Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B1 Detection
<p>Stepwise illustration of fabrication procedure of the amperometric immunosensor based on interconnected carbon nanofibers (CNFs) network decorated with AuNPs (Au@PEI@CNFs nanocomposites).</p> "> Figure 2
<p>Morphological characterization of the prepared nanocomposites. SEM images of Au@PEI@CNFs (<b>A</b>,<b>B</b>) and Au@PEI@CNTs (<b>C</b>), TEM images of Au@PEI@CNFs (<b>D</b>,<b>E</b>).</p> "> Figure 3
<p>Electrochemical characterization of the prepared nanocomposites. CV graphs of (line a) bare glass carbon electrode (GCE), (line b) GCE/CNFs, (line c) GCE/Au@PEI@CNFs, (line d) GCE/carbon nanotubes (CNTs) and (line e) GCE/Au@PEI@CNTs, respectively. CVs were recorded at a scan rate of 30 mV s<sup>−1</sup> in PBS solution containing 5 mM K<sub>3</sub>[Fe(CN)<sub>6</sub>]/K<sub>4</sub>[Fe(CN)<sub>6</sub>].</p> "> Figure 4
<p>Electrochemical monitor of the immunosensor fabrication. CV curves of (line <b>a</b>) GCE, (line <b>b</b>) GCE/Au@PEI@CNFs, (line <b>c</b>) GCE/Au@PEI@CNFs/Ab, (line <b>d</b>) GCE/Au@PEI@CNFs/Ab/BSA and (line <b>e</b>) GCE/Au@PEI@CNFs/Ab/BSA/AFB<sub>1</sub> in PBS solution (pH 7.4) containing 5 mM K<sub>3</sub>[Fe(CN)<sub>6</sub>]/K<sub>4</sub>[Fe(CN)<sub>6</sub>]. Scan rate: 30 mV s<sup>−1</sup>.</p> "> Figure 5
<p>Effects of the antibody concentration (<b>A</b>) and immunoreaction time (<b>B</b>) on the detection sensitivity of the proposed immunosensor, error bar = RSD (n = 3).</p> "> Figure 6
<p>Analytical performance of the proposed immunosensor. (<b>A</b>) Differential pulse voltammetry (DPV) responses of the Au@PEI@CNFs-based immunosensor to different concentrations of AFB<sub>1</sub>. (<b>B</b>) Calibration curves of immunosensors to different concentrations of AFB<sub>1</sub>, error bar = RSD (n = 6). (<b>C</b>) Peak-current change (ΔIp) responses of immunosensors to different storage time, error bar = RSD (n = 3). (<b>D</b>) Peak-current change (ΔIp) responses of immunosensors to different mycotoxins (5 ng mL<sup>−1</sup>), error bar = RSD (n = 3).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. Preparation of Au@PEI@CNFs Nanocomposites
2.4. Fabrication of Amperometric Immunosensor
2.5. Sample Preparation
2.6. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of Nanocomposites
3.2. Immunosensor Fabrication
3.3. Optimization of Determination Conditions
3.4. Analytical Performance of the Immunosensor
3.5. Analysis of Wheat Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marin, S.; Ramos, A.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Bedard, L.L.; Massey, T.E. Aflatoxin B1-induced DNA damage and its repair. Cancer Lett. 2006, 241, 174–183. [Google Scholar] [CrossRef]
- Reddy, K.; Salleh, B.; Saad, B.; Abbas, H.; Abel, C.; Shier, W. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010, 29, 3–26. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, J.; Xie, B.; He, Y.; Qin, Y.; Wang, D.; Shi, H.; Ke, Y.; Sun, Q. Detoxification of aflatoxin B1 in corn by chlorine dioxide gas. Food Chem. 2020, 328, 127121. [Google Scholar] [CrossRef] [PubMed]
