Therapeutic Drug Monitoring of Vancomycin in Hemodialysis Patients in a Hospital in North-East Romania
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. Treatment Characteristics
2.3. AUC and Relationship Between Changes in Treatment and AUC Monitoring
3. Discussion
Limitations
4. Materials and Methods
4.1. Study Design and Participants
4.2. Vancomycin Dosing and Pharmacodynamics Data
- By intravenous perfusion, either in 0.9% sodium chloride or 5% glucose;
- In a final concentration: no more than 5 mg/mL for peripheral administration;
- With an infusion rate not faster than 10 mg/min.
- For a weight < 40 kg, a dose of 750 mg of vancomycin is recommended in a volume of 250 mL saline solution at 0.9%, with an infusion time of 1.5 h (90 min).
- For a weight of 40–59 kg, a dose of 1000 mg of vancomycin is recommended in a volume of 250 mL saline solution at 0.9%, with an infusion time of 2 h (120 min).
- For a weight of 60–90 kg, a dose of 1500 mg of vancomycin is recommended in a volume of 500 mL saline solution at 0.9%, with an infusion time of 3 h (180 min).
- For a weight > 90 kg, a dose of 2000 mg of vancomycin is recommended in a volume of 500 mL saline solution at 0.9%, with an infusion time of 4 h (240 min).
4.3. Outcomes
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahli, F.; Feidjel, R.; Laalaoui, R. Hemodialysis catheter-related infection: Rates, risk factors and pathogens. J. Infect. Public Health. 2017, 10, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Bamgbola, O. Review of vancomycin-induced renal toxicity: An update. Ther. Adv. Endocrinol. Metab. 2016, 7, 136–147. [Google Scholar] [CrossRef]
- Ibe, Y.; Ishigo, T.; Fujii, S.; Takahashi, S.; Fukudo, M.; Sato, H. Simulation of Vancomycin Exposure Using Trough and Peak Levels Achieves the Target Area under the Steady-State Concentration-Time Curve in ICU Patients. Antibiotics 2023, 12, 1113. [Google Scholar] [CrossRef]
- El Nekidy, W.S.; Cha, R.; Ghazi, I.M. Practical considerations for vancomycin dosing in hemodialysis patients: Perspectives from the nephrology stewardship pharmacist. Clin. Nephrol. 2022, 97, 111–120. [Google Scholar] [CrossRef]
- Lewis, S.J.; Nolin, T.D. New Vancomycin Dosing Guidelines for Hemodialysis Patients: Rationale, Caveats, and Limitations. Kidney360 2021, 2, 1313–1315. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; A Mueller, B.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic Monitoring of Vancomycin for Serious Methicillin-resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2020, 71, 1361–1364. [Google Scholar] [PubMed]
- Jantarathaneewat, K.; Phodha, T.; Singhasenee, K.; Katawethiwong, P.; Suwantarat, N.; Camins, B.; Wongphan, T.; Rutjanawech, S.; Apisarnthanarak, A. Impact of Pharmacist-Led Multidisciplinary Team to Attain Targeted Vancomycin Area under the Curved Monitoring in a Tertiary Care Center in Thailand. Antibiotics 2023, 12, 374. [Google Scholar] [CrossRef]
- Pai, M.P.; Neely, M.; Rodvold, K.A.; Lodise, T.P. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv. Drug Deliv. Rev. 2014, 77, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.K.; Okpechi, I.G.; Osman, M.A.; Cho, Y.; Htay, H.; Jha, V.; Wainstein, M.; Johnson, D.W. Epidemiology of haemodialysis outcomes. Nat. Rev. Nephrol. 2022, 18, 378–395. [Google Scholar] [CrossRef] [PubMed]
- Apata, I.W.; Kabbani, S.; Neu, A.M.; Kear, T.M.; D’agata, E.M.; Levenson, D.J.; Kliger, A.S.; Hicks, L.A.; Patel, P.R. Opportunities to Improve Antibiotic Prescribing in Outpatient Hemodialysis Facilities: A Report From the American Society of Nephrology and Centers for Disease Control and Prevention Antibiotic Stewardship White Paper Writing Group. Am. J. Kidney Dis. 2021, 77, 757–768. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, L.; Lou, R.; Wang, M.; Si, Q. Vancomycin therapeutic drug monitoring in patients on continuous renal replacement therapy: A retrospective study. J. Int. Med. Res. 2022, 50, 3000605221126871. [Google Scholar] [CrossRef]
- Al-Maqbali, J.S.; Shukri, Z.A.; Sabahi, N.A.; Al-Riyami, I.; Al Alawi, A.M. Vancomycin therapeutic drug monitoring (TDM) and its association with clinical outcomes: A retrospective cohort. J. Infect. Public Health 2022, 15, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Mauliņa, I.; Darbiniece, K.; Miķelsone-Jansone, L.; Erts, R.; Bandere, D.; Krūmiņa, A. Experience of Vancomycin Therapeutic Drug Monitoring in Two Multidisciplinary Hospitals in Latvia. Medicina 2022, 58, 370. [Google Scholar] [CrossRef] [PubMed]
- Bakke, V.; Sporsem, H.; Von der Lippe, E.; Nordøy, I.; Lao, Y.; Nyrerød, H.C.; Sandvik, L.; Hårvig, K.R.; Bugge, J.F.; Helset, E. Vancomycin levels are frequently subtherapeutic in critically ill patients: A prospective observational study. Acta Anaesthesiol. Scand. 2017, 61, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Marvin, J.L.; Levine, B.J.; Papas, M.; Rosini, J.M. An evaluation of the incidence of nephrotoxicity after a loading dose of vancomycin in patients with severe renal impairment. J. Emerg. Med. 2019, 56, 701–708. [Google Scholar] [CrossRef]
- Lewis, S.J.; Mueller, B.A. Evaluation and Development of Vancomycin Dosing Schemes to Meet New AUC/MIC Targets in Intermittent Hemodialysis Using Monte Carlo Simulation Techniques. J. Clin. Pharmacol. 2021, 61, 211–223. [Google Scholar] [CrossRef]
- Alghanem, S.S.; Albassam, A.; Al-Rashidi, N.; Bin Haidar, Z. Awareness, perception, and barriers of healthcare providers toward the revised consensus guideline for therapeutic monitoring of vancomycin. Saudi Pharm. J. 2023, 31, 955–961. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, S.V.; Baggs, J.; Apata, I.W.; Yi, S.H.; Jernigan, J.A.; Nguyen, D.; Patel, P.R. Vascular Access and Risk of Bloodstream Infection Among Older Incident Hemodialysis Patients. Kidney Med. 2020, 2, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Weldetensae, M.K.; Weledegebriel, M.G.; Nigusse, A.T.; Berhe, E.; Gebrearegay, H. Catheter-Related Blood Stream Infections and Associated Factors Among Hemodialysis Patients in a Tertiary Care Hospital. Infect. Drug Resist. 2023, 16, 3145–3156. [Google Scholar] [CrossRef]
- Pasilan, R.M.; Tomacruz-Amante, I.D.; Dimacali, C.T. The epidemiology and microbiology of central venous catheter related bloodstream infections among hemodialysis patients in the Philippines: A retrospective cohort study. BMC Nephrol. 2024, 25, 331. [Google Scholar] [CrossRef] [PubMed]
- AbuTaha, S.A.; Al-Kharraz, T.; Belkebir, S.; Abu Taha, A.; Zyoud, S.H. Patterns of microbial resistance in bloodstream infections of hemodialysis patients: A cross-sectional study from Palestine. Sci. Rep. 2022, 12, 18003. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Divisi, D.; Di Leonardo, G.; Zaccagna, G.; Crisci, R. Basic statistics with Microsoft Excel: A review. J. Thorac. Dis. 2017, 9, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strains | n (%) |
---|---|
Staphylococcus spp. | 7 (11.5%) |
Klebsiella spp. | 9 (14.8%) |
Proteus spp. | 2 (3.3%) |
Escherichia coli | 3 (4.9%) |
Acinetobacter spp. | 1 (1.6%) |
Unspecified bacteria | 39 (63.9%) |
Characteristics (N = 20) | n |
---|---|
Gender | |
Female, n (%) | 5 (25%) |
Male, n (%) | 15 (75%) |
Age (years, mean ± SD; range) | 56 ± 15; 22–83 |
Weight (kg, mean ± SD; range) | 71 ± 18; 45–107 |
BMI kg/m2 (mean ± SD; range) | 24.9 ± 5.7; 17.1–34.9 |
SOFA score (mean ± SD) | 2.3 ± 0.9 |
Comorbidities | |
Arterial hypertension | 13 (65%) |
Heart failure | 12 (60%) |
Diabetes mellitus | 4 (20%) |
Bacterial Etiology of Sepsis | n (%) |
---|---|
Staphylococcus aureus | 6 (30%) |
MRSA | 2 |
Coagulase-negative staphylococci | 1 (5%) |
MRSCN | 1 |
Enterococcus faecalis | 2 (10%) |
MDR | 2 |
Staphylococcus hominis | 1 (5%) |
MDR | 1 |
Enterococcus spp. | 1 (5%) |
MDR | 1 |
Unidentified bacteria | 2 (10%) |
Negative | 4 (20%) |
Morganella morganii | 1 (5%) |
Pseudomonas aeruginosa | 1 (5%) |
Klebsiella pneumoniae | 1 (5%) |
Antibiotics Associated with Vancomycin Treatment | Patients Number |
---|---|
Quinolones | 3 |
Aminoglycosides | 3 |
Cephalosporins | 2 |
Carbapenems | 2 |
Sulfonamide | 1 |
Ureidopenicilline | 1 |
Nitroimidazole | 2 |
Without another antibiotic | 3 |
Patient’s Code | Demographic Data: Gender; Age (year); BMI (kg/m2) | Comorbidities | SOFA | Vancomycin Concentration Type | mcg/mL | Vancomycin Doses | AUC (mcg·h/mL) | AUC2 (mcg·h/mL) | ||
---|---|---|---|---|---|---|---|---|---|---|
Loading Dose (mg) | Maintenance Dose (mg) | Dose Adjustment | ||||||||
1 | Female; 64; 24.8 | HTA, HF, DM | 2 | C Peak | 41.89 | 1500 mg | 1000 mg | from 1000 mg to 750 mg | 764.00 | - |
C Trough | 25.69 | |||||||||
2 | Female; 59; 24.2 | 3 | C Peak | 27.47 | 1000 mg * | 1000 mg * | 464.00 | - | ||
C Trough | 13.54 | |||||||||
3 | Male; 51; 32.8 | 3 | C Peak | 38.05 | 2000 mg | 1000 mg | 763.00 | |||
C Trough | 30.58 | |||||||||
C Peak 2 | 47.12 | from 1000 mg to 250 mg; de-escalation to oxacillin | 949 | |||||||
C Trough 2 | 37.45 | |||||||||
4 | Male; 52; 15.9 | HTA, HF | 3 | C Peak | 35.47 | 1000 mg | 1000 mg | de-escalation to oxacillin | 554.00 | - |
C Trough | 21.15 | |||||||||
5 | Male; 66; 19.1 | HTA | 3 | C Peak | 18.41 | 1000 mg | 750 mg | 381.00 | - | |
C Trough | 12.36 | |||||||||
6 | Male; 22; 20 | HTA, HF | 3 | C Peak | 36.46 | 1000 mg | 1000 mg * | de-escalation to ciprofloxacin | 724.00 | - |
C Trough | 24.64 | |||||||||
7 | Male; 55; 34.8 | HTA, HF, DM | 1 | C Peak | 39.07 | 2000 mg | 1500 mg | from 1500 mg to 500 mg | 676.00 | - |
C Trough | 20.32 | |||||||||
8 | Male; 58; 20.3 | HTA, HF, DM | 3 | C Peak | 22.91 | 1500 mg | 1000 mg * | 396.00 | ||
C Trough | 18.05 | |||||||||
C Peak 2 | 32.14 | from 1000 mg to 500 mg | 674 | |||||||
C Trough 2 | 20.89 | |||||||||
9 | Male; 46; 28.1 | HTA | 3 | C Peak | 42.02 | 1500 mg | 1000 mg | de-escalation to oxacillin | 712.00 | - |
C Trough | 14.98 | |||||||||
10 | Male; 32; 23 | HTA, HF, DM | 1 | C Peak | 36.83 | 1500 mg | 1000 mg | 442.00 | - | |
C Trough | 14.77 | |||||||||
11 | Male; 78; 25.4 | HTA, HF | 3 | C Peak | 22.57 | 1000 mg * | 1000 mg | from 1000 mg to 1500 mg | 333.00 | - |
C Trough | 11.15 | |||||||||
12 | Male; 56; 34.9 | 3 | C Peak | 22.60 | 1000 mg * | 1000 mg * | 384.00 | - | ||
C Trough | 10.36 | |||||||||
13 | Male; 59; 31 | HTA, HF | 3 | C Peak | 28.78 | 1500 mg | 1000 mg | 545.00 | - | |
C Trough | 17.48 | |||||||||
14 | Male; 46; 28.1 | HTA | 2 | C Peak | 41.98 | 1500 mg | 1000 mg | from 1000 mg to 750 mg | 666.00 | - |
C Trough | 20.29 | de-escalation to oxacillin | ||||||||
15 | Female; 46; 22 | 2 | C Peak | 18.21 | 1000 mg * | 1000 mg * | 322.00 | - | ||
C Trough | 12.06 | |||||||||
16 | Male; 83; 22 | HTA, HF | 3 | C Peak | 29.80 | 1500 mg | 1000 mg * | 524.00 | - | |
C Trough | 19.89 | |||||||||
17 | Male; 41; 17.1 | HF | 1 | C Peak | 21.92 | 1000 mg | 750 mg * | 430.00 | - | |
C Trough | 16.32 | |||||||||
18 | Female; 66; 27.7 | 1 | C Peak | 26.37 | 1000 mg | 1000 mg | 481.00 | - | ||
C Trough | 17.67 | |||||||||
19 | Female; 75; 25.7 | HF | 2 | C Peak | 28.41 | 1000 mg * | 1000 mg | 537.00 | - | |
C Trough | 19.70 | |||||||||
20 | Male; 56; 17.7 | HTA, HF | 1 | C Peak | 26.30 | 1000 mg | 1000 mg * | changed to colistin | 474.00 | - |
C Trough | 16.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crețu, A.; Mititiuc, L.I.; Lungu, I.-D.; Mihaila, M.; Dima, I.; Covic, A.; Ghiciuc, C.M. Therapeutic Drug Monitoring of Vancomycin in Hemodialysis Patients in a Hospital in North-East Romania. Antibiotics 2025, 14, 34. https://doi.org/10.3390/antibiotics14010034
Crețu A, Mititiuc LI, Lungu I-D, Mihaila M, Dima I, Covic A, Ghiciuc CM. Therapeutic Drug Monitoring of Vancomycin in Hemodialysis Patients in a Hospital in North-East Romania. Antibiotics. 2025; 14(1):34. https://doi.org/10.3390/antibiotics14010034
Chicago/Turabian StyleCrețu, Aurelia, Luanda Irina Mititiuc, Iulia-Daniela Lungu, Mihaela Mihaila, Irina Dima, Adrian Covic, and Cristina Mihaela Ghiciuc. 2025. "Therapeutic Drug Monitoring of Vancomycin in Hemodialysis Patients in a Hospital in North-East Romania" Antibiotics 14, no. 1: 34. https://doi.org/10.3390/antibiotics14010034
APA StyleCrețu, A., Mititiuc, L. I., Lungu, I.-D., Mihaila, M., Dima, I., Covic, A., & Ghiciuc, C. M. (2025). Therapeutic Drug Monitoring of Vancomycin in Hemodialysis Patients in a Hospital in North-East Romania. Antibiotics, 14(1), 34. https://doi.org/10.3390/antibiotics14010034