Microbial Colonization and Antibiotic Resistance Profiles in Chronic Wounds: A Comparative Study of Hidradenitis Suppurativa and Venous Ulcers
<p>Percentual Frequency of Bacterial Species in Patients with Hidradenitis Suppurativa and Venous Ulcers. HS = Hidradenitis Suppurativa; VU = Venous Ulcer.</p> "> Figure 2
<p>(<b>a</b>). Comparison of isolated bacterial strains between females and males in the HS subgroup. (<b>b</b>). Comparison of isolated bacterial strains between females and males in the VU subgroup. HS = Hidradenitis Suppurativa; VU = Venous Ulcer.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Bacterial Profiles in Hidradenitis Suppurativa vs. Venous Ulcers
2.2. Antibiotic Resistance in Key Isolates
2.2.1. Staphylococcus aureus
2.2.2. Proteus mirabilis
2.2.3. Pseudomonas aeruginosa
2.2.4. Enterococcus faecalis
2.2.5. Escherichia coli
2.2.6. Beta-Hemolytic Streptococcus
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shanmugam, V.K.; Schilling, A.; Germinario, A.; Mete, M.; Kim, P.; Steinberg, J.; Attinger, C.E. Prevalence of Immune Disease in Patients with Wounds Presenting to a Tertiary Wound Healing Centre. Int. Wound J. 2012, 9, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Golinko, M.S.; Clark, S.; Rennert, R.; Flattau, A.; Boulton, A.J.M.; Brem, H. Wound Emergencies: The Importance of Assessment, Documentation, and Early Treatment Using a Wound Electronic Medical Record. Ostomy Wound Manag. 2009, 55, 54–61. [Google Scholar]
- Grigore, A.; Vatasescu-Balcan, A.; Stoleru, S.; Zugravu, A.; Poenaru, E.; Engi, M.; Coman, O.A.; Fulga, I. Experimental Research on the Influence of Ion Channels on the Healing of Skin Wounds in Rats. Processes 2024, 12, 109. [Google Scholar] [CrossRef]
- Raff, A.B.; Kroshinsky, D. Cellulitis: A Review. JAMA 2016, 316, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.C.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, 147–159. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus Aureus Infections in Adults and Children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef]
- Ellis Simonsen, S.M.; van Orman, E.R.; Hatch, B.E.; Jones, S.S.; Gren, L.H.; Hegmann, K.T.; Lyon, J.L. Cellulitis Incidence in a Defined Population. Epidemiol. Infect. 2006, 134, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.G.; Eisenberg, D.F.; Liu, H.; Chang, C.-L.; Wang, Y.; Luthra, R.; Wallace, A.; Fang, C.; Singer, J.; Suaya, J.A. Incidence of Skin and Soft Tissue Infections in Ambulatory and Inpatient Settings, 2005–2010. BMC Infect. Dis. 2015, 15, 362. [Google Scholar] [CrossRef]
- Fritz, S.A.; Shapiro, D.J.; Hersh, A.L. National Trends in Incidence of Purulent Skin and Soft Tissue Infections in Patients Presenting to Ambulatory and Emergency Department Settings, 2000–2015. Clin. Infect. Dis. 2020, 70, 2715–2718. [Google Scholar] [CrossRef]
