Evaluation of the Bacterial Infections and Antibiotic Prescribing Practices in the Intensive Care Unit of a Clinical Hospital in Romania
<p>(<b>a</b>) Distribution of collected biological samples (38 deceased patients and 87 who survived); (<b>b</b>) distribution of bacteria per group expressed as the number of positive cases per number of eligible cases, considering that the same patient can have more than one bacterium).</p> "> Figure 2
<p>Distribution of number of hospitalization days by number of biological samples (post hoc analysis: 0 vs. 3 <span class="html-italic">p</span> = 0.0007, 0 vs. 4 <span class="html-italic">p</span> < 0.0001, 1 vs. 4 <span class="html-italic">p</span> = 0.0069). Dots represent the raw data, the box middle line is the median, the boxes are the first, and the third quartile and the wickers are the minimum and maximum (excluding the outliers). Colors represent the distribution of the length of hospital stay for each number of biological samples.</p> "> Figure 3
<p>Distribution of hospitalization length and number of identified bacteria by groups: (<b>a</b>) deceased, (<b>b</b>) survived. Dots represent the raw data, the box middle line is the median, the boxes are the first, and the third quartile and the wickers are the minimum and maximum (excluding the outliers). Colors represent the distribution of the length of hospital stay for each number of identified bacteria.</p> "> Figure 4
<p>Distribution of number of antibiotic doses and number of identified bacteria by groups: (<b>a</b>) deceased and (<b>b</b>) survived. Dots represent the raw data, the box middle line is the median, the boxes are the first, and the third quartile and the wickers are the minimum and maximum (excluding the outliers). Colors represent the distribution of antibiotic doses for each number of biological sample.</p> "> Figure 5
<p>Distribution of number of antibiotics doses and number of biological samples by groups: (<b>a</b>) deceased and (<b>b</b>) survived. Dots represent the raw data, the box middle line is the median, the boxes are the first, and the third quartile and the wickers are the minimum and maximum (excluding the outliers). Colors represent the distribution of antibiotic doses for each number of biological sample.</p> "> Figure 6
<p>The matrix of bacteria by antibiotic resistance. A specific color was used for a specific number of antibiotic resistances. Grey background indicates the absence of resistance.</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Evaluated Cohort
2.2. Types of Bacteria and Distribution in Collected Biological Samples
2.3. Administered Antibiotics
- Enterobacter cloacae and prescribed antibiotics to patients: amoxicillin/clavulanic acid 1000/200 mg (n = 1), meropenem 1000 mg (n = 1), and vancomycin 1 g (n = 1).
- Providencia stuartii and prescribed antibiotics to patients: amoxicillin/clavulanic acid 1000/200 mg (n = 1), erythromycin 200 mg (n = 1), and vancomycin 1 g (n = 1).
- Staphylococcus simulans and the prescribed antibiotics were as follows: meropenem 1000 mg (n = 1), metronidazole 5 g/200 mL (n = 1), teicoplanin 400 mg (n = 1), trimethoprim/sulfamethoxazole 400/80 mg (n = 1), and vancomycin 1 g (n = 1).
- Staphylococcus hominis and prescribed antibiotics to patients: linezolid 2 mg/mL (n = 1), meropenem 1000 mg (n = 1), and vancomycin 1 g (n = 1).
- Proteus penneri and used antibiotics: ampicillin 1 g (n = 2), ceftriaxone 1 g (n = 1), colistin 1 MUI (n = 2), meropenem 1000 mg (n = 2), metronidazole 5 g/200 mL (n = 1), and vancomycin 1 g (n = 1).
- Staphylococcus warneri and used antibiotics: linezolid 2 mg/mL (n = 1) and meropenem 1000 mg (n = 1).
2.4. Antibiotic Resistance Profile
3. Discussion
4. Methods
4.1. Participants and Data Collection
4.2. Identification of Bacteria
4.3. Statistical Analysis
5. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dayanand, M.; Rao, S.K.M. Prevention of Hospital Acquired Infections: A practical Guide. Med. J. Armed Forces India 2004, 60, 312. [Google Scholar] [CrossRef]
- Healthcare-Associated Infections (HAI): THE CHALLENGE [Internet]. Available online: https://sterisafe.eu/healthcare-associated-infections/ (accessed on 23 October 2023).