- National Health and Family Planning Commission of China; State Food and Drug Administration of China. Maximum Levels of Mycotoxins in Foods (GB 2761-2017); China Standard Press: Beijing, China, 2017. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006. Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Zhang, B.; Yu, L.; Liu, Z.; Lu, H.; Fu, X.; Du, D. Rapid determination of aflatoxin B1 by an automated immunomagnetic bead purification sample pretreatment method combined with high-performance liquid chromatography. J. Sep. Sci. 2020, 43, 3509–3519. [Google Scholar] [CrossRef] [PubMed]
- Huertas-Pérez, J.F.; Arroyo-Manzanares, N.; Hitzler, D.; Castro-Guerrero, F.G.; Gámiz-Gracia, L.; García-Campaña, A.M. Simple determination of aflatoxins in rice by ultra-high performance liquid chromatography coupled to chemical post-column derivatization and fluorescence detection. Food Chem. 2018, 245, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Muscarella, M.; Iammarino, M.; Nardiello, D.; Magro, S.L.; Palermo, C.; Centonze, D.; Palermo, D. Validation of a confirmatory analytical method for the determination of aflatoxins B1, B2, G1and G2in foods and feed materials by HPLC with on-line photochemical derivatization and fluorescence detection. Food Addit. Contam. Part A 2009, 26, 1402–1410. [Google Scholar] [CrossRef]
- Zitomer, N.; Rybak, M.E.; Li, Z.; Walters, M.J.; Holman, M.R. Determination of Aflatoxin B1in Smokeless Tobacco Products by Use of UHPLC-MS/MS. J. Agric. Food Chem. 2015, 63, 9131–9138. [Google Scholar] [CrossRef] [Green Version]
- Campone, L.; Rizzo, S.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Labra, M.; Rastrelli, L. Determination of mycotoxins in beer by multi heart-cutting two-dimensional liquid chromatography tandem mass spectrometry method. Food Chem. 2020, 318, 126496. [Google Scholar] [CrossRef]
- Wang, X.; Li, P.; Yang, Y.; Zhang, W.; Zhang, Q.; Fan, S.; Yu, L.; Wang, L.; Chen, X.; Li, Y.; et al. Determination of aflatoxins in cereals and oils by liquid chromatography-triple quadrupole tandem mass spectrometry. Chin. J. Chromatogr. 2011, 29, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Li, G.; Hu, H.; Xue, H.; Zhang, M.; Zhu, M.; Gong, X.; Kennis, J.T.M.; Wan, Y.; Shen, Y. Direct Immunoassay for Facile and Sensitive Detection of Small Molecule Aflatoxin B1 based on Nanobody. Chem. A Eur. J. 2018, 24, 9869–9876. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ding, H.; Gu, Z.; Zhao, J.; Chen, H.; Tian, F.; Chen, Y.Q.; Zhang, H.; Chen, W. Selection of Single Chain Fragment Variables with Direct Coating of Aflatoxin B1to Enzyme-Linked Immunosorbent Assay Plates. J. Agric. Food Chem. 2009, 57, 8927–8932. [Google Scholar] [CrossRef] [PubMed]
- Sojinrin, T.; Liu, K.; Wang, K.; Cui, D.; Byrne, H.J.; Curtin, J.; Tian, F. Developing Gold Nanoparticles-Conjugated Aflatoxin B1 Antifungal Strips. Int. J. Mol. Sci. 2019, 20, 6260. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Kim, G.; Lee, S. A Gold Nanoparticle and Aflatoxin B1-BSA Conjugates Based Lateral Flow Assay Method for the Analysis of Aflatoxin B1. Materials 2012, 5, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Salah Eldin, T.A.; Elshoky, H.A.; Ali, M.A. Nanobiosensor based on gold nanoparticles probe for Aflatoxin B1 detection in food. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 219–230. [Google Scholar]
- Evtugyn, G.; Hianik, T. Electrochemical Immuno- and Aptasensors for Mycotoxin Determination. Chemosensors 2019, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.; Huang, J.; Wang, D.; Meng, T.; Yang, X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020, 206, 120210. [Google Scholar] [CrossRef]