- McNamara, D.R.; Tleyjeh, I.M.; Berbari, E.F.; Lahr, B.D.; Martinez, J.; Mirzoyev, S.A.; Baddour, L.M. A Predictive Model of Recurrent Lower Extremity Cellulitis in a Population-Based Cohort. Arch. Intern. Med. 2007, 167, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Dankert, J.; Bouma, J. Recurrent Acute Leg Cellulitis after Hysterectomy with Pelvic Lymphadenectomy. Br. J. Obs. Gynaecol. 1987, 94, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Roberson, M.L.; Strassle, P.D.; Ogunleye, A. Epidemiology of Lymphedema-Related Admissions in the United States: 2012–2017. Surg. Oncol. 2020, 35, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Begier, E.M.; Frenette, K.; Barrett, N.L.; Mshar, P.; Petit, S.; Boxrud, D.J.; Watkins-Colwell, K.; Wheeler, S.; Cebelinski, E.A.; Glennen, A.; et al. A High-Morbidity Outbreak of Methicillin-Resistant Staphylococcus Aureus among Players on a College Football Team, Facilitated by Cosmetic Body Shaving and Turf Burns. Clin. Infect. Dis. 2004, 39, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Bernard, P.; Bedane, C.; Mounier, M.; Denis, F.; Catanzano, G.; Bonnetblanc, J.M. Streptococcal Cause of Erysipelas and Cellulitis in Adults. A Microbiologic Study Using a Direct Immunofluorescence Technique. Arch. Dermatol. 1989, 125, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Semel, J.D.; Goldin, H. Association of Athlete’s Foot with Cellulitis of the Lower Extremities: Diagnostic Value of Bacterial Cultures of Ipsilateral Interdigital Space Samples. Clin. Infect. Dis. 1996, 23, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Siljander, T.; Karppelin, M.; Vähäkuopus, S.; Syrjänen, J.; Toropainen, M.; Kere, J.; Vuento, R.; Jussila, T.; Vuopio-Varkila, J. Acute Bacterial, Nonnecrotizing Cellulitis in Finland: Microbiological Findings. Clin. Infect. Dis. 2008, 46, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Bruun, T.; Oppegaard, O.; Kittang, B.R.; Mylvaganam, H.; Langeland, N.; Skrede, S. Etiology of Cellulitis and Clinical Prediction of Streptococcal Disease: A Prospective Study. Open Forum Infect. Dis. 2016, 3, ofv181. [Google Scholar] [CrossRef]
- Bonkemeyer Millan, S.; Gan, R.; Townsend, P.E. Venous Ulcers: Diagnosis and Treatment. Am. Fam. Physician 2019, 100, 298–305. [Google Scholar]
- Carratalà, J.; Rosón, B.; Fernández-Sabé, N.; Shaw, E.; del Rio, O.; Rivera, A.; Gudiol, F. Factors Associated with Complications and Mortality in Adult Patients Hospitalized for Infectious Cellulitis. Eur. J. Clin. Microbiol. Infect. Dis. 2003, 22, 151–157. [Google Scholar] [CrossRef]
- Björnsdóttir, S.; Gottfredsson, M.; Thórisdóttir, A.S.; Gunnarsson, G.B.; Ríkardsdóttir, H.; Kristjánsson, M.; Hilmarsdóttir, I. Risk Factors for Acute Cellulitis of the Lower Limb: A Prospective Case-Control Study. Clin. Infect. Dis. 2005, 41, 1416–1422. [Google Scholar] [CrossRef]
- Kurz, X.; Kahn, S.R.; Abenhaim, L.; Clement, D.; Norgren, L.; Baccaglini, U.; Berard, A.; Cooke, J.P.; Cornu-Thenard, A.; Depairon, M.; et al. Chronic Venous Disorders of the Leg: Epidemiology, Outcomes, Diagnosis and Management. Summary of an Evidence-Based Report of the VEINES Task Force. Venous Insufficiency Epidemiologic and Economic Studies. Int. Angiol. 1999, 18, 83–102. [Google Scholar]
- Bergan, J.J.; Schmid-Schönbein, G.W.; Smith, P.D.C.; Nicolaides, A.N.; Boisseau, M.R.; Eklof, B. Chronic Venous Disease. N. Engl. J. Med. 2006, 355, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Callam, M.J.; Harper, D.R.; Dale, J.J.; Ruckley, C. V Chronic Ulcer of the Leg: Clinical History. Br. Med. J. Clin. Res. Ed. 1987, 294, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.; Machin, M.; Patterson, B.O.; Onida, S.; Davies, A.H. Global Epidemiology of Chronic Venous Disease: A Systematic Review with Pooled Prevalence Analysis. Ann. Surg. 2021, 274, 971–976. [Google Scholar] [CrossRef]