- Azak, E.; Sertcelik, A.; Ersoz, G.; Celebi, G.; Eser, F.; Batirel, A.; Cag, Y.; Ture, Z.; Ozturk Engin, D.; Yetkin, M.A.; et al. Evaluation of the implementation of WHO infection prevention and control core components in Turkish health care facilities: Results from a WHO infection prevention and control assessment framework (IPCAF)-based survey. Antimicrob. Resist. Infect. Control. 2023, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Pouwels, K.B.; Vansteelandt, S.; Batra, R.; Edgeworth, J.; Wordsworth, S.; Robotham, J.V. Estimating the Effect of Healthcare-Associated Infections on Excess Length of Hospital Stay Using Inverse Probability–Weighted Survival Curves. Clin. Infect. Dis. 2020, 71, e415–e420. [Google Scholar] [CrossRef] [PubMed]
- Despotovic, A.; Milosevic, B.; Milosevic, I.; Mitrovic, N.; Cirkovic, A.; Jovanovic, S.; Stevanovic, G. Hospital-acquired infections in the adult intensive care unit-Epidemiology, antimicrobial resistance patterns, and risk factors for acquisition and mortality. Am. J. Infect. Control. 2020, 48, 1211–1215. [Google Scholar] [CrossRef]
- Yetkin, F.; Yakupogullari, Y.; Kuzucu, C.; Ersoy, Y.; Otlu, B.; Colak, C.; Parmaksiz, N. Pathogens of Intensive Care Unit-Acquired Infections and Their Antimicrobial Resistance: A 9-Year Analysis of Data from a University Hospital. Jundishapur J. Microbiol. 2018, 11, e67716. [Google Scholar] [CrossRef]
- Page, B.; Klompas, M.; Chan, C.; Filbin, M.R.; Dutta, S.; McEvoy, D.S.; Clark, R.; Leibowitz, M.; Rhee, C. Surveillance for Healthcare-Associated Infections: Hospital-Onset Adult Sepsis Events Versus Current Reportable Conditions. Clin. Infect. Dis. 2021, 73, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.C.M.; Carmo, T.I.G.D. Implications of Healthcare-Associated Infections in Health Management: Review. Enfermería Cuidados Humanizados 2022, 11, e2746. [Google Scholar] [CrossRef]
- Sartelli, M.; Marini, C.P.; McNelis, J.; Coccolini, F.; Rizzo, C.; Labricciosa, F.M.; Petrone, P. Preventing and Controlling Healthcare-Associated Infections: The First Principle of Every Antimicrobial Stewardship Program in Hospital Settings. Antibiotics 2024, 13, 896. [Google Scholar] [CrossRef] [PubMed]
- El-Sokkary, R.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; Özdemir, M.; et al. Self-reported antibiotic stewardship and infection control measures from 57 intensive care units: An international ID-IRI survey. J. Infect. Public Health 2022, 15, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Health Care-Associated Infections [Internet]. Available online: https://www.oecd-ilibrary.org/sites/4af33743-en/index.html?itemId=/content/component/4af33743-en (accessed on 25 October 2023).
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An emerging opportunistic pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Cusack, R.; Little, E.; Martin-Loeches, I. Practical Lessons on Antimicrobial Therapy for Critically Ill Patients. Antibiotics 2024, 13, 162. [Google Scholar] [CrossRef]
- The Action Plan for the Implementation of the Strategy for the Prevention and Limitation of Healthcare-Associated Infections and Combating the Phenomenon of Antimicrobial Resistance in Romania 2023–2030 [Internet]. 2023. Available online: https://www.ms.ro/ro/transparenta-decizionala/acte-normative-in-transparenta/transparenta-decizional%C4%83-proiectul-de-hot%C4%83r%C3%A2re-a-guvernului-pentru-aprobarea-normelor-privind-recoltarea-depozitarea-%C8%99i-transportul-mostrelor-biologice/ (accessed on 24 October 2023).
