Trends in Escherichia coli and Klebsiella pneumoniae Urinary Tract Infections and Antibiotic Resistance over a 5-Year Period in Southeastern Gabon
<p>Trend in urinary tract infections over 5 years. This plot displays the prevalence rates of cystitis and pyelonephritis across the annual data over five years.</p> "> Figure 2
<p>Seasonal prevalence of cystitis and pyelonephritis. The bar chart displays the prevalence rates (%) of cystitis and pyelonephritis across different seasons. The seasons are categorized as LD (long dry season), SD (short dry season), LR (long rainy season), and SR (short rainy season).</p> "> Figure 3
<p>Prevalence trends of <span class="html-italic">E. coli</span> and <span class="html-italic">K. pneumoniae</span> isolates across sociodemographic, seasonal and temporal parameters. This plot illustrates the prevalence rates of <span class="html-italic">E. coli</span> and <span class="html-italic">K. pneumoniae</span> isolates across various sociodemographic parameters (such as gender and age groups), seasonal factors, and annual data over five years.</p> "> Figure 4
<p>Antibiotic resistance profiles of <span class="html-italic">E. coli</span> and <span class="html-italic">K. pneumoniae</span> isolated from cystitis and pyelonephritis. This heatmap shows antibiotic resistance rates (%) for <span class="html-italic">E. coli</span> and <span class="html-italic">K. pneumoniae</span> isolates from cystitis and pyelonephritis. Resistance is presented for various antibiotic classes, with red indicating high resistance (up to 100%) and blue representing low resistance (close to 0%). Multidrug resistance (MDR) is displayed at the top.</p> "> Figure 5
<p>Principal component analysis of multidrug resistance and climatic factors. This figure illustrates the association between multidrug resistance and various climatic factors, including temperature, humidity, precipitation rate, number of rainy days, and number of stormy days.</p> "> Figure 6
<p>Trends in antibiotic resistance of interest in <span class="html-italic">E. coli</span> and <span class="html-italic">K. pneumoniae</span> isolated from UTIs over five years. This figure displays the trends in antibiotic resistance of <span class="html-italic">E. coli</span> and <span class="html-italic">K. pneumoniae</span> isolates from cystitis cases (<b>A</b>,<b>C</b>) and pyelonephritis cases (<b>B</b>,<b>D</b>) over the past five years, respectively. The data include resistance percentages for several antibiotics, showing how resistance levels have changed annually.</p> ">
Abstract
:1. Introduction
2. Results
2.1. General Patient Information in the Study
2.2. A Five-Year Analysis of the Incidence of Urinary Tract Infections
2.3. Distribution of UTIs According Clinical Categories
2.4. Distribution of E. coli and K. pneumoniae According to Sociodemographic, Seasonal, and Temporal Parameters over a Five-Year Period
2.5. Antibiotic Resistance of E. coli and K. pneumoniae Strains Isolated from Patients with Cystitis and Pyelonephritis
2.6. Principal Component Analysis (PCA) of Climatic Factors Associated with Uropathogen Multidrug Resistance
2.7. Temporal Distribution of Antibiotic Resistance of Interest in E. coli and K. pneumoniae
3. Discussion
4. Materials and Methods
4.1. Study Design, Geographical Scope, and Target Population
4.2. Sample and Climate Data Collection
4.3. Culture and Identification of Bacterial Isolates
4.4. Antibiotic Sensitivity Test
4.5. Categorization of Urinary Tract Infections (UTIs)
4.5.1. Simple Urinary Tract Infections
4.5.2. Complication-Risk Urinary Tract Infections
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Chen, H.; Zheng, Y.; Qu, S.; Wang, H.; Yi, F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front. Public Health 2022, 10, 888205. [Google Scholar] [CrossRef] [PubMed]
- Jodal, U. The natural history of bacteriuria in childhood. Infect. Dis. Clin. N. Am. 1987, 1, 713–730. [Google Scholar] [CrossRef]
- SPILF. Diagnostic et Antibiothérapie des Infections Urinaires Bactériennes Communautaires de L’adulte. Mise au Point; Paris, France: 2015. Available online: https://www.infectiologie.com/UserFiles/File/spilf/recos/infections-urinaires-spilf-argumentaire.pdf (accessed on 21 November 2023).
- Akram, M.; Shahid, M.; Khan, A.U. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in JNMC Hospital Aligarh, India. Ann. Clin. Microbiol. Antimicrob. 2007, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tandogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef]
- Shiralizadeh, S.; Taghizadeh, S.; Asgharzadeh, M.; Shokouhi, B.; Gholizadeh, P.; Rahbar, M.; Kafil, H.S. Urinary tract infections: Raising problem in developing countries. Rev. Res. Med. Microbiol. 2018, 29, 159–165. [Google Scholar] [CrossRef]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary tract infections: The current scenario and future prospects. Pathogens 2023, 12, 623. [Google Scholar] [CrossRef]
- Hu, B.; Ye, H.; Xu, Y.; Ni, Y.; Hu, Y.; Yu, Y.; Huang, Z.; Ma, L. Clinical and economic outcomes associated with community-acquired intra-abdominal infections caused by extended spectrum beta-lactamase (ESBL) producing bacteria in China. Curr. Med. Res. Opin. 2010, 26, 1443–1449. [Google Scholar] [CrossRef]
- Topaloglu, R.; Er, I.; Dogan, B.G.; Bilginer, Y.; Ozaltin, F.; Besbas, N.; Ozen, S.; Bakkaloglu, A.; Gur, D. Risk factors in community-acquired urinary tract infections caused by ESBL-producing bacteria in children. Pediatr. Nephrol. 2010, 25, 919–925. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 3 October 2024).
- Mohamed, H.S.; Houmed Aboubaker, M.; Dumont, Y.; Didelot, M.N.; Michon, A.L.; Galal, L.; Jean-Pierre, H.; Godreuil, S. Multidrug-resistant enterobacterales in community-acquired urinary tract infections in Djibouti, Republic of Djibouti. Antibiotics 2022, 11, 1740. [Google Scholar] [CrossRef]
- Mouanga Ndzime, Y.; Onanga, R.; Kassa Kassa, R.F.; Bignoumba, M.; Mbehang Nguema, P.P.; Gafou, A.; Lendamba, R.W.; Mbombe Moghoa, K.; Bisseye, C. Epidemiology of community origin Escherichia coli and Klebsiella pneumoniae uropathogenic strains resistant to antibiotics in Franceville, Gabon. Infect. Drug Resist. 2021, 14, 585–594. [Google Scholar] [CrossRef]
- Mouanga-Ndzime, Y.; Onanga, R.; Longo-Pendy, N.M.; Bignoumba, M.; Bisseye, C. Epidemiology of community origin of major multidrug-resistant ESKAPE uropathogens in a paediatric population in South-East Gabon. Antimicrob. Resist. Infect. Control. 2023, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Deeny, S.R.; Van Kleef, E.; Bou-Antoun, S.; Hope, R.J.; Robotham, J.V. Seasonal changes in the incidence of Escherichia coli bloodstream infection: Variation with region and place of onset. Clin. Microbiol. Infect. 2015, 21, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Eber, M.R.; Shardell, M.; Schweizer, M.L.; Laxminarayan, R.; Perencevich, E.N. Seasonal and temperature-associated increases in gram-negative bacterial bloodstream infections among hospitalized patients. PLoS ONE 2011, 6, e25298. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Gastmeier, P.; Meyer, E. The warmer the weather, the more gram-negative bacteria-impact of temperature on clinical isolates in intensive care units. PLoS ONE 2014, 9, e91105. [Google Scholar] [CrossRef]
- Nzalie, R.N.-T.; Gonsu, H.K.; Koulla-Shiro, S. Bacterial Etiology and Antibiotic Resistance Profile of Community-Acquired Urinary Tract Infections in a Cameroonian City. Int. J. Microbiol. 2016, 2016, 3240268. [Google Scholar] [CrossRef]
- Kogan, M.; Ivanov, S.; Naboka, Y. Current issues of epidemiology, etiology, risk factors and predisposing conditions of acute pyelonephritis (REVIEW-PART I). Urologiia 2021, 109–115. [Google Scholar] [CrossRef]
- Alós, J.I. Epidemiology and etiology of urinary tract infections in the community. Antimicrobial susceptibility of the main pathogens and clinical significance of resistance. Enfermedades Infecc. Microbiol. Clin. 2005, 23, 3–8. [Google Scholar]
- Singh, S.K.; Chandra, A.; Prasad, A. Urinary tract infection in females, a clinicopathological correlation and appraisal. Int. J. Surg. 2020, 4, 40–43. [Google Scholar]
- Cortesse, A.; LeDuc, A. Abord Clinique en Urologie; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Behzadi, P.; Urbán, E.; Matuz, M.; Benkő, R.; Gajdács, M. The role of gram-negative bacteria in urinary tract infections: Current concepts and therapeutic options. Adv. Microbiol. Infect. Dis. Public Health 2021, 15, 35–69. [Google Scholar]
- Gonsu Kamga, H.; Nzengang, R.; Toukam, M.; Sando, Z.; Koulla Shiro, S. Phénotypes de résistance des souches d’Escherichia coli responsables des infections urinaires communautaires dans la ville de Yaoundé (Cameroun). Afr. J. Pathol. Microbiol. 2014, 3, 1–4. [Google Scholar] [CrossRef]
- Simmering, J.E.; Tang, F.; Cavanaugh, J.E.; Polgreen, L.A.; Polgreen, P.M. The increase in hospitalizations for urinary tract infections and the associated costs in the United States, 1998–2011. In Open Forum Infectious Diseases; Oxford University Press: Oxford, MI, USA, 2017. [Google Scholar]
- Czaja, C.A.; Scholes, D.; Hooton, T.M.; Stamm, W.E. Population-based epidemiologic analysis of acute pyelonephritis. Clin. Infect. Dis. 2007, 45, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Stamm, W.E.; McKevitt, M.; Roberts, P.L.; White, N.J. Natural history of recurrent urinary tract infections in women. Rev. Infect. Dis. 1991, 13, 77–84. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Banerjee, S.N.; Jarvis, W.R.; National Nosocomial Infections Surveillance System. Seasonal variation of Acinetobacter infections: 1987–1996. Clin. Infect. Dis. 1999, 29, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Perencevich, E.N.; McGregor, J.C.; Shardell, M.; Furuno, J.P.; Harris, A.D.; Morris, J.G.; Fisman, D.N.; Johnson, J.A. Summer peaks in the incidences of gram-negative bacterial infection among hospitalized patients. Infect. Control. Hosp. Epidemiol. 2008, 29, 1124–1131. [Google Scholar] [CrossRef]
- Morris, B.J.; Wiswell, T.E. Circumcision and lifetime risk of urinary tract infection: A systematic review and meta-analysis. J. Urol. 2013, 189, 2118–2124. [Google Scholar] [CrossRef]
- Hima-Lerible, H.; Ménard, D.; Talarmin, A. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in Bangui, Central African Republic. J. Antimicrob. Chemother. 2003, 51, 192–194. [Google Scholar] [CrossRef]
- Yandai, F.H.; Ndoutamia, G.; Nadlaou, B.; Barro, N. Prevalence and resistance profile of Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infections in N’Djamena, Tchad. Int. J. Biol. Chem. Sci. 2019, 13, 2065–2073. [Google Scholar] [CrossRef]
- Dia, M.; Chabouny, H.; Diagne, R. Profil antibiotypique des bactéries uropathogènes isolées au CHU de Dakar. Rev. Afr. D’urologie D’andrologie 2015, 1, 212–217. [Google Scholar]
- Smaoui, S.; Abdelhedi, K.; Marouane, C.; Kammoun, S.; Messadi-Akrout, F. Résistance aux antibiotiques des entérobactéries responsables d’infections urinaires communautaires à Sfax (Tunisie). Médecine Mal. Infect. 2015, 45, 335–337. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, A.U. Global economic impact of antibiotic resistance: A review. J. Glob. Antimicrob. Resist. 2019, 19, 313–316. [Google Scholar] [CrossRef]
- Beizman-Magen, Y.; Orevi, T.; Kashtan, N. Hydration conditions as a critical factor in antibiotic-mediated bacterial competition outcomes. bioRxiv 2024. [Google Scholar] [CrossRef]
- Shawver, S.; Ishii, S.; Strickland, M.S.; Badgley, B. Soil type and moisture content alter soil microbial responses to manure from cattle administered antibiotics. Environ. Sci. Pollut. Res. 2024, 31, 27259–27272. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic resistance increases with local temperature. Nat. Clim. Chang. 2018, 8, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Kass, E.H. Bacteriuria and the diagnosis of infections of the urinary tract: With observations on the use of methionine as a urinary antiseptic. AMA Arch. Intern. Med. 1957, 100, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Kass, E.H. Asymptomatic infections of the urinary tract. J. Urol. 2002, 167, 1016–1020. [Google Scholar] [CrossRef]
- The European Committee on Antibiotic Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 5 July 2019).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
Characteristics | Number (n = 3026) | UTIs (n = 949) | Percentage (%) | p-Value |
---|---|---|---|---|
Sex | ||||
Male | 1257 | 356 | 28.3 | 0.002 |
Female | 1769 | 593 | 33.5 | |
Age groups | ||||
≤17 years | 1339 | 458 | 34.2 | 0.003 |
18–49 years | 1363 | 385 | 28.2 | |
≥50 years | 324 | 106 | 33.0 | |
Origin | ||||
Urban area | 2162 | 703 | 32.5 | 0.03 |
Rural area | 864 | 246 | 28.4 | |
Year of data collection | ||||
2019 | 803 | 277 | 34.5 | |
2020 | 853 | 178 | 21.0 | |
2021 | 283 | 86 | 30.4 | <0.0001 |
2022 | 485 | 192 | 39.6 | |
2023 | 602 | 216 | 36.0 | |
Seasonality | ||||
Long dry season | 884 | 271 | 30.6 | |
Short dry season | 543 | 189 | 34.8 | 0.25 |
Long rainy season | 755 | 237 | 31.4 | |
Short rainy season | 844 | 252 | 29.8 |
Characteristics | All Patient | UTIs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cystitis | Pyelonephritis | ||||||||||
Total Number (n = 3026) | Total Number (n = 589) | cOR (95% CI) | p-Value | aOR (95% CI) | p-Value | Total Number (n = 360) | cOR (95% CI) | p-Value | aOR (95% CI) | p-Value | |
Age groups (years) | |||||||||||
≤17 | 1339 | 235 (18%) | 0.75 (0.56–1.02) | 0.07 | - | - | 223 (17%) | 1.65 (1.12–2.41) | 0.01 | 1.39 (0.94–2.06) | 0.09 |
18–49 | 1363 | 283 (21%) | 0.93 (0.69–1.25) | 0.64 | - | - | 102 (7%) | 0.66 (0.44–1) | 0.05 | - | - |
≥50 (ref) | 324 | 71 (22%) | - | - | - | - | 35 (11%) | - | - | - | - |
Sex | |||||||||||
Male (ref) | 1257 | 207 (16%) | - | - | - | - | 149 (12%) | - | - | - | - |
Female | 1769 | 382 (22%) | 1.39 (1.15–1.68) | <0.001 | 0.7 (0.58–0.85) | <0.001 | 211 (12%) | 1 (0.80–1.25) | 0.95 | - | - |
Origin | |||||||||||
Urban | 2162 | 440 (20%) | 1.22 (0.99–1.50) | 0.05 | - | - | 263 (12%) | 1.09 (0.85–1.4) | 0.47 | - | - |
Rural (ref) | 864 | 149 (17%) | - | - | - | - | 97 (11%) | - | - | - | - |
Years | |||||||||||
2019 (ref) | 803 | 190 (24%) | - | - | - | - | 87 (11%) | - | - | - | - |
2020 | 853 | 122 (14%) | 0.53 (0.41–0.69) | <0.001 | 0.51 (0.39–0.66) | <0.001 | 56 (7%) | 0.57 (0.40–0.82) | <0.01 | 0.59 (0.41–0.84) | <0.01 |
2021 | 283 | 51 (18%) | 0.70 (0.50–1) | 0.05 | - | - | 35 (12%) | 1.16 (0.76–1.76) | 0.48 | - | - |
2022 | 485 | 121 (25%) | 1.07 (0.82–1.39) | 0.6 | - | - | 71 (15%) | 1.41 (1.00–1.97) | 0.04 | 1.38 (0.96–1.98) | 0.08 |
2023 | 602 | 105 (17%) | 0.68 (0.52–0.88) | 0.005 | 0.73 (0.55–0.93) | 0.02 | 111 (18%) | 1.86 (1.37–2.5) | <0.001 | 1.58 (1.15–2.16) | <0.01 |
Characteristics | All Infected Patient | UTIs | |||||
---|---|---|---|---|---|---|---|
Cystitis | Pyelonephritis | ||||||
Total Number (n = 949) | At Risk of Complication (n = 226) | Uncomplicated (n = 363) | p-Value | At Risk of Complication (n = 149) | Uncomplicated (n = 211) | p-Value | |
Age groups (years) | |||||||
≤17 | 458 (48%) | 122 (54%) | 113 (31%) | <0.0001 | 115 (77%) | 108 (51%) | <0.0001 |
18–49 | 385 (41%) | 71 (31%) | 212 (58%) | <0.0001 | 26 (18%) | 76 (36%) | <0.001 |
≥50 | 106 (11%) | 33 (15%) | 38 (11%) | 0.17 | 8 (5%) | 27 (13%) | 0.03 |
Origin | |||||||
Urban | 703 (74%) | 169 (75%) | 271 (75%) | 1 | 122 (82%) | 141 (67%) | <0.01 |
Rural | 246 (26%) | 57 (25%) | 92 (25%) | 1 | 27 (18%) | 70 (33%) | <0.01 |
Recurrent UTIs | |||||||
Yes | 116 (12%) | 21 (9%) | 53 (15%) | 0.07 | 9 (6%) | 33 (16%) | <0.01 |
No | 833 (88%) | 205 (91%) | 310 (85%) | 0.07 | 140 (94%) | 178 (84%) | <0.01 |
Years | |||||||
2019 | 277 (29%) | 70 (31%) | 120 (33%) | 0.66 | 43 (29%) | 44 (21%) | 0.10 |
2020 | 178 (19%) | 38 (17%) | 84 (23%) | 0.08 | 17 (11%) | 39 (18%) | 0.09 |
2021 | 86 (9%) | 21 (9%) | 30 (8%) | 0.77 | 13 (9%) | 22 (10%) | 0.72 |
2022 | 192 (20%) | 56 (25%) | 65 (18%) | 0.05 | 36 (24%) | 35 (17%) | 0.1 |
2023 | 216 (23%) | 41 (18%) | 64 (18%) | 0.96 | 40 (27%) | 71 (34%) | 0.2 |
Uropathogens | |||||||
E. coli | 200 (21%) | 32 (14%) | 104 (29%) | <0.0001 | 18 (12%) | 46 (22%) | 0.02 |
K. pneumoniae | 129 (14%) | 28 (12%) | 48 (13%) | 0.86 | 24 (16%) | 29 (14%) | 0.63 |
Other pathogens | 621 (65%) | 166 (74%) | 212 (58%) | <0.001 | 107 (72%) | 136 (64%) | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouanga-Ndzime, Y.; Bisseye, C.; Longo-Pendy, N.-M.; Bignoumba, M.; Dikoumba, A.-C.; Onanga, R. Trends in Escherichia coli and Klebsiella pneumoniae Urinary Tract Infections and Antibiotic Resistance over a 5-Year Period in Southeastern Gabon. Antibiotics 2025, 14, 14. https://doi.org/10.3390/antibiotics14010014
Mouanga-Ndzime Y, Bisseye C, Longo-Pendy N-M, Bignoumba M, Dikoumba A-C, Onanga R. Trends in Escherichia coli and Klebsiella pneumoniae Urinary Tract Infections and Antibiotic Resistance over a 5-Year Period in Southeastern Gabon. Antibiotics. 2025; 14(1):14. https://doi.org/10.3390/antibiotics14010014
Chicago/Turabian StyleMouanga-Ndzime, Yann, Cyrille Bisseye, Neil-Michel Longo-Pendy, Michelle Bignoumba, Anicet-Clotaire Dikoumba, and Richard Onanga. 2025. "Trends in Escherichia coli and Klebsiella pneumoniae Urinary Tract Infections and Antibiotic Resistance over a 5-Year Period in Southeastern Gabon" Antibiotics 14, no. 1: 14. https://doi.org/10.3390/antibiotics14010014
APA StyleMouanga-Ndzime, Y., Bisseye, C., Longo-Pendy, N. -M., Bignoumba, M., Dikoumba, A. -C., & Onanga, R. (2025). Trends in Escherichia coli and Klebsiella pneumoniae Urinary Tract Infections and Antibiotic Resistance over a 5-Year Period in Southeastern Gabon. Antibiotics, 14(1), 14. https://doi.org/10.3390/antibiotics14010014