- Zhao, R.; Liang, H.; Clarke, E.; Jackson, C.; Xue, M. Inflammation in Chronic Wounds. Int. J. Mol. Sci. 2016, 17, 2085. [Google Scholar] [CrossRef]
- O’Donnell, T.F.; Passman, M.A.; Marston, W.A.; Ennis, W.J.; Dalsing, M.; Kistner, R.L.; Lurie, F.; Henke, P.K.; Gloviczki, M.L.; Eklöf, B.G.; et al. Management of Venous Leg Ulcers: Clinical Practice Guidelines of the Society for Vascular Surgery® and the American Venous Forum. J. Vasc. Surg. 2014, 60, 3S–59S. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, A.; Lynch, P.J.; Eisen, D.B. Hidradenitis Suppurativa: A Comprehensive Review. J. Am. Acad. Dermatol. 2009, 60, 539–561, quiz 562–563. [Google Scholar] [CrossRef] [PubMed]
- Ingram, J.R. The Epidemiology of Hidradenitis Suppurativa. Br. J. Dermatol. 2020, 183, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Nikolakis, G.; Liakou, A.I.; Bonovas, S.; Seltmann, H.; Bonitsis, N.; Join-Lambert, O.; Wild, T.; Karagiannidis, I.; Zolke-Fischer, S.; Langner, K.; et al. Bacterial Colonization in Hidradenitis Suppurativa/Acne Inversa: A Cross-Sectional Study of 50 Patients and Review of the Literature. Acta Derm. Venereol. 2017, 97, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Constantin, M.M.; Bucur, S.; Mutu, C.C.; Poenaru, E.; Olteanu, R.; Ionescu, R.A.; Nicolescu, A.C.; Furtunescu, F.; Constantin, T. The Impact of Smoking on Psoriasis Patients with Biological Therapies in a Bucharest Hospital. J. Pers. Med. 2021, 11, 752. [Google Scholar] [CrossRef] [PubMed]
- Senthilnathan, A.; Kolli, S.S.; Cardwell, L.A.; Richardson, I.M.; Feldman, S.R.; Pichardo, R.O. Even Mild Hidradenitis Suppurativa Impairs Quality of Life. Br. J. Dermatol. 2019, 181, 838–839. [Google Scholar] [CrossRef]
- Kouris, A.; Platsidaki, E.; Christodoulou, C.; Efstathiou, V.; Dessinioti, C.; Tzanetakou, V.; Korkoliakou, P.; Zisimou, C.; Antoniou, C.; Kontochristopoulos, G. Quality of Life and Psychosocial Implications in Patients with Hidradenitis Suppurativa. Dermatology 2016, 232, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Rosi, E.; Guerra, P.; Silvi, G.; Nunziati, G.; Scandagli, I.; Di Cesare, A.; Prignano, F. Consistency of Bacterial Triggers in the Pathogenesis of Hidradenitis Suppurativa. Vaccines 2023, 11, 179. [Google Scholar] [CrossRef]
- Jemec, G.B.E. Clinical Practice. Hidradenitis Suppurativa. N. Engl. J. Med. 2012, 366, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, A.; Sayed, C.; Alavi, A.; Alhusayen, R.; Brassard, A.; Burkhart, C.; Crowell, K.; Eisen, D.B.; Gottlieb, A.B.; Hamzavi, I.; et al. North American Clinical Management Guidelines for Hidradenitis Suppurativa: A Publication from the United States and Canadian Hidradenitis Suppurativa Foundations: Part I: Diagnosis, Evaluation, and the Use of Complementary and Procedural Management. J. Am. Acad. Dermatol. 2019, 81, 76–90. [Google Scholar] [CrossRef]
- Kathju, S.; Lasko, L.-A.; Stoodley, P. Considering Hidradenitis Suppurativa as a Bacterial Biofilm Disease. FEMS Immunol. Med. Microbiol. 2012, 65, 385–389. [Google Scholar] [CrossRef]
- Ring, H.C.; Bay, L.; Nilsson, M.; Kallenbach, K.; Miller, I.M.; Saunte, D.M.; Bjarnsholt, T.; Tolker-Nielsen, T.; Jemec, G.B. Bacterial Biofilm in Chronic Lesions of Hidradenitis Suppurativa. Br. J. Dermatol. 2017, 176, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Sartorius, K.; Killasli, H.; Oprica, C.; Sullivan, A.; Lapins, J. Bacteriology of Hidradenitis Suppurativa Exacerbations and Deep Tissue Cultures Obtained during Carbon Dioxide Laser Treatment. Br. J. Dermatol. 2012, 166, 879–883. [Google Scholar] [CrossRef]
- Lapins, J.; Jarstrand, C.; Emtestam, L. Coagulase-Negative Staphylococci Are the Most Common Bacteria Found in Cultures from the Deep Portions of Hidradenitis Suppurativa Lesions, as Obtained by Carbon Dioxide Laser Surgery. Br. J. Dermatol. 1999, 140, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. Bacterial Resistance: Origins, Epidemiology, and Impact. Clin. Infect. Dis. 2003, 36, S11–S23. [Google Scholar] [CrossRef]
- Procop, G.; Church, D.; Hall, G. Antimicrobial Susceptibility Testing. In Koneman’s Color Atlas and Textbook of Diagnostic Microbiology; Wolters Kluwer: Philadelphia, PA, USA, 2017; p. 1074. [Google Scholar]
- Tamma, P.D.; Doi, Y.; Bonomo, R.A.; Johnson, J.K.; Simner, P.J.; Antibacterial Resistance Leadership Group. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-Resistant World. Clin. Infect. Dis. 2019, 69, 1446–1455. [Google Scholar] [CrossRef]
- Holmes, N.E.; Johnson, P.D.R.; Howden, B.P. Relationship between Vancomycin-Resistant Staphylococcus Aureus, Vancomycin-Intermediate S. aureus, High Vancomycin MIC, and Outcome in Serious S. aureus Infections. J. Clin. Microbiol. 2012, 50, 2548–2552. [Google Scholar] [CrossRef] [PubMed]
- Rodloff, A.; Bauer, T.; Ewig, S.; Kujath, P.; Müller, E. Susceptible, Intermediate, and Resistant—The Intensity of Antibiotic Action. Dtsch. Arztebl. Int. 2008, 105, 657. [Google Scholar] [CrossRef] [PubMed]
- Kiem, S.; Schentag, J.J. Relationship of Minimal Inhibitory Concentration and Bactericidal Activity to Efficacy of Antibiotics for Treatment of Ventilator-Associated Pneumonia. Semin. Respir. Crit. Care Med. 2006, 27, 51–67. [Google Scholar] [CrossRef]
- Dowd, S.E.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Smith, E.; Rhoads, D. Polymicrobial Nature of Chronic Diabetic Foot Ulcer Biofilm Infections Determined Using Bacterial Tag Encoded FLX Amplicon Pyrosequencing (BTEFAP). PLoS ONE 2008, 3, e3326. [Google Scholar] [CrossRef]
- Wysocki, A.B.; Bhalla-Regev, S.K.; Tierno, P.M.; Stevens-Riley, M.; Wiygul, R.C. Proteolytic Activity by Multiple Bacterial Species Isolated from Chronic Venous Leg Ulcers Degrades Matrix Substrates. Biol. Res. Nurs. 2013, 15, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Y.; Manikam, R.; Muniandy, S. Prevalence and Antibiotic Susceptibility of Bacteria from Acute and Chronic Wounds in Malaysian Subjects. J. Infect. Dev. Ctries. 2015, 9, 936–944. [Google Scholar] [CrossRef]
- Katoulis, A.C.; Koumaki, D.; Liakou, A.I.; Vrioni, G.; Koumaki, V.; Kontogiorgi, D.; Tzima, K.; Tsakris, A.; Rigopoulos, D. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases. Ski. Appendage Disord. 2015, 1, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.N.; Carville, K.; Newall, N.; Kapp, S.; Lewin, G.; Karimi, L.; Santamaria, N. Assessing Bacterial Burden in Wounds: Comparing Clinical Observation and Wound Swabs. Int. Wound J. 2011, 8, 45–55. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-Acquired Infection and Risk to Human Health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Luo, Q.; Lu, P.; Chen, Y.; Shen, P.; Zheng, B.; Ji, J.; Ying, C.; Liu, Z.; Xiao, Y. ESKAPE in China: Epidemiology and Characteristics of Antibiotic Resistance. Emerg. Microbes Infect. 2024, 13, 2317915. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Molinelli, E.; De Simoni, E.; Candelora, M.; Sapigni, C.; Brisigotti, V.; Rizzetto, G.; Offidani, A.; Simonetti, O. Systemic Antibiotic Therapy in Hidradenitis Suppurativa: A Review on Treatment Landscape and Current Issues. Antibiotics 2023, 12, 978. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic Resistance in Pseudomonas Aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629. [Google Scholar] [CrossRef] [PubMed]
- Cwajda-białasik, J.; Mościcka, P.; Jawień, A.; Szewczyk, M.T. Microbiological Status of Venous Leg Ulcers and Its Predictors: A Single-Center Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 12965. [Google Scholar] [CrossRef]
- Rahim, K.; Saleha, S.; Zhu, X.; Huo, L.; Basit, A.; Franco, O.L. Bacterial Contribution in Chronicity of Wounds. Microb. Ecol. 2017, 73, 710–721. [Google Scholar] [CrossRef]
- Dowd, S.E.; Sun, Y.; Secor, P.R.; Rhoads, D.D.; Wolcott, B.M.; James, G.A.; Wolcott, R.D. Survey of Bacterial Diversity in Chronic Wounds Using Pyrosequencing, DGGE, and Full Ribosome Shotgun Sequencing. BMC Microbiol. 2008, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Benzecry, V.; Grancini, A.; Guanziroli, E.; Nazzaro, G.; Barbareschi, M.; Marzano, A.V.; Muratori, S.; Veraldi, S. Hidradenitis Suppurativa/Acne Inversa: A Prospective Bacteriological Study and Review of the Literature. G. Ital. Dermatol. Venereol. 2020, 155, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Brook, I.; Frazier, E.H. Aerobic and Anaerobic Microbiology of Axillary Hidradenitis Suppurativa. J. Med. Microbiol. 1999, 48, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Jockenhöfer, F.; Chapot, V.; Stoffels-Weindorf, M.; Körber, A.; Klode, J.; Buer, J.; Küpper, B.; Roesch, A.; Dissemond, J. Bacterial Spectrum Colonizing Chronic Leg Ulcers: A 10-Year Comparison from a German Wound Care Center. J. Dtsch. Dermatol. Ges. 2014, 12, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Alatoom, A.; Alattas, M.; Alraddadi, B.; Moubareck, C.A.; Hassanien, A.; Jamal, W.; Kurdi, A.; Mohamed, N.; Senok, A.; Somily, A.M.; et al. Antimicrobial Resistance Profiles of Pseudomonas aeruginosa in the Arabian Gulf Region Over a 12-Year Period (2010–2021). J. Epidemiol. Glob. Health 2024, 14, 529–548. [Google Scholar] [CrossRef] [PubMed]
- Telling, K.; Laht, M.; Brauer, A.; Remm, M.; Kisand, V.; Maimets, M.; Tenson, T.; Lutsar, I. Multidrug Resistant Pseudomonas aeruginosa in Estonian Hospitals. BMC Infect. Dis. 2018, 18, 513. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Vassilopoulou, L.; Kritsotakis, E.I. Global Prevalence of Cefiderocol Non-Susceptibility in Enterobacterales, Pseudomonas Aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2024, 30, 178–188. [Google Scholar] [CrossRef]
- Eriksson, G.; Eklund, A.E.; Kallings, L.O. The Clinical Significance of Bacterial Growth in Venous Leg Ulcers. Scand. J. Infect. Dis. 1984, 16, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Ayobami, O.; Brinkwirth, S.; Eckmanns, T.; Markwart, R. Antibiotic Resistance in Hospital-Acquired ESKAPE-E Infections in Low- and Lower-Middle-Income Countries: A Systematic Review and Meta-Analysis. Emerg. Microbes Infect. 2022, 11, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Bettoli, V.; Manfredini, M.; Massoli, L.; Carillo, C.; Barozzi, A.; Amendolagine, G.; Ruina, G.; Musmeci, D.; Libanore, M.; Curtolo, A.; et al. Rates of Antibiotic Resistance/Sensitivity in Bacterial Cultures of Hidradenitis Suppurativa Patients. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 930–936. [Google Scholar] [CrossRef]
- Wysocki, M.; Delatour, F.; Faurisson, F.; Rauss, A.; Pean, Y.; Misset, B.; Thomas, F.; Timsit, J.F.; Similowski, T.; Mentec, H.; et al. Continuous versus Intermittent Infusion of Vancomycin in Severe Staphylococcal Infections: Prospective Multicenter Randomized Study. Antimicrob. Agents Chemother. 2001, 45, 2460–2467. [Google Scholar] [CrossRef]
- Hessam, S.; Sand, M.; Georgas, D.; Anders, A.; Bechara, F.G. Microbial Profile and Antimicrobial Susceptibility of Bacteria Found in Inflammatory Hidradenitis Suppurativa Lesions. Ski. Pharmacol. Physiol. 2016, 29, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S. Hydrocolloid Dressings in the Management of Acute Wounds: A Review of the Literature. Int. Wound J. 2008, 5, 602–613. [Google Scholar] [CrossRef]
- Abayneh, M.; Zeynudin, A.; Tamrat, R.; Tadesse, M.; Tamirat, A. Drug Resistance and Extended-Spectrum β-Lactamase (ESBLs)—Producing Enterobacteriaceae, Acinetobacter and Pseudomonas Species from the Views of One-Health Approach in Ethiopia: A Systematic Review and Meta-Analysis. One Health Outlook 2023, 5, 12. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, W.E.; Yang, Q. Clinical Perspective of Antimicrobial Resistance in Bacteria. Infect. Drug Resist. 2022, 15, 735. [Google Scholar] [CrossRef]
- Torrens, G.; Van Der Schalk, T.E.; Cortes-Lara, S.; Timbermont, L.; Del Barrio-Tofiño, E.; Xavier, B.B.; Zamorano, L.; Lammens, C.; Ali, O.; Ruzin, A.; et al. Susceptibility Profiles and Resistance Genomics of Pseudomonas Aeruginosa Isolates from European ICUs Participating in the ASPIRE-ICU Trial. J. Antimicrob. Chemother. 2022, 77, 1862–1872. [Google Scholar] [CrossRef]
Bacterial Species | N | Mean | Std. Deviation | Median | Percentile 25 | Percentile 75 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | S | I | R | S | I | R | S | I | R | S | I | R | S | I | R | S | I | |
Staphylococcus aureus | 45 | 45 | 45 | 1.64 | 6.11 | 0.04 | 1.708 | 2.014 | 0.208 | 2.00 | 7.00 | 0.00 | 0.00 | 5.00 | 0.00 | 3.00 | 7.00 | 0.00 |
Proteus mirabilis | 7 | 7 | 7 | 2.29 | 7.14 | 0.29 | 1.380 | 1.952 | 0.756 | 2.00 | 7.00 | 0.00 | 1.00 | 6.00 | 0.00 | 4.00 | 9.00 | 0.00 |
Pseudomonas aeruginosa | 24 | 24 | 24 | 0.88 | 4.50 | 2.67 | 2.232 | 1.216 | 1.465 | 0.00 | 5.00 | 3.00 | 0.00 | 3.25 | 3.00 | 1.00 | 5.00 | 4.00 |
Enterococcus faecalis | 10 | 10 | 10 | 0.10 | 4.50 | 0.00 | 0.316 | 1.841 | 0.000 | 0.00 | 4.50 | 0.00 | 0.00 | 3.00 | 0.00 | 0.00 | 5.00 | 0.00 |
Escherichia coli | 5 | 5 | 5 | 0.80 | 5.60 | 0.00 | 0.837 | 2.510 | 0.000 | 1.00 | 5.00 | 0.00 | 0.00 | 4.00 | 0.00 | 1.50 | 7.50 | 0.00 |
Beta-hemolytic Streptococcus | 2 | 2 | 2 | 1.00 | 5.00 | 0.00 | 1.414 | 1.414 | 0.000 | 1.00 | 5.00 | 0.00 | 0.00 | 4.00 | 0.00 | - | - | 0.00 |
Tested Antibiotic | R | S | I |
---|---|---|---|
Oxacillin | 14/43 (32.6%) | 29/43 (67.4%) | 0/43 (0%) |
Gentamicin | 3/43 (7.0%) | 40/43 (93.0%) | 0/43 (0%) |
Amoxicillin-Clavulanate | 1/3 (33.3%) | 2/3 (66.7%) | 0/3 (0%) |
Erythromycin | 22/40 (55.0%) | 18/40 (45.0%) | 0/40 (0%) |
Tetracycline | 8/20 (40.0%) | 12/20 (60.0%) | 0/20 (0%) |
Minocycline | 1/22 (4.5%) | 21/22 (95.5%) | 0/22 (0%) |
Clindamycin | 23/43 (53.5%) | 20/43 (46.5%) | 0/43 (0%) |
Levofloxacin | 2/6 (33.3%) | 2/6 (33.3%) | 2/6 (33.3%) |
Co-trimoxazole | 0/43 (0%) | 43/43 (100%) | 0/43 (0%) |
Linezolid | 0/16 (0%) | 16/16 (100%) | 0/16 (0%) |
Rifampicin | 0/38 (0%) | 38/38 (100%) | 0/38 (0%) |
Vancomycin | 0/20 (0%) | 20/20 (100%) | 0/20 (0%) |
Teicoplanin | 0/12 (0%) | 12/12 (100%) | 0/12 (0%) |
Tigecycline | 0/2 (0%) | 2/2 (100%) | 0/2 (0%) |
Tested Antibiotic | R | S | I |
---|---|---|---|
Ampicillin | 4/7 (57.1%) | 3/7 (42.9%) | 0/7 (0%) |
Gentamicin | 5/7 (71.4%) | 2/7 (28.6%) | 0/7 (0%) |
Amikacin | 0/6 (0%) | 6/6 (100%) | 0/6 (0%) |
Amoxicillin-Clavulanate | 0/7 (0%) | 7/7 (100%) | 0/7 (0%) |
Tetracycline | 1/1 (100%) | 0/1 (0%) | 0/1 (0%) |
Cefuroxime | 0/2 (0%) | 2/2 (100%) | 0/2 (0%) |
Ceftazidime | 0/6 (0%) | 6/6 (100%) | 0/6 (0%) |
Ceftriaxone | 0/6 (0%) | 6/6 (100%) | 0/6 (0%) |
Ciprofloxacin | 0/1 (0%) | 0/1 (0%) | 1/1 (100%) |
Levofloxacin | 1/5 (20.0%) | 3/5 (60.0%) | 1/5 (20.0%) |
Co-trimoxazole | 3/7 (42.9%) | 4/7 (57.1%) | 0/7 (0%) |
Meropenem | 0/5 (0%) | 5/5 (100%) | 0/5 (0%) |
Ertapenem | 0/5 (0%) | 5/5 (100%) | 0/5 (0%) |
Colistin | 1/1 (100%) | 0/1 (0%) | 0/1 (0%) |
Tigecycline | 1/1 (100%) | 0/1 (0%) | 0/1 (0%) |
Piperacillin tazobactam | 0/1 (0%) | 1/1 (100%) | 0/1 (0%) |
Tested Antibiotic | R | S | I |
---|---|---|---|
Oxacillin | 1/24 (4.2%) | 23/24 (95.8%) | 0/24 (0%) |
Gentamicin | 0/24 (0%) | 4/24 (16.7%) | 0/24 (0%) |
Amikacin | 1/21 (4.8%) | 20/21 (95.2%) | 0/21 (0%) |
Tobramycin | 1/18 (5.6%) | 17/18 (94.4%) | 0/18 (0%) |
Erythromycin | 0/24 (0%) | 1/24 (4.2%) | 0/24 (0%) |
Clindamycin | 0/24 (0%) | 1/24 (4.2%) | 0/24 (0%) |
Ceftazidime | 1/21 (4.8%) | 2/21 (9.5%) | 18/21 (85.7%) |
Ceftriaxone | 0/24 (0%) | 2/24 (8.3%) | 0/24 (0%) |
Levofloxacin | 8/19 (42.1%) | 2/19 (10.5%) | 9/19 (47.4%) |
Co-trimoxazole | 0/24 (0%) | 3/24 (12.5%) | 0/24 (0%) |
Linezolid | 0/24 (0%) | 1/24 (4.2%) | 0/24 (0%) |
Rifampicin | 0/24 (0%) | 1/24 (4.2%) | 0/24 (0%) |
Imipenem | 1/20 (5.0%) | 19/20 (95.0%) | 0/20 (0%) |
Meropenem | 2/21 (9.5%) | 18/21 (85.7%) | 1/21 (4.8%) |
Vancomycin | 0/24 (0%) | 1/24 (4.2%) | 0/24 (0%) |
Colistin | 0/24 (0%) | 18/24 (75.0%) | 0/24 (0%) |
Piperacillin Tazobactam | 2/21 (9.5%) | 2/21 (9.5%) | 17/21 (81.0%) |