- Ali, S.; Birhane, M.; Bekele, S.; Kibru, G.; Teshager, L.; Yilma, Y.; Ahmed, Y.; Fentahun, N.; Assefa, H.; Gashaw, M.; et al. Healthcare associated infection and its risk factors among patients admitted to a tertiary hospital in Ethiopia: Longitudinal study. Antimicrob. Resist. Infect. Control. 2018, 7, 2. [Google Scholar] [CrossRef]
- Blot, S.; Ruppé, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef] [PubMed]
- Tabah, A.; Buetti, N.; Staiquly, Q.; Ruckly, S.; Akova, M.; Aslan, A.T.; Leone, M.; Conway Morris, A.; Bassetti, M.; Arvaniti, K.; et al. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: The EUROBACT-2 international cohort study. Intensive Care Med. 2023, 49, 178–190. [Google Scholar] [CrossRef]
- Barbato, D.; Castellani, F.; Angelozzi, A.; Isonne, C.; Baccolini, V.; Migliara, G.; Marzuillo, C.; De Vito, C.; Villari, P.; Romano, F.; et al. Prevalence survey of healthcare-associated infections in a large teaching hospital. Ann Ig 2019, 31, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Fahy, S.; O’Connor, J.A.; Lucey, B.; Sleator, R.D. Hospital Reservoirs of Multidrug Resistant Acinetobacter Species-The Elephant in the Room! Br. J. Biomed. Sci. 2023, 80, 11098. [Google Scholar] [CrossRef] [PubMed]
- Gorrie, C.L.; Mirceta, M.; Wick, R.R.; Edwards, D.J.; Thomson, N.R.; Strugnell, R.A.; Pratt, N.F.; Garlick, J.S.; Watson, K.M.; Pilcher, D.V.; et al. Gastrointestinal Carriage Is a Major Reservoir of Klebsiella pneumoniae Infection in Intensive Care Patients. Clin. Infect. Dis. 2017, 65, 208–215. [Google Scholar] [CrossRef]
- Harris, A.D.; Jackson, S.S.; Robinson, G.; Pineles, L.; Leekha, S.; Thom, K.A.; Wang, Y.; Doll, M.; Pettigrew, M.M.; Johnson, J.K. Pseudomonas aeruginosa Colonization in the Intensive Care Unit: Prevalence, Risk Factors, and Clinical Outcomes. Infect. Control Hosp. Epidemiol. 2016, 37, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Richards, M.J.; Edwards, J.R.; Culver, D.H.; Gaynes, R.P. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 2000, 21, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Moses, V.; Jerobin, J.; Nair, A.; Sathyendara, S.; Balaji, V.; George, I.A.; Peter, J.V. Enterococcal Bacteremia is Associated with Prolonged Stay in the Medical Intensive Care Unit. J. Glob. Infect. Dis. 2012, 4, 26–30. [Google Scholar] [CrossRef]
- Abernethy, J.K.; Johnson, A.P.; Guy, R.; Hinton, N.; Sheridan, E.A.; Hope, R.J. Thirty-day all-cause mortality in patients with Escherichia coli bacteraemia in England. Clin. Microbiol. Infect. 2015, 21, 251.e1-8. [Google Scholar] [CrossRef] [PubMed]
- Dat, V.Q.; Dat, T.T.; Hieu, V.Q.; Giang, K.B.; Otsu, S. Antibiotic use for empirical therapy in the critical care units in primary and secondary hospitals in Vietnam: A multicenter cross-sectional study. Lancet Reg. Health 2021, 18, 100306. [Google Scholar] [CrossRef]
- Pandolfo, A.M.; Horne, R.; Jani, Y.; Reader, T.W.; Bidad, N.; Brealey, D.; Enne, V.I.; Livermore, D.M.; Gant, V.; Brett, S.J. INHALE WP2 Study Group. Understanding decisions about antibiotic prescribing in ICU: An application of the Necessity Concerns Framework. BMJ Qual. Saf. 2022, 31, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ramos, J.; Gras-Martín, L.; Ramírez, P. Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria. Antibiotics 2023, 12, 475. [Google Scholar] [CrossRef]
- Roberts, J.A.; De Waele, J.J.; Dimopoulos, G.; Koulenti, D.; Martin, C.; Montravers, P.; Rello, J.; Rhodes, A.; Starr, T.; Wallis, S.C.; et al. DALI: Defining Antibiotic Levels in Intensive care unit patients: A multi-centre point of prevalence study to determine whether contemporary antibiotic dosing for critically ill patients is therapeutic. BMC Infect. Dis. 2012, 12, 152. [Google Scholar] [CrossRef]
- Curren, E.J.; Lutgring, J.D.; Kabbani, S.; Diekema, D.J.; Gitterman, S.; Lautenbach, E.; Morgan, D.J.; Rock, C.; Salerno, R.M.; McDonald, L.C. Advancing Diagnostic Stewardship for Healthcare-Associated Infections, Antibiotic Resistance, and Sepsis. Clin. Infect. Dis. 2022, 74, 723–728. [Google Scholar] [CrossRef]
- Healthcare-Associated Infections Acquired in Intensive Care Units—Annual Epidemiological Report for 2019 [Internet]. Available online: https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-intensive-care-units-2019 (accessed on 25 October 2023).