- Hu, H.; Cao, L.; Li, Q.; Ma, K.; Yan, P.; Kirk, D.W. Fabrication and modeling of an ultrasensitive label free impedimetric immunosensor for Aflatoxin B1based on poly(o-phenylenediamine) modified gold 3D nano electrode ensembles. RSC Adv. 2015, 5, 55209–55217. [Google Scholar] [CrossRef]
- Karimian, N.; Moretto, L.M.; Ugo, P. Nanobiosensing with Arrays and Ensembles of Nanoelectrodes. Sensors 2016, 17, 65. [Google Scholar] [CrossRef]
- Bottari, F.; Oliveri, P.; Ugo, P. Electrochemical immunosensor based on ensemble of nanoelectrodes for immunoglobulin IgY detection: Application to identify hen’s egg yolk in tempera paintings. Biosens. Bioelectron. 2014, 52, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Basu, T. Functionalised Au Coated Iron Oxide Nanocomposites Based Reusable Immunosensor for AFB1 Detection. J. Nanomater. 2015, 2015, 607268. [Google Scholar] [CrossRef]
- Luan, Y.; Chen, Z.; Xie, G.; Chen, J.; Lu, A.; Li, C.; Fu, H.; Ma, Z.; Wang, J. Rapid Visual Detection of Aflatoxin B1 by Label-Free Aptasensor Using Unmodified Gold Nanoparticles. J. Nanosci. Nanotechnol. 2015, 15, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Niessner, R.; Knopp, D. Magnetic Bead-Based Colorimetric Immunoassay for Aflatoxin B1 Using Gold Nanoparticles. Sensors 2014, 14, 21535–21548. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, M.; Khabbaz, H.; Dadmehr, M.; Ganjali, M.R.; Mohamadnejad, J. Aptamer-based Colorimetric and Chemiluminescence Detection of Aflatoxin B1 in Foods Samples. Acta Chim. Slov. 2015, 62, 721–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhijith, K.S.; Thakur, M.S. Application of green synthesis of gold nanoparticles for sensitive detection of aflatoxin B1 based on metal enhanced fluorescence. Anal. Methods 2012, 4, 4250–4256. [Google Scholar] [CrossRef]
- Majzik, A.; Hornok, V.; Sebők, D.; Bartók, T.; Szente, L.; Tuza, K.; Dékány, I. Sensitive detection of aflatoxin B1 molecules on gold SPR chip surface using functionalized gold nanoparticles. Cereal Res. Commun. 2015, 43, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Akgönüllü, S.; Yavuz, H.; Denizli, A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020, 219, 121219. [Google Scholar] [CrossRef]
- Kour, R.; Arya, S.; Young, S.-J.; Gupta, V.; Bandhoria, P.; Khosla, A. Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. J. Electrochem. Soc. 2020, 167, 037555. [Google Scholar] [CrossRef]
- Song, C.; Wei, Q.; Li, H.; Gao, H.; An, J.; Qi, B. Highly Sensitive Electrochemical Sensor based on Carbon Dots Reduced Gold Nanoparticles for Ractopamine Detection in Pork Meat. Int. J. Electrochem. Sci. 2020, 15, 3495–3503. [Google Scholar] [CrossRef]
- Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens. Bioelectron. 2017, 98, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Masikini, M.; Ghica, M.E.; Baker, P.G.L.; Iwuoha, E.I.; Brett, C.M. Electrochemical Sensor Based on Multi-walled Carbon Nanotube/Gold Nanoparticle Modified Glassy Carbon Electrode for Detection of Estradiol in Environmental Samples. Electroanalysis 2019, 31, 1925–1933. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.; Shen, G.; Wang, S.; Shen, G.; Yu, R. Electrochemical immunosensor based on Pd–Au nanoparticles supported on functionalized PDDA-MWCNT nanocomposites for aflatoxin B1 detection. Anal. Biochem. 2016, 494, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Chikkaveeraiah, B.V.; Bhirde, A.; Malhotra, R.; Patel, V.; Gutkind, J.S.; Rusling, J.F.; Chikkaveeraih, B.V. Single-Wall Carbon Nanotube Forest Arrays for Immunoelectrochemical Measurement of Four Protein Biomarkers for Prostate Cancer. Anal. Chem. 2009, 81, 9129–9134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, D.; Gu, Y.; Lan, H.; Sun, Y.; Gao, H. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Anal. Chim. Acta 2015, 853, 297–302. [Google Scholar] [CrossRef] [PubMed]
- AlThagafi, I.I.; Ahmed, S.A.; El-Said, W.A. Fabrication of gold/graphene nanostructures modified ITO electrode as highly sensitive electrochemical detection of Aflatoxin B1. PLoS ONE 2019, 14, e0210652. [Google Scholar] [CrossRef]
- Hamzah, H.H.; Shafiee, S.A.; Abdalla, A.; Patel, B.A. 3D printable conductive materials for the fabrication of electrochemical sensors: A mini review. Electrochem. Commun. 2018, 96, 27–31. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.; Gao, C.; Duan, X. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588. [Google Scholar] [CrossRef]
- Zou, L.; Qiao, Y.; Wu, Z.-Y.; Wu, X.-S.; Xie, J.-L.; Yu, S.-H.; Guo, J.; Li, C.M. Tailoring Unique Mesopores of Hierarchically Porous Structures for Fast Direct Electrochemistry in Microbial Fuel Cells. Adv. Energy Mater. 2015, 6, 1501535. [Google Scholar] [CrossRef]
- Liang, T.; Zou, L.; Guo, X.; Ma, X.; Zhang, C.; Zou, Z.; Zhang, Y.; Hu, F.; Lu, Z.; Tang, K.; et al. Rising Mesopores to Realize Direct Electrochemistry of Glucose Oxidase toward Highly Sensitive Detection of Glucose. Adv. Funct. Mater. 2019, 29. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Qu, X.; Dong, S. In Situ Synthesis and Characterization of Multiwalled Carbon Nanotube/Au Nanoparticle Composite Materials. J. Phys. Chem. B 2006, 110, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, W.; Xiong, Y.; Xu, Y.; Li, C.M. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B 1. Biosens. Bioelectron. 2015, 63, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wu, X.-S.; Zou, L.; Wen, G.-Y.; Liu, D.-Y.; Qiao, Y. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells. J. Power Sources 2016, 315, 192–198. [Google Scholar] [CrossRef]
- Liu, L.; Chao, Y.; Cao, W.; Wang, Y.; Luo, C.; Pang, X.; Fan, D.; Wei, Q. A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Anal. Chim. Acta 2014, 847, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Pandey, M.K.; Rajesh; Gajjala, S. Electrochemical Aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. Microchim. Acta 2019, 186, 592. [Google Scholar] [CrossRef]
- Afkhami, A.; Hashemi, P.; Bagheri, H.; Salimian, J.; Ahmadi, A.; Madrakian, T. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens. Bioelectron. 2017, 93, 124–131. [Google Scholar] [CrossRef]
- Cheli, F.; Pinotti, L.; Rossi, L.; Dell’Orto, V. Effect of milling procedures on mycotoxin distribution in wheat fractions: A review. LWT 2013, 54, 307–314. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, A.; Khan, R. A highly sensitive amperometric immunosensor probe based on gold nanoparticle functionalized poly (3, 4-ethylenedioxythiophene) doped with graphene oxide for efficient detection of aflatoxin B 1. Synth. Met. 2018, 235, 136–144. [Google Scholar] [CrossRef]