Ceftazidime Avibactam | 1/14 (7.1%) | 13/14 (92.9%) | 0/14 (0%) |
Cefiderocol | 0/24 (0%) | 1/24 (4.2%) | 0/24 (0%) |
Ceftolozane Tazobactam | 1/24 (4.2%) | 0/24 (0%) | 0/24 (0%) |
Imipenem Relebactam | 1/2 (50.0%) | 1/2 (50.0%) | 0/2 (0%) |
Meropenem Vaborbactam | 1/24 (4.2%) | 0/24 (0%) | 0/24 (0%) |
Tested Antibiotic | R | S |
---|---|---|
Ampicillin | 0/9 (0%) | 9/9 (100%) |
Gentamicin | 1/10 (10%) | 9/10 (90%) |
Amikacin | 0/1 (0%) | 1/1 (100%) |
Tobramycin | 0/1 (0%) | 1/1 (100%) |
Ceftazidime | 0/1 (0%) | 1/1 (100%) |
Ceftriaxone | 0/1 (0%) | 1/1 (100%) |
Levofloxacin | 0/1 (0%) | 1/1 (100%) |
Co-trimoxazole | 0/1 (0%) | 1/1 (100%) |
Linezolid | 0/2 (0%) | 2/2 (100%) |
Meropenem | 0/1 (0%) | 1/1 (100%) |
Ertapenem | 0/2 (0%) | 2/2 (100%) |
Vancomycin | 0/8 (0%) | 8/8 (100%) |
Colistin | 0/1 (0%) | 1/1 (100%) |
Teicoplanin | 0/3 (0%) | 3/3 (100%) |
Tigecycline | 0/3 (0%) | 3/3 (100%) |
Ceftazidime avibactam | 0/1 (0%) | 1/1 (100%) |
Tested Antibiotic | R | S |
---|---|---|
Ampicillin | 3/5 (60%) | 2/5 (40%) |
Gentamicin | 0/5 (0%) | 5/5 (100%) |
Amikacin | 0/1 (0%) | 1/1 (100%) |
Tobramycin | 0/1 (0%) | 1/1 (100%) |
Amoxicillin-Clavulanate | 1/5 (20%) | 4/5 (80%) |
Ceftazidime | 0/2 (0%) | 2/2 (100%) |
Ceftriaxone | 0/1 (0%) | 1/1 (100%) |
Levofloxacin | 0/1 (0%) | 1/1 (100%) |
Co-trimoxazole | 0/5 (0%) | 5/5 (100%) |
Meropenem | 0/1 (0%) | 1/1 (100%) |
Ertapenem | 0/1 (0%) | 1/1 (100%) |
Piperacillin tazobactam | 0/4 (0%) | 4/4 (100%) |
Tested Antibiotic | R | S |
---|---|---|
Penicillin | 0/2 (0%) | 2/2 (100%) |
Erythromycin | 0/2 (0%) | 2/2 (100%) |
Tetracycline | 1/2 (50%) | 1/2 (50%) |
Clindamycin | 1/2 (50%) | 1/2 (50%) |
Co-trimoxazole | 0/2 (0%) | 2/2 (100%) |
Rifampicin | 0/2 (0%) | 2/2 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandru, F.; Poenaru, E.; Stoleru, S.; Radu, A.-M.; Roman, A.-M.; Ionescu, C.; Zugravu, A.; Nader, J.M.; Băicoianu-Nițescu, L.-C. Microbial Colonization and Antibiotic Resistance Profiles in Chronic Wounds: A Comparative Study of Hidradenitis Suppurativa and Venous Ulcers. Antibiotics 2025, 14, 53. https://doi.org/10.3390/antibiotics14010053
Sandru F, Poenaru E, Stoleru S, Radu A-M, Roman A-M, Ionescu C, Zugravu A, Nader JM, Băicoianu-Nițescu L-C. Microbial Colonization and Antibiotic Resistance Profiles in Chronic Wounds: A Comparative Study of Hidradenitis Suppurativa and Venous Ulcers. Antibiotics. 2025; 14(1):53. https://doi.org/10.3390/antibiotics14010053
Chicago/Turabian StyleSandru, Florica, Elena Poenaru, Smaranda Stoleru, Andreea-Maria Radu, Alexandra-Maria Roman, Corina Ionescu, Aurelian Zugravu, Jafal Mugurel Nader, and Livia-Cristiana Băicoianu-Nițescu. 2025. "Microbial Colonization and Antibiotic Resistance Profiles in Chronic Wounds: A Comparative Study of Hidradenitis Suppurativa and Venous Ulcers" Antibiotics 14, no. 1: 53. https://doi.org/10.3390/antibiotics14010053
APA StyleSandru, F., Poenaru, E., Stoleru, S., Radu, A.-M., Roman, A.-M., Ionescu, C., Zugravu, A., Nader, J. M., & Băicoianu-Nițescu, L.-C. (2025). Microbial Colonization and Antibiotic Resistance Profiles in Chronic Wounds: A Comparative Study of Hidradenitis Suppurativa and Venous Ulcers. Antibiotics, 14(1), 53. https://doi.org/10.3390/antibiotics14010053