hernández-Cortez, C.; Bello-López, J.M.; Castro-Escarpulli, G. ESKAPE and Beyond: The Burden of Coinfections in the COVID-19 Pandemic. Pathogens 2023, 12, 743. [Google Scholar] [CrossRef]
- Lugito, N.P.H.; Cucunawangsih, C.; Wiwing, V.; Suryadinata, N. Prevalence of Antimicrobial Resistance of ESKAPE Pathogens before and during Pandemic COVID-19 Pandemic in a University Affiliated Hospital in Tangerang, Indonesia. Open J. Med. Microbiol. 2023, 13, 146–158. [Google Scholar] [CrossRef]
- Ku, C.-M.; Lin, J.-Y. Farnesol, a Sesquiterpene Alcohol in Essential Oils, Ameliorates Serum Allergic Antibody Titres and Lipid Profiles in Ovalbumin-Challenged Mice. Allergol. Et Immunopathol. 2016, 44, 149–159. [Google Scholar] [CrossRef]
- de Araújo Delmondes, G.; Bezerra, D.S.; de Queiroz Dias, D.; de Souza Borges, A.; Araújo, I.M.; Lins da Cunha, G.; Bandeira, P.F.R.; Barbosa, R.; Melo Coutinho, H.D.; Felipe, C.F.B.; et al. Toxicological and Pharmacologic Effects of Farnesol (C15H26O): A Descriptive Systematic Review. Food Chem. Toxicol. 2019, 129, 169–200. [Google Scholar] [CrossRef]
- Lapczynski, A.; Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance Material Review on Farnesol. Food Chem. Toxicol. 2008, 46, S149–S156. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-429-15083-8. [Google Scholar]
- Ramage, G.; Saville, S.P.; Wickes, B.L.; López-Ribot, J.L. Inhibition of Candida Albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule. Appl. Environ. Microbiol. 2002, 68, 5459–5463. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Monteiro, D.R.; Arias, L.S.; Fernandes, G.L.; Delbem, A.C.B.; Barbosa, D.B. Biofilm Formation by Candida Albicans and Streptococcus Mutans in the Presence of Farnesol: A Quantitative Evaluation. Biofouling 2016, 32, 329–338. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, C.; Kim, S.-H.; Sethi, G.; Ahn, K.S. Farnesol Inhibits Tumor Growth and Enhances the Anticancer Effects of Bortezomib in Multiple Myeloma Xenograft Mouse Model through the Modulation of STAT3 Signaling Pathway. Cancer Lett. 2015, 360, 280–293. [Google Scholar] [CrossRef]
- Szűcs, G.; Murlasits, Z.; Török, S.; Kocsis, G.F.; Pálóczi, J.; Görbe, A.; Csont, T.; Csonka, C.; Ferdinandy, P. Cardioprotection by Farnesol: Role of the Mevalonate Pathway. Cardiovasc. Drugs Ther. 2013, 27, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Vinholes, J.; Rudnitskaya, A.; Gonçalves, P.; Martel, F.; Coimbra, M.A.; Rocha, S.M. Hepatoprotection of Sesquiterpenoids: A Quantitative Structure–Activity Relationship (QSAR) Approach. Food Chem. 2014, 146, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Jo, A.; Lee, Y.; Kam, T.-I.; Kang, S.-U.; Neifert, S.; Karuppagounder, S.S.; Khang, R.; Kang, H.; Park, H.; Chou, S.-C.; et al. PARIS Farnesylation Prevents Neurodegeneration in Models of Parkinson’s Disease. Sci. Transl. Med. 2021, 13, eaax8891. [Google Scholar] [CrossRef] [PubMed]
- Pammi, M.; Liang, R.; Hicks, J.M.; Barrish, J.; Versalovic, J. Farnesol Decreases Biofilms of Staphylococcus Epidermidis and Exhibits Synergy With Nafcillin and Vancomycin. Pediatr. Res. 2011, 70, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, M.; Nagasaki, S.; Ohta, T. Sesquiterpene Farnesol Inhibits Recycling of the C55 Lipid Carrier of the Murein Monomer Precursor Contributing to Increased Susceptibility to β-Lactams in Methicillin-Resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2007, 59, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Jabra-Rizk, M.A.; Meiller, T.F.; James, C.E.; Shirtliff, M.E. Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility. Antimicrob. Agents Chemother. 2006, 50, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, Y.; Zeng, W.; Huang, Z.; Cheng, H.; Kong, J.; Xu, C.; Xu, M.; Zhou, T.; Cao, J. Synergy with Farnesol Rejuvenates Colistin Activity against Colistin-Resistant Gram-Negative Bacteria in Vitro and in Vivo. Int. J. Antimicrob. Agents 2023, 62, 106899. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Ma, R.; Reeves, T.; Katz, A.J.; Levi, N. Repurposing Farnesol for Combating Drug-Resistant and Persistent Single and Polymicrobial Biofilms. Antibiotics 2024, 13, 350. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Ma, R.; Katz, A.J.; Levi, N. Farnesol Repurposing for Prevention and Treatment of Acinetobacter baumannii Biofilms. Biofilm 2024, 7, 100198. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; ur Rahman, S.; Das, C.R. Isolation, Characterization and Efficacy of Phage MJ2 against Biofilm Forming Multi-Drug Resistant Enterobacter cloacae. Folia Microbiol. 2019, 64, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Moellering, R.C. NDM-1—A Cause for Worldwide Concern. New Engl. J. Med. 2010, 363, 2377–2379. [Google Scholar] [CrossRef] [PubMed]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Vorregaard, M. Biofilms. In Informatics and Mathematical Modelling; Technical University of Denmark: Kongens Lyngby, Denmark, 2008. [Google Scholar]