- Ghiga, I.; Pitchforth, E.; Stålsby Lundborg, C.; Machowska, A. Family doctors’ roles and perceptions on antibiotic consumption and antibiotic resistance in Romania: A qualitative study. BMC Primary Care 2023, 24, 93. [Google Scholar] [CrossRef] [PubMed]
- Antibiotic Consumption, Microbial Resistance and Healthcare-Associated Infections in Romania—2020 [Internet]. Available online: https://www.cnscbt.ro/index.php/analiza-date-supraveghere/infectii-nosocomiale-1/3335-consumul-de-antibiotice-rezistenta-microbiana-si-infectii-asociate-asistentei-medicale-in-romania-2020/file (accessed on 11 December 2024).
- Capatina, D.; Feier, B.; Hosu, O.; Tertis, M.; Cristea, C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal. Chim. Acta. 2022, 1204, 339696. [Google Scholar] [CrossRef] [PubMed]
- Boguszewska, K.; Szewczuk, M.; Urbaniak, S.; Karwowski, B.T. Review: Immunoassays in DNA damage and instability detection. Cell Mol. Life Sci. 2019, 76, 4689–4704. [Google Scholar] [CrossRef] [PubMed]
- Gopal, A.; Yan, L.; Kashif, S.; Munshi, T.; Roy, V.A.L.; Voelcker, N.H.; Chen, X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv. Healthc. Mater. 2022, 11, e2101546. [Google Scholar] [CrossRef] [PubMed]
- VITEK® 2 GP ID Card [Internet]. Available online: https://www.biomerieux-diagnostics.com/vitek-2-gp-id-card (accessed on 25 October 2023).
- Procop, G.W.; Church, D.L.; Hall, G.S.; Janda, W.M.; Koneman, E.W.; Schreckenberger, P.C.; Woods, G.L.E.W.K. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 7th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2017; 1118p. [Google Scholar]
Characteristic | All (n = 125) | Deceased (n = 38) | Survived (n = 87) | p-Value |
---|---|---|---|---|
Age a | 0.1794 | |||
Median [Q1 to Q3] | 68 [62 to 79] | 74 [63.3 to 81.8] | 68 [61 to 77.5] | |
{min to max} | {39 to 94} | {48 to 93} | {39 to 94} | |
Sex b | 0.3825 | |||
Women | 50 (40) | 13 (34.2) | 37 (42.5) | |
Men | 75 (60) | 25 (65.8) | 50 (57.5) | |
Days of hospital stay a | 0.0031 | |||
Median [Q1 to Q3] | 6 [4 to 10] | 9 [5.3 to 13.8] | 6 [4 to 8] | |
{min to max} | {3 to 48} | {3 to 35} | {3 to 48} | |
No. of biological samples b | 0.1036 | |||
0 | 43 (34.4) | 8 (21.1) | 35 (40.2) | |
1 | 40 (32) | 17 (44.7) | 23 (26.4) | |
2 | 19 (15.2) | 7 (18.4) | 12 (13.8) | |
>2 | 23 (18.4) | 6 (15.8) | 17 (19.5) | |
No. of bacteria b,* | 0.0342 | |||
0 | 71 (56.8) | 17 (44.7) | 54 (62.1) | |
1 | 24 (19.2) | 6 (15.8) | 18 (20.7) | |
2 | 21 (16.8) | 12 (31.6) | 9 (10.3) | |
>2 | 9 (7.2) | 3 (7.9) | 6 (6.9) | |
No. of antibiotics b | 0.0261 | |||
1 | 47 (37.9) | 13 (34.2) | 34 (39.5) | |
2 | 44 (35.5) | 9 (23.7) | 35 (40.7) | |
>2 | 33 (26.6) | 16 (42.1) | 17 (19.8) | |
No. of patients with at least one c | ||||
R | 46 (36.8) | 18 (47.4) | 28 (32.2) | 0.1054 |
I | 17 (13.6) | 8 (21.1) | 9 (10.3) | 0.1082 |
S | 53 (42.4) | 2330 (52.6) | 33 (37.9) | 0.1261 |
Total no. of antibiotic doses a | 0.0040 | |||
Median [Q1 to Q3] | 15 [9 to 31] | 18 [14.3 to 45] | 13 [7.5 to 26.5] | |
{min to max} | {0 to 172} | {4 to 137} | {0 to 172} |
Bacterium | Biological Sample | No. Patients (Percentage, %) | ||
---|---|---|---|---|
All, n = 125 | Deceased, n = 38 | Survived, n = 87 | ||
Acinetobacter baumannii | Bronchial secretion | 9 (7.2) | 7 (18.4) | 2 (2.3) |
Purulent/fluid secretion | 4 (3.2) | 3 (7.9) | 1 (1.1) | |
Enterobacter cloacae | Bronchial secretion | 2 (1.6) | 1 (2.6) | 1 (1.1) |
Enterococcus faecalis | Blood | 2 (1.6) | 1 (2.6) | 1 (1.1) |
Urine | 2 (1.6) | 1 (2.6) | 1 (1.1) | |
Purulent/fluid secretion | 5 (4) | 2 (5.3) | 3 (3.4) | |
Enterococcus faecium | Blood | 1 (0.8) | 1 (2.6) | |
Urine | 3 (2.4) | 1 (2.6) | 2 (2.3) | |
Purulent/fluid secretion | 4 (3.2) | 1 (2.6) | 3 (3.4) | |
Escherichia coli | Blood | 1 (0.8) | 1 (1.1) | |
Urine | 4 (3.2) | 4 (4.6) | ||
Bronchial secretion | 1 (0.8) | 1 (1.1) | ||
Purulent/fluid secretion | 7 (5.6) | 3 (7.9) | 4 (4.6) | |
Klebsiella pneumoniae | Cannula | 2 (1.6) | 2 (2.3) | |
Cerebrospinal fluid | 1 (0.8) | 1 (2.6) | ||
Blood | 1 (0.8) | 1 (1.1) | ||
Urine | 2 (1.6) | 2 (2.3) | ||
Bronchial secretion | 9 (7.2) | 5 (13.2) | 4 (4.6) | |
Purulent/fluid secretion | 3 (2.4) | 3 (3.4) | ||
Proteus mirabilis | Urine | 2 (1.6) | 2 (2.3) | |
Bronchial secretion | 1 (0.8) | 1 (2.6) | ||
Purulent/fluid secretion | 1 (0.8) | 1 (2.6) | ||
Proteus penneri | Purulent/fluid secretion | 2 (1.6) | 2 (2.3) | |
Providencia stuarti | Blood | 1 (0.8) | 1 (2.6) | |
Pseudomonas aeruginosa | Urine | 3 (2.4) | 3 (7.9) | |
Bronchial secretion | 2 (1.6) | 2 (5.3) | ||
Staphylococcus aureus | Bronchial secretion | 2 (1.6) | 1 (2.6) | 2 (2.3) |
Purulent/fluid secretion | 5 (4) | 2 (5.3) | 1 (1.1) | |
Urine | 1 (0.8) | 1 (1.1) | ||
Staphylococcus epidermidis | Urine | 1 (0.8) | 1 (2.6) | |
Bronchial secretion | 2 (1.6) | 2 (2.3) | ||
Blood | 1 (0.8) | 1 (1.1) | ||
Staphylococcus hemolyticus | Blood | 4 (3.2) | 1 (2.6) | 3 (3.4) |
Urine | 1 (0.8) | 1 (1.1) | ||
Purulent/fluid secretion | 2 (1.6) | 2 (2.3) | ||
Staphylococcus hominis | Blood | 1 (0.8) | 1 (2.6) | |
Staphylococcus simulans | Blood | 1 (0.8) | 1 (2.6) | |
Staphylococcus warneri | Purulent/fluid secretion | 1 (0.8) | 1 (1.1) |
No. of Antibiotics for | No. Patients (Percentage, %) | ||
---|---|---|---|
All, n = 125 | Deceased, n = 38 | Survived, n = 87 | |
no bacteria | 71 (56.8) | 17 (44.7) | 54 (62.1) |
1 AB | 32 (45.1) | 8 (47.1) | 24 (44.4) |
2 ABs | 31 (43.7) | 7 (41.2) | 24 (44.4) |
3 ABs | 8 (11.3) | 2 (11.8) | 6 (11.1) |
1 bacterium | 24 (19.2) | 6 (15.8) | 18 (20.7) |
1 AB | 10 (41.7) | 2 (33.3) | 8 (44.4) |
2 ABs | 8 (33.3) | 1 (16.7) | 7 (38.9) |
3 ABs | 6 (25) | 3 (50) | 3 (16.7) |
2 bacteria | 21 (16.8) | 12 (31.6) | 9 (10.3) |
1 AB | 5 (23.8) | 3 (25) | 2 (22.2) |
2 ABs | 3 (14.3) | 1 (8.3) | 2 (22.2) |
3 ABs | 8 (38.1) | 6 (50) | 2 (22.2) |
>3 ABs | 5 (23.8) | 2 (16.7) | 3 (33.3) |
3 bacteria | 5 (4) | 2 (5.3) | 3 (3.4) |
no AB | 1 (20) | 0 (0) | 1 (33.3) |
2 ABs | 1 (20) | 0 (0) | 1 (33.3) |
3 ABs | 1 (20) | 1 (50) | 0 (0) |
>3 ABs | 2 (40) | 1 (50) | 1 (33.3) |
4 bacteria | 4 (3.2) | 1 (2.6) | 3 (3.4) |
2 ABs | 1 (25) | 0 (0) | 1 (33.3) |
3 ABs | 1 (25) | 0 (0) | 1 (33.3) |
>3 ABs | 2 (50) | 1 (100) | 1 (33.3) |
Antibiotic | No. Patients (Percentage, %) | ||
---|---|---|---|
All, n = 125 | Deceased, n = 38 | Survived, n = 87 | |
Amikacin 500 mg | 3 (2.4) | 1 (2.6) | 2 (2) |
Amoxicillin/Clavulanic acid 1000/200 mg | 17 (13.6) | 10 (26.3) | 7 (7.1) |
Ampicillin 1 g | 3 (2.4) | 1 (2.6) | 2 (2) |
Azithromycin 500 mg | 2 (1.6) | 1 (2.6) | 1 (1) |
Cefazolin 1 g | 1 (0.8) | 0 (0) | 1 (1) |
Cefoperazon/Sulbactam 1000/1000 mg | 20 (16) | 2 (5.3) | 18 (18.4) |
Ceftazidime 1 g | 3 (2.4) | 2 (5.3) | 1 (1) |
Ceftriaxone 1 g | 38 (30.4) | 13 (34.2) | 25 (25.5) |
Cefuroxime 1.5 g | 15 (12) | 0 (0) | 15 (15.3) |
Clindamycin 300 mg/2 mL | 4 (3.2) | 1 (2.6) | 3 (3.1) |
Colistin 1MUI | 13 (10.4) | 6 (15.8) | 7 (7.1) |
Doxycycline 100 mg | 4 (3.2) | 2 (5.3) | 2 (2) |
Erythromycin 200 mg | 4 (3.2) | 1 (2.6) | 3 (3.1) |
Ertapenem 1 g | 7 (5.6) | 1 (2.6) | 6 (6.1) |
Fosfomycin 3 g p.o. | 1 (0.8) | 0 (0) | 1 (1) |
Gentamicin 80 mg | 2 (1.6) | 0 (0) | 2 (2) |
Linezolid 2 mg/mL | 2 (1.6) | 1 (2.6) | 1 (1) |
Meropenem 1000 mg | 32 (25.6) | 14 (36.8) | 18 (18.4) |
Metronidazole 250 mg | 10 (8) | 2 (5.3) | 8 (8.2) |
Metronidazole 5 g/200 mL | 34 (27.2) | 6 (15.8) | 28 (28.6) |
Moxifloxacin 400 mg/250 mL | 2 (1.6) | 1 (2.6) | 1 (1) |
Oxacillin 1000 mg | 2 (1.6) | 2 (5.3) | 0 (0) |
Penicillin G Potassium1 MUI | 1 (0.8) | 0 (0) | 1 (1) |
Piperacillin/Tazobactam 2 g/0.25 g | 6 (4.8) | 4 (10.5) | 2 (2) |
Rifampin 300 mg caps. | 1 (0.8) | 1 (2.6) | 0 (0) |
Tigecycline 50 mg | 2 (1.6) | 0 (0) | 2 (2) |
Teicoplanin 400 mg | 1 (0.8) | 1 (2.6) | 0 (0) |
Trimethoprim/Sulfamethoxazole 400/80 mg | 4 (3.2) | 3 (7.9) | 1 (1) |
Vancomycin 1 g | 19 (15.2) | 9 (23.7) | 10 (10.2) |
Bacterium | Administered Antibiotic | |
---|---|---|
Deceased, n = 38 | Survived, n = 87 | |
Acinetobacter baumannii | Amikacin 500 mg (n = 1) Amoxicillin/Clavulanic acid 1000/200 mg (n = 1) Ampicillin 1 g (n = 1) Ceftazidime 1 g (n = 2) Ceftriaxone 1 g (n = 3) Colistin 1 MUI (n = 6) Ertapenem 1 g (n = 1) Meropenem 1000 mg (n = 6) Metronidazole 5 g/200 mL (n = 3) Piperacillin/Tazobactam 2 g/0.25 g (n = 2) Rifampin 300 mg caps. (n = 1) Trimethoprim/Sulfamethoxazole 400/80 mg (n = 2) Vancomicyn 1 g (n = 3) | Ceftriaxone 1 g (n = 1) Colistin 1 MUI (n = 3) Erythromicin 200 mg (n = 1) Meropenem 1000 mg (n = 3) Metronidazole 5 g/200 mL (n = 1) Piperacillin/Tazobactam 2 g/0.25 g (n = 1) Vancomycin 1 g (n = 2) |
Escherichia coli | Colistin 1 MUI (n = 1) Ertapenem 1 g (n = 1) Meropenem 1000 mg (n = 3) Metronidazole 250 mg (n = 1) Metronidazole 5 g/200 mL (n = 1) Rifampin 300 mg caps. (n = 1) Vancomycin 1 g (n = 1) | Ampicillin 1 g (n = 2) Cefazolin 1 g (n = 1) Cefoperazone/Sulbactam 1000/1000 mg (n = 1) Ceftriaxone 1 g (n = 3) Colistin 1 MUI (n = 2) Ertapenem 1 g (n = 3) Meropenem 1000 mg (n = 3) Metronidazole 250 mg (n = 1) Metronidazole 5 g/200 mL (n = 5) Vancomycin 1 g (n = 1) |
Enterococcus faecalis | Amikacin 500 mg (n = 1) Colistin 1 MUI (n = 2) Meropenem 1000 mg (n = 4) Metronidazole 5 g/200 mL (n = 1) Teicoplanin 400 mg (n = 1) Trimethoprim/Sulfamethoxazole 400/80 mg (n = 2) Vancomycin 1 g (n = 1) | Cefazolin 1 g (n = 1) Ceftriaxone 1 g (n = 4) Doxycycline 100 mg (n = 1) Linezolid 2 mg/mL (n = 1) Meropenem 1000 mg (n = a) Metronidazole 5 g/200 mL (n = 2) |
Enterococcus faecium | Ceftriaxone 1 g (n = 2) Colistin 1 MUI (n = 1) Meropenem 1000 mg (n = 1) Vancomycin 1 g (n = 1) | Ampicillin 1 g (n = 2) Ceftriaxone 1 g (n = 3) Colistin 1 MUI (n = 2) Erythromycin 200 mg (n = 1) Ertapenem 1 g (n = 1) Meropenem 1000 mg (n = 2) Metronidazole 5 g/200 mL (n = 2) Vancomycin 1 g (n = 1) |
Klebsiella pneumoniae | Amoxicillin/Clavulanic acid 1000/200 mg (n = 2) Ampicillin 1 g (n = 1) Ceftazidime 1 g (n = 2) Ceftriaxone 1 g (n = 1) Colistin 1 MUI (n = 2) Meropenem 1000 mg (n = 1) Metronidazole 5 g/200 mL (n = 1) Piperacillin/Tazobactam 2 g/0.25 g (n = 2) Vancomycin 1 g (n = 1) | Amikacin 500 mg (n = 1) Amoxicillin/Clavulanic acid 1000/200 mg (n = 1) Ampicillin 1 g (n = 2) Cefoperazone/Sulbactam 1000/1000 mg (n = 1) Ceftriaxone 1 g (n = 3) Clindamycin 300 mg/2 mL (n = 1) Colistin 1 MUI (n = 4) Ertapenem 1 g (n = 2) Fosfomycina 3 g p.o. (n = 1) Meropenem 1000 mg (n = 8) Metronidazole 250 mg (n = 2) Metronidazole 5 g/200 mL (n = 2) Tigecycline 50 mg (n = 2) Vancomycin 1 g (n = 2) |
Proteus mirabilis | Amoxicillin/Clavulanic acid 1000/200 mg (n = 1) Meropenem 1000 mg (n = 1) Oxacillin 1000 mg (n = 1) Trimethoprim/Sulfamethoxazole 400/80 mg (n = 1) | Cefoperazone/Sulbactam 1000/1000 mg (n = 1) Ceftriaxone 1 g (n = 1) Cefuroxime 1.5 g (n = 1) Meropenem 1000 mg (n = 1) |
Pseudomonas aeruginosa | Ceftazidime 1 g (n = 2) Ceftriaxone 1 g (n = 1) Colistin 1 MUI (n = 1) Linezolid 2 mg/mL (n = 1) Meropenem 1000 mg (n = 3) Piperacillin/Tazobactam 2 g/0.25 g (n = 2) Vancomycin 1 g (n = 2) | Amikacin 500 mg (n = 1) Cefazolin 1 g (n = 1) Ceftriaxone 1 g (n = 2) Clindamycin 300 mg/2 mL (n = 1) Colistin 1 MUI (n = 2) Fosfomycin 3 g p.o. (n = 1) Meropenem 1000 mg (n = 3) Metronidazole 250 mg (n = 2) Metronidazole 5 g/200 mL (n = 2) Tigecycline 50 mg (n = 2) Vancomycin 1 g (n = 1) |
Staphylococcus aureus | Amoxicillin/Clavulanic acid 1000/200 mg (n = 2) Ceftriaxone 1 g (n = 2) Clindamycin 300 mg/2 mL (n = 1) Oxacillin 1000 mg (n = 2) Piperacillin/Tazobactam 2 g/0.25 g (n = 1) Trimethoprim/Sulfamethoxazole 400/80 mg (n = 1) | Amoxicillin/Clavulanic acid 1000/200 mg (n = 1) Ceftriaxone 1 g (n = 2) Clindamycin 300 mg/2 mL (n = 1) Colistin 1 MUI (n = 1) Erythromycin 200 mg (n = 1) Meropenem 1000 mg (n = 1) Metronidazole 5 g/200 mL (n = 1) Penicillin G potassium 1 MUI (n = 1) Vancomycin 1 g (n = 2) |
Staphylococcus epidermidis | Amoxicillin/Clavulanic acid 1000/200 mg (n = 1) Meropenem 1000 mg (n = 1) Vancomycin 1 g (n = 1) | Ceftriaxone 1 g (n = 2) Cefuroxim 1.5 g (n = 1) Meropenem 1000 mg (n = 1) Vancomycin 1 g (n = 1) |
Staphylococcus hemolyticus | Meropenem 1000 mg (n = 1) Metronidazole 5 g/200 mL (n = 1) Teicoplanin 400 mg (n = 1) Trimethoprim/Sulfamethoxazole 400/80 mg (n = 1) Vancomycin 1 g (n = 1) | Ceftriaxone 1 g (n = 4) Colistin 1 MUI (n = 1) Linezolid 2 mg/mL (n = 1) Meropenem 1000 mg (n = 2) Tigecycline 50 mg (n = 1) Vancomycin 1 g (n = 2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, S.; Feier, B.; Mărginean, A.; Dumitrana, A.-E.; Costin, S.L.; Cristea, C.; Bolboacă, S.D. Evaluation of the Bacterial Infections and Antibiotic Prescribing Practices in the Intensive Care Unit of a Clinical Hospital in Romania. Antibiotics 2025, 14, 64. https://doi.org/10.3390/antibiotics14010064
Szabó S, Feier B, Mărginean A, Dumitrana A-E, Costin SL, Cristea C, Bolboacă SD. Evaluation of the Bacterial Infections and Antibiotic Prescribing Practices in the Intensive Care Unit of a Clinical Hospital in Romania. Antibiotics. 2025; 14(1):64. https://doi.org/10.3390/antibiotics14010064
Chicago/Turabian StyleSzabó, Sándor, Bogdan Feier, Alina Mărginean, Andra-Elena Dumitrana, Simona Ligia Costin, Cecilia Cristea, and Sorana D. Bolboacă. 2025. "Evaluation of the Bacterial Infections and Antibiotic Prescribing Practices in the Intensive Care Unit of a Clinical Hospital in Romania" Antibiotics 14, no. 1: 64. https://doi.org/10.3390/antibiotics14010064
APA StyleSzabó, S., Feier, B., Mărginean, A., Dumitrana, A.-E., Costin, S. L., Cristea, C., & Bolboacă, S. D. (2025). Evaluation of the Bacterial Infections and Antibiotic Prescribing Practices in the Intensive Care Unit of a Clinical Hospital in Romania. Antibiotics, 14(1), 64. https://doi.org/10.3390/antibiotics14010064