- Ma, H.; Sun, J.; Zhang, Y.; Xia, S. Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B 1 in wheat. Biochem. Eng. J. 2016, 115, 38–46. [Google Scholar] [CrossRef]
- Ma, H.; Sun, J.; Zhang, Y.; Bian, C.; Xia, S.; Zhen, T. Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Biosens. Bioelectron. 2016, 80, 222–229. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Z.; Yang, G.; Chen, X.; Gou, G.; Liu, W. Electrochemical Immunosensor for Aflatoxin B1 Based on Polyaniline/Graphene Nanohybrids Decorated with Au Nanoparticle. Electrochemistry 2017, 85, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Owino, J.H.; Arotiba, O.A.; Hendricks, N.; Songa, E.A.; Jahed, N.; Waryo, T.T.; Ngece, R.F.; Baker, P.G.L.; Iwuoha, E. Electrochemical Immunosensor Based on Polythionine/Gold Nanoparticles for the Determination of Aflatoxin B1. Sensors 2008, 8, 8262–8274. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.-L.; Qi, Q.-A.; Dong, Z.-L.; Liang, K.Z. An electrochemical enzyme immunoassay for aflatoxin B1 based on bio-electrocatalytic reaction with room-temperature ionic liquid and nanoparticle-modified electrodes. Sens. Instrum. Food Qual. Saf. 2008, 2, 43–50. [Google Scholar] [CrossRef]
- Li, S.C.; Chen, J.H.; Cao, H.; Yao, D.S.; Liu, D.L. Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control. 2011, 22, 43–49. [Google Scholar] [CrossRef]
- European Commission. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). Off. J. Eur. Commun. 2002, 221, 8–36. [Google Scholar]
Modified Electrode | Linearity (ng mL−1) | LOD (ng mL−1) | Reference |
---|---|---|---|
Au@PEI@CNFs/GCE | 0.05–25 | 0.027 | This work |
Au@PEI@CNTs/GCE | 0.05–25 | 0.093 | This work |
CNTs/PDDA/Pd-Au/GCE | 0.05–25 | 0.03 | [34] |
AuNPs/PEDOT-GO/GCE | 0.5–60 | 0.109 | [49] |
CHI-AuNPs/GCE | 0.2–30 | 0.12 | [50] |
CHI-AuNPs/GCE | 0.1–30 | 0.06 | [51] |
Au/PANI/GN/GCE | 0.05–25 | 0.034 | [52] |
PTH/AuNP/GCE | 0.6–2.4 | 0.07 | [53] |
Au/TiO2/RTIL/Nafion/GCE | 0.1–12 | 0.050 | [54] |
MWCNTs/AFO | 1–225 | 0.5 | [55] |
PoPD/3DNEEs | 0.04–8 | 0.019 | [20] |
Spiked Concentration (µg kg−1) | Detected Concentration (Mean ± SD, µg kg−1) | Recovery (%) | RSD (%) |
---|---|---|---|
Intra-assay (n = 6) | |||
5 | 5.29 ± 0.61 | 105.80 | 11.35 |
25 | 23.58 ± 2.16 | 94.32 | 9.16 |
200 | 178.13 ± 13.15 | 89.06 | 7.38 |
Inter-assay (n = 6) | |||
5 | 5.58 ± 0.77 | 111.60 | 13.80 |
25 | 24.43 ± 3.02 | 97.72 | 12.36 |
200 | 171.88 ± 17.26 | 85.94 | 10.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhu, F.; Guan, J.; Wei, W.; Zou, L. Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B1 Detection. Biosensors 2021, 11, 5. https://doi.org/10.3390/bios11010005
Huang Y, Zhu F, Guan J, Wei W, Zou L. Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B1 Detection. Biosensors. 2021; 11(1):5. https://doi.org/10.3390/bios11010005
Chicago/Turabian StyleHuang, Yunhong, Fei Zhu, Jinhua Guan, Wei Wei, and Long Zou. 2021. "Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B1 Detection" Biosensors 11, no. 1: 5. https://doi.org/10.3390/bios11010005
APA StyleHuang, Y., Zhu, F., Guan, J., Wei, W., & Zou, L. (2021). Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B1 Detection. Biosensors, 11(1), 5. https://doi.org/10.3390/bios11010005