- Inoue, Y.; Togashi, N.; Hamashima, H. Farnesol-Induced Disruption of the Staphylococcus aureus Cytoplasmic Membrane. Biol. Pharm. Bull. 2016, 39, 653–656. [Google Scholar] [CrossRef] [PubMed]
- Cerca, N.; Gomes, F.; Bento, J.C.; França, A.; Rolo, J.; Miragaia, M.; Teixeira, P.; Oliveira, R. Farnesol Induces Cell Detachment from Established S. epidermidis Biofilms. J. Antibiot. 2013, 66, 255–258. [Google Scholar] [CrossRef]
- Norbury, W.; Herndon, D.N.; Tanksley, J.; Jeschke, M.G.; Finnerty, C.C. Infection in Burns. Surg. Infect. 2016, 17, 250–255. [Google Scholar] [CrossRef]
- Azzopardi, E.A.; Azzopardi, E.; Camilleri, L.; Villapalos, J.; Boyce, D.E.; Dziewulski, P.; Dickson, W.A.; Whitaker, I.S. Gram Negative Wound Infection in Hospitalised Adult Burn Patients-Systematic Review and Metanalysis-. PLoS ONE 2014, 9, e95042. [Google Scholar] [CrossRef]
- Nisar, S.; Kirkpatrick, L.D.; Shupp, J.W. Bacterial Virulence Factors and Their Contribution to Pathophysiology after Thermal Injury. Surg. Infect. 2021, 22, 69–76. [Google Scholar] [CrossRef] [PubMed]
- James, G.A.; Swogger, E.; Wolcott, R.; Pulcini, E.d.; Secor, P.; Sestrich, J.; Costerton, J.W.; Stewart, P.S. Biofilms in Chronic Wounds. Wound Repair Regen. 2008, 16, 37–44. [Google Scholar] [CrossRef]
- Rhoads, D.D.; Cox, S.B.; Rees, E.J.; Sun, Y.; Wolcott, R.D. Clinical Identification of Bacteria in Human Chronic Wound Infections: Culturing vs. 16S Ribosomal DNA Sequencing. BMC Infect. Dis. 2012, 12, 321. [Google Scholar] [CrossRef]
- Aloke, C.; Achilonu, I. Coping with the ESKAPE Pathogens: Evolving Strategies, Challenges and Future Prospects. Microb. Pathog. 2023, 175, 105963. [Google Scholar] [CrossRef]
- Almaaytah, A.; Farajallah, A.; Abualhaijaa, A.; Al-Balas, Q. A3, a Scorpion Venom Derived Peptide Analogue with Potent Antimicrobial and Potential Antibiofilm Activity against Clinical Isolates of Multi-Drug Resistant Gram Positive Bacteria. Molecules 2018, 23, 1603. [Google Scholar] [CrossRef]
- Panlilio, H.; Lam, A.K.; Heydarian, N.; Haight, T.; Wouters, C.L.; Moen, E.L.; Rice, C.V. Dual-Function Potentiation by PEG-BPEI Restores Activity of Carbapenems and Penicillins against Carbapenem-Resistant Enterobacteriaceae. ACS Infect. Dis. 2021, 7, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Chmielewska, S.J.; Skłodowski, K.; Piktel, E.; Suprewicz, Ł.; Fiedoruk, K.; Daniluk, T.; Wolak, P.; Savage, P.B.; Bucki, R. NDM-1 Carbapenemase-Producing Enterobacteriaceae Are Highly Susceptible to Ceragenins CSA-13, CSA-44, and CSA-131. Infect. Drug Resist. 2020, 13, 3277–3294. [Google Scholar] [CrossRef] [PubMed]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to Optimize the Drop Plate Method for Enumerating Bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Heydorn, A.; Nielsen, A.T.; Hentzer, M.; Sternberg, C.; Givskov, M.; Ersbøll, B.K.; Molin, S. Quantification of Biofilm Structures by the Novel Computer Program Comstat. Microbiology 2000, 146, 2395–2407. [Google Scholar] [CrossRef]
- de Breij, A.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; de Boer, L.; Koning, R.I.; Ravensbergen, E.; Franken, M.; van der Heijde, T.; Boekema, B.K.; et al. The Antimicrobial Peptide SAAP-148 Combats Drug-Resistant Bacteria and Biofilms. Sci. Transl. Med. 2018, 10, eaan4044. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Ma, R.; Katz, A.J.; Levi, N. Farnesol Emulsion as an Effective Broad-Spectrum Agent against ESKAPE Biofilms. Antibiotics 2024, 13, 778. https://doi.org/10.3390/antibiotics13080778
Tan L, Ma R, Katz AJ, Levi N. Farnesol Emulsion as an Effective Broad-Spectrum Agent against ESKAPE Biofilms. Antibiotics. 2024; 13(8):778. https://doi.org/10.3390/antibiotics13080778
Chicago/Turabian StyleTan, Li, Rong Ma, Adam J. Katz, and Nicole Levi. 2024. "Farnesol Emulsion as an Effective Broad-Spectrum Agent against ESKAPE Biofilms" Antibiotics 13, no. 8: 778. https://doi.org/10.3390/antibiotics13080778
APA StyleTan, L., Ma, R., Katz, A. J., & Levi, N. (2024). Farnesol Emulsion as an Effective Broad-Spectrum Agent against ESKAPE Biofilms. Antibiotics, 13(8), 778. https://doi.org/10.3390/antibiotics